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Towards Efficient Authenticated Subgraph Query
Service in Outsourced Graph Databases

Zhe Fan, Yun Peng, Byron Choi, Jianliang Xu, Sourav S Bhowmick

Abstract —Graphs have been a powerful tool that is suitable for a large variety of applications including chemical databases and the
Semantic Web, among others. A fundamental query of graph databases is subgraph query: given a query graph q, it retrieves the
data graphs from a database that contain q. Due to the cost of managing massive data coupled with the computational hardness of
subgraph query processing, outsourcing the processing to a third-party service provider is an appealing alternative. However, security
properties such as data integrity and the response time are critical Quality of Service (QoS) issues in query services. Unfortunately, to
our knowledge, authenticated subgraph query services have not been addressed before. To support the service, we propose Merkle
IFTree (MIFTree) where Merkle hash trees are applied into our Intersection-aware Feature-subgraph Tree (IFTree). IFTree aims to
minimize I/O in a well-received subgraph query paradigm namely the filtering-and-verification framework. The structures required to be
introduced to verification objects (VOs) and authentication time are minimized. Subsequently, the overall response time is minimized.
For optimizations, we propose an enhanced authentication method on MIFTree. Our detailed experiments on both real and synthetic
datasets demonstrate that MIFTree is clearly more efficient than a baseline method.

Index Terms —13.0.I Security Concerns of Service-Oriented Solutions, 13.II.I Service-Oriented Security Enablement at Software Level,
Subgraph Query Service, Query Answer Authentication, Outsourced Graph Databases
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1 INTRODUCTION

T Here have been a wide range of emerging applications
of graph databases, including bio-informatics, chemi-

informatics, and web topology [6], [23], [24], whose data
are modeled as graphs. To retrieve graphs from large graph
databases, many structural queries have been proposed.
Among others, subgraph isomorphism query (or simplysub-
graph query) (e.g., [3], [9], [12], [28]–[30], [32], [36], [37])
has been a fundamental and popular query. Specifically,given
a query graphq and a graph databaseG, retrieve all graphs in
G that containq as a subgraph1. For example, in biology, there
are more than 1,500 online molecular biology databases [6].In
chemistry, PubChem [23] provides public access to numerous
chemical compounds. Users can query compounds containing
their structuresvia its web interface.

Due to the cost of hosting the explosive volume of data
and performing large-scale computations, theownersof graph
databases may not always have the necessary IT infra-structure
and expertise to provide the best usage of their data. An ap-
pealing solution to address this issue of managing voluminous
data is to outsource the owners’ data to a third-partyservice
provider (e.g., Amazon EC2 and Google Cloud Service).
Then, the service provider provides query services on the data
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1. There are two streams of research work on subgraph queries [8]. One stream
handles a very large graph. The other stream concerns a large number of small graphs,
which is the focus of this study.
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owners’ behalf. For instance, according to [23], PubChem has
managed 19 million unique compound structures. PubChem
allows laboratories to submit their data [22]; and PubChem
manages the data on the laboratories’ behalf. In addition
to PubChem, in drug engineering, many commercial service
providers (e.g., [1], [2], [11]) support outsourcing of pharma
databases owned by laboratories. Laboratories then focus on
the curation of their data.

Security properties such asdata integrity are listed as
Quality of Service(QoS) issues [20] in (query) services. A
reason is that the service provider may be untrusted and/or
compromised to attacks and clients may receive tampered
results. For instance, Fig. 1 shows an example of a graph
databaseG and a query graphq. Suppose the service provider
storesG and its index and the client retrieves graphs that con-
tain q. Supposeg4 is the answer graph. However, the service
provider might return incorrect results,e.g., g1, simply abort
the computation or return partial answers as some queries may
in fact take long to evaluate. In this scenario, the owner/client
may never be sure whether the data was outsourced correctly.
In practice, the query can be some sensitive chemical com-
pound such as benzopyrene, a carcinogenic substance recently
found in some ramen. A compromised service provider might
collaborate with some ramen companies and conveniently skip
their ingredients that contain benzopyrene. Another important
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attribute of QoS is theresponse timeof a service. In this
paper, it consists of the times for query processing, data
transmission and authentication of query results. These two
attributes of QoS significantly influence the practicality of out-
sourcing graph databases. Hence, there is a need for efficient
query authentication frameworkto support the subgraph query
services.

Majority of existing querying or indexing algorithms for
subgraph queries adopt afiltering-and-verification frame-
work [3], [12], [28], [29], [32], [36] consisting of two key
steps. (1) In thefiltering phase, the query is decomposed into
a set of individual features and an index is searched with those
features. The search of each individual feature yields a setof
graphs (represented by graph IDs) containing this searched
feature. The sets of graphs are intersected to form a candidate
set (a superset of answers). (2) In theverificationphase, each
graph in the candidate set is checked by an exact subgraph
isomorphic algorithm to compute the final result set. However,
to the best of our knowledge, none of the existing subgraph
querying works addresses authentication of such a framework.
In this paper, we take the first step towards this goal.

In a typical query authentication system [7], a data owner
publishes his database and signature; A service provider
processes queries from a client and transmits to the client
both the answer and a verification object (VO) which stores
the processing traces such as index traversals and; By using
the answer andVO, the client synthesizes the digest of the
database/index and compares it with the data owner’s signature
to verify the authenticity of the answer.

As the filtering-and-verification framework is not specially
designed for authentication, we note at least three problems
that may cause largeVO to be transmitted to clients and
inefficient authentication at clients. Firstly, query features must
be authenticated to ensure the correct graph IDs are fetched
and intersected. The more the query features, the larger the
VO. Unfortunately, none of the previous work minimizes the
number of query features used in query processing. Secondly,
all graph IDs involved in the intersections must be represented
in the VO so that the client can efficiently and correctly
verify the intersections. Thirdly, the answer graphs do not
generally form a range. In the worst case, each answer graph
is authenticated separately. This makes direct applications of
classical techniques (e.g., MHT [21] or signature chaining [25])
inefficient. Observe that both the query features and their graph
IDs (described in the first two problems) dominate the I/O of
the filtering phase and therefore, the problem of minimizing
VOs is directly related to minimizing I/O of the filtering-and-
verification framework.

In this paper, we propose a novel authentication-
friendly index called Intersection-aware Feature-subgraph
Tree (IFTree) to address the aforementioned technical chal-
lenges. We then applyMHTs toIFTree called MerkleIFTree
for efficient authentication. Specifically, for the first problem,
in order to minimize the number of features used in the
filtering phase, we propose a novelhigher-order featurecalled
Partially Overlapping Features(POF) which are themselves
features composed byindividual features. We propose to
decompose a query into an optimalPOF set such that fewest

POFs (i.e., fewest intersections) are used in querying time and
meanwhile, more individual features are implicitly used in
the filtering phase. As a result, fewer graph IDs are fetched
while the candidate set is minimized. As we shall see later, the
number of fetched graph IDs in query processing onIFTree

is 5 times smaller than that of a baseline. Moreover, the sizeof
candidate set usingIFTree is around 25% smaller than that of
a baseline. Consequently, theVO size and authentication time
are reduced by a factor of 3.6 and 3.3, respectively. For the
second problem, we propose a compact matrix representation
of intersection of graph IDs onMIFTree to form an enhanced
authentication. Our experiments show that the compact repre-
sentation improves theVO size and the authentication time
by a factor around 2.5 and 3.4 (respectively). For the last
problem, we determine the optimal ordering of graphs that are
“intersect-able”. Our empirical study demonstrates that graphs
needed to be authenticated form the fewest number of ranges
and the correspondingVO size is reduced by around 40%.
We observe that the overall improvement of the response time
over the baseline is often more than an order of magnitude.
We show that the energy saving on smartphone by using our
proposed techniques is about 27% over the baseline.

In summary, the contributions are listed as follows.
• We propose a novel higher-order feature, calledpar-

tially overlapping featurefor indexing graphs. We lever-
age these features to propose a novel index, namely
Intersection-aware Feature-subgraph Tree(IFTree). For
basic authentication, we applyMHTs to various structures
of IFTree calledMIFTree.

• We propose a novel matrix representation of intersection
of graph IDs for enhanced authentication.

• We cluster the graphs that are “intersect-able” by adopt-
ing approximation algorithms.

• We conduct extensive experiments with real and synthetic
datasets to demonstrate the effectiveness and superiority
of our proposed methods.

The rest of the paper is organized as follows. Sec. 2
discusses related works. We present the preliminaries and
overview in Sec. 3. We present partially overlapping feature in
Sec. 4. We proposeIFTree and its query processing in Sec. 5.
We propose MerkleIFTree and a basic authentication in Sec.
6. Sec. 7 proposes an enhanced authentication and the optimal
ordering of graphs. Sec. 8 presents a detailed experiment. Sec.
9 concludes this paper. We present all the detailed proofs in
Appendix A.

2 RELATED WORK

Although there are several efforts in the literature on query
authentication for relational and range queries [17], [25],
stream queries [27], [34], spatial queries [33], XML queries
[5], text search [26], and multi-dimensional queries [4], very
few work focus on authentication of graph query processing.
Yiu et al. [35] propose authentication of shortest path queries
on road networks. However, the ordering of objects in road
networks can be determined offline,e.g., by network-based
distance. Such ordering is absent in graph databases in general
and it is not clear how to adopt this work to subgraph queries.
Kundu et al. [13]–[16] propose a series of methods for a
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closely related problem. They verify theauthenticityof agiven
portion of data (subtree/subgraph that users’ have the right
to access to) without any leakage of extraneous information
of the data (tree/graph/forest). They optimize the signature
needed and recently propose a scheme that uses one signature
[13], [14]. However, in our problem setting, the portion of the
data retrieved is the answer of a client’s query, which is yet
to be processed by an untrusted service provider. Therefore,
the client is required to authenticate both the soundness and
completeness (see SubSec. 3.3) of the portion of retrieved data.
Search DAGs (Directed Acyclic Graph) [19] is a generalized
model for authenticating a large class of data structures,e.g.,
binary trees, multi-dimensional range trees and tries. However,
subgraph query processing can hardly be efficiently cast into
a DAG search.

A large number of indexing techniques have been pro-
posed for evaluating subgraph queries. These efforts can
be roughly classified into two approaches, namelyfeature-
based approaches(e.g., [3], [12], [28], [29], [32], [36]) and
non-feature-based approaches(e.g., [9], [37]). Examples of
features are frequent subgraphs, using tools such as gSpan [31]
and CAM code [10]. Recently, iGraph [8] implemented these
techniques on a common platform and reported that former
approaches outperform latter approaches in most cases. Hence,
we adopt the feature-based approach in our study.

3 BACKGROUND AND OVERVIEW
In this section, we first discuss the background to subgraph
query processing and query authentication. We then formulate
the problem studied. A baseline approach and an overview of
our solution are discussed.

3.1 Background for Subgraph Query
This paper assumesundirected labeled connected graphs. For
simplicity, we may use the termgraphs to refer to them. A
graph is denoted asg = (V,E,Σ, l), whereV (g), E(g), Σ
and l are the set of vertices, the set of edges, the set of labels
of vertices and edges and the function that maps a vertex or
edge to a label, respectively. We use|g| to denote the size
of graphg, where|g| = |E(g)|. Following the literature of a
popular stream of graph databases [3], [9], [12], [28], [29],
[32], [36], [37], we consider graphs of modest sizes.

Definition 3.1: Given two graphsg = (V,E,Σ, l) and g′ =
(V ′, E′,Σ′, l′), a subgraph isomorphismfrom g to g′ is an
injective functionϕ : V (g) → V (g′) such that

• ∀u ∈ V (g), ϕ(u) ∈ V (g′), l(u) = l′(ϕ(u)); and
• ∀(u, v) ∈ E(g), (ϕ(u), ϕ(v)) ∈ E(g′), l(u, v)=
l′(ϕ(u),ϕ(v)).

Subgraph query can be formally defined in Def. 3.1. We
say a graphg is a subgraph of another graphg′ if there exists
a subgraph isomorphism fromg to g′, denoted asg ⊆ g′ or
subIso(g, g′) = true. It is known that deciding whetherg
is the subgraph ofg′ is NP-hard. Subgraph query processing
can be described as follows.

Definition 3.2: Given a graph databaseG = {g1, g2, ..., gn}
and a query graphq, we want to determine the query answers
Rq = {gi|subIso(q, gi), gi ∈ G}.
Subgraph query paradigms.Two query paradigms for sub-
graph queries have been proposed: feature-based (e.g., [3],
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[12], [28], [29], [32], [36]) and non-feature-based (e.g., [9],
[37]) indexes. From Sec. 2 above, iGraph [8] concludes that
the former often outperforms the latter. This work contributes
to the feature-based approaches.

Feature-based approaches index graphs by their individual
features. The termindividual featureis used to refer to those
proposed previously, as the one we put forward comprise
individual features that form “higher-order” features. Anindex
of this approach uses these features as the search keys for the
graphs that contain them.

A well-received query paradigm for feature-based ap-
proaches is thefiltering-and-verificationframework [3], [12],
[28], [29], [32], [36]. Early work on subgraph query processing
such as Shasha et al. [29] proposesfiltering graphs via paths
and thenverifying the remaining graphs throughsubIso.
Some later works [3], [12], [28], [29], [32], [36] proposed
innovative solutions that follow such a framework. To illustrate
the filtering-and-verification framework, we present a seminal
index calledgIndex [32] which is shown efficient in many
cases [8].gIndex proposesdiscriminative frequent features
as individual features, denoted asF , for indexing. A discrim-
inative frequent featuref , f ∈ F , is

• a subgraph whose size is smaller than or equal tomaxL,
wheremaxL is a user-definedmaximum feature size;

• a frequent featurethat |Df | ≥ SISF(|f |), whereDf =
{f | f ⊆ g, g ∈ G}, |Df | is called thesupportof f and
SISF is a user-definedSize-Increasing-Support-Function
of eachf ; and

• discriminative,s.t.,
|∩f′∈F∧f′⊆fDf′ |

|Df |
≥ dr, wheredr is a

user-defineddiscriminative ratio.

The functionSISF returns a support that increases with the
input feature size.gIndex setsSISF(1) = 1 by default.SISF
gives the flexibility to allow indexing with infrequent features.

The individual features are represented by a canonical string
called minimum DFS code [31] andgIndex is a prefix tree
of the minimum DFS codes.gIndex processes queries in
two phases. (1)Filtering: enumerate the maximum individual
feature setFq from q, whereFq = {f |f ⊆ q, f ∈ F, ∄f ′,
s .t ., f ⊆ f ′, f ′ ⊆ q}, and filter out the graphs that do not
contain a feature inFq to obtain the candidate setCq by
performing the following intersections:

Cq =
⋂

f∈Fq,Fq⊆F

Df (1)

(2) Verification: determine the query answersRq from the
candidate set by invokingsubIso, whereRq = {g|q ⊆ g, g ∈
Cq}.

It is worth noting that the intersections in the filtering
phase are performed on graph IDs whereassubIso in the
verification phase is invoked with graph data. Therefore, all
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previous indexes (see [3], [12], [28], [29], [32], [36]) propose
innovative ideas to filter more non-answer graphs that aim to
minimize the candidate setCq.

Example 3.1: We illustrate the filtering-and-verification
framework with an example in Fig. 2. The upper half of
Fig. 2 shows thegIndex constructed from a set of individual
features mined fromG in Fig. 1,F = {f1, f2, · · · , f8}, where
SISF(1) = 1, SISF(2) = 2, maxL anddr are set to2 and0.1,
respectively.fr is an artificial root node. The lower half of
Fig. 2 shows its query processing: Given a query graphq, the
filtering phase first enumerates all the maximum individual
featuresFq = {f3, f7} of q and performsintersectionsof
the graphs(via IDs) containing the individual feature(s)(Df3

andDf7) to compute the candidate setCq = Df3

⋂
Df7 =

{g1, g4}. The verification phase invokessubIso on each graph
in Cq, and computes the answersRq = {g4}.

3.2 Background for Query Authentication

Cryptographic primitives. Similar to other works on authen-
tication, we assume aone-way collision-resistant hash function
(e.g., SHA andMD5) is denoted ash(x), wherex is a data value
to be hashed and the hash valueh(x) is often referred to as
the digestof x. It is infeasible to determine the preimage of a
digest. We assume apublic-key digital signature scheme, such
asRSA, that guarantees the authenticity of a message or value.
The signer has a private key (SK) and can produce a signed
messagey = sign(x, SK). Any public user has a public key
(PK) and can verify the message by decryption.
Merkle Hash Tree (MHT). The Merkle Hash Tree [21] is
a classical authentication technique. The main idea ofMHT

is illustrated with an example shown in Fig. 3(a). It is a
classicalMHT built on data values{x1, ..., x4}. Each leaf
node is associated with the digest (hash) of its data value,
e.g., Hx1

= h(x1). Each internal node contains the digest
of the concatenation of the digest of its child nodes,e.g.,
Hx1,x2

= h(Hx1
|Hx2

). A data owner signs the digest of the
root node.

To authenticate a data value,e.g., x2, the service provider
sends to the clientx2 and aVO that consists of the digests
Hx1

andHx3,x4
and the signed root digest ofHr. The client

computes from theVO, Hx2
= h(x2), Hx1,x2

= h(Hx1
|Hx2

),
and finally the root digestHx1,x4

= h(Hx1,x2
|Hx3,x4

). The
client uses the data owner’s public key to compareHx1,x4

and
the signed root digest. If they agree,x2 has not been tampered
with. MHT can be extended to authenticate a set of data values.
MHT has been generalized to amulti-way index (such as

Merkle B-tree [17]) for database applications. Moreover, it has
beenembeddedinto index nodes (see the Embedded Merkle B-
tree (EMB-tree) [17]) to minimizeVO sizes. Fig. 3(b) shows
a search tree embedded with anMHT. The data in theMHT are
{x1, ..., x4}, the search keys are{1, 2, 3, 4}.

• Each leaf node is associated with the search key and the
digest (hash) of its data value,e.g., (1,Hx1

) where1 is
the search key ofx1; and

• Each internal node contains the search key and the digest
of the concatenation of the digest of its child nodes,e.g.,
(2,H1,2) whereH1,2 = h(h(h(1)|Hx1

)|h(h(2)|Hx2
)).

Hx1

Hx1,x2

(a) Classical MHT (b) Search tree embedded with an MHT

(1,Hx1
) (2,Hx2

) (3,Hx3
) (4,Hx4

)
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)| Hr = h(h(4)|H1,4)
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Hr = Hx1,x4

search key

Hx1

Hx1,x2
= h(Hx1

|Hx2
)

h(h(2)|Hx2
))

= h(x1)

Fig. 3. Two kinds of Merkle Hash Trees used
Suppose thatthe search of the key2 needs to authen-

ticate. TheVO contains (1,Hx1
) and (4, H3,4) and the

data owner’s signature on the root digestHr. The client
computesHx2

= h(x2), H1,2 = h(h(h(1)|Hx1
)| h(h(2)|

Hx2
)), H1,4 = h(h(h(2)|H1,2)| h(h(4)| H3,4)), and finally

the root digestHr = h(h(4)|H1,4). Similarly, by comparing
the synthesized root digest and the data owner’s signature,the
client verifies the authenticity of the data from the service
provider. From the boundaries (i.e., 1 and 4) of the search, the
client verifies that the search is correct.

In this paper, we apply both kinds ofMHTs (Figs. 3 (a) and
(b)) to various structures of our index to minimizeVO.

3.3 Problem Formulation

System Model.The system model follows the existing authen-
tication framework, that comprises three parties — (i)data
ownerDO, (ii) service providerSP and (iii) querying client.

(i) The DO owns a graph databaseG. The DO or SP
first generates an index to support subgraph query processing.
Then, DO signs the root digest of the index. (ii) TheSP
receives a queryq from a client, processes it on behalf ofDO
and returns the answer graphsRq to the client. SinceSP may
not be trusted, it is required to return not onlyRq but also a
VO and theDO’s signature to the client. (iii) Upon receiving
theVO, the client verifies theRq theSP returns. We assume
the client has the public key of theDO for authentication. In
particular, the client verifies the following:

• Soundness: all graphs inRq are answers and they are not
tampered with,i.e., ∀g ∈ Rq, g ∈ G ∧ q ⊆ g; and

• Completeness: there is no graph that is not inRq but is
an answer,i.e., ∄g /∈ Rq, g ∈ G ∧ q ⊆ g.

Threat Model. In our system model, theSP may not always
be trusted. It may be a potential adversary or have been
tampered with by attackers. In either case, we assume that the
SP may alter the graph data or the index structure, introduce
wrong answers, skip certain answers or abort the computation.
An authentication framework is consideredsecureif attacking
it under this threat model is as hard as inverting a one-way
collision-resistant hash function.

Given the above preliminaries, we are ready to formally
present the problem statement.
Problem statement. Given the above system and threat
models, we seek an efficient authentication framework where
the client may submit a subgraph query and verify the sound-
ness and completeness of the answers returned by the service
provider.

3.4 Baseline Authentication — MgIndex

In this subsection, we derive a baseline technique from
gIndex. We sketch the main ideas of this naı̈ve authentication
approach and discuss the drawbacks of such an approach. For
a concise exposition, we present the details inset semantics,
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unless otherwise specified. For detailed algorithm, pleaserefer
to Appendix B.

With reference to Formula 1 in Sec. 3.1, in order to authen-
ticate the answer of the queryq, the client must authenticate
the correctness of (i) the query featuresFq and (ii) their graph
IDs Df (for all f ∈ Fq) in order to verify the authenticity of
the candidate setCq. Therefore, the client can examineCq to
obtain the answerRq.

The baseline approach calledMgIndex simply appliesMHT
to (i) the children of each index node ofgIndex; and (ii) the
graphs (with IDs) ofDf of each featuref , respectively. The
query processing ofMgIndex is similar to that ofgIndex but
incorporates withVO construction. More specifically, theVO
of MgIndex consists of three main parts:

VO = VOindex ∪ VOCq
∪ ψF

1) VOindex contains the digests that record the search of
each individual featuref ∈ Fq during query processing
and all the graph IDs (and the graphs’ hash values if the
graphs are not present inRq) of Df for all f ∈ Fq;

2) VOCq
contains the non-answer graphs in the candidate

set, i.e., VOCq
= Cq −Rq, denoted asCR̄q

q ; and
3) ψF is simply the signature of the data owner.

Example 3.2: We use Example 3.1 to illustrate theVO.
1) VOindex contains the digests that record the search of

Fq = {f3, f7}. Suppose the search locatesf7 first. The
VOindex includes the digests of the nodesf1, f3, f4 and
f5. The digest of nodef2 is computed by the client.
When the search locatesf3, the digest off3 in VOindex

is replaced by the actual content of the nodef3. Thus,
the client can verifyf3. The graph IDs for each graph
in Df7 andDf3 (i.e., {1,2,4} and {1,4} respectively),
and the hash value ofg2 are added toVOindex; and

2) VOCq
contains the non-answer graphs in the candidate

set,i.e., VOCq
= Cq−Rq = {g1}, whereCq = {g1, g4}

andRq = {g4}.
Regarding the authentication at the client side, firstly, the

client rebuilds the root digest ofMgIndex using VOindex

and VOCq
to verify that Fq andCq are not tampered with.

Secondly, it enumerates the query again to verify thatFq
is exactly f3 and f7 by using VOindex. Thirdly, the client
performs intersections on{1,4} and {1,2,4} to verify the
correctness ofCq. Finally, the client performs thesubIso tests
to verify g4 is the answer but notg1.

The sketch of the baseline approach reveals the performance
bottlenecks of subgraph query authentication. The more fea-
tures (i.e., more intersections) are used to determineCq (For-
mula 1), the moreVOindex is needed to authenticateFq and
the more graph IDs ofDf are introduced. This not only leads
to largeVO, but also requires high time costs to authenticate
them. Similar to query processing, query authentication also
requires to minimizeCq as the non-answer graphs (not the
IDs) are included inVOCq

.

3.5 Overview of our Approach
In response to the drawbacks of the baseline approach, we pro-
pose more efficient authentication techniques. The frequently
used symbols of our discussions are listed in Appendix E.
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To minimizeVOindex while keepingCq small, we propose
essentially to precompute some intersections offline, suchthat
fewer intersections are involved at query time and hence need
to be authenticated by clients. In particular, we propose higher-
order features (Partially Overlapping FeaturesPOFs). In a
nutshell, aPOF consists of a set of overlapping individual
features. If a data graph contains aPOF, this implies it also
contains those individual features in thePOF. Hence,POFs are
more selective than individual feature, and result in smaller
candidate sets.

We propose the Intersection-aware Feature-subgraph
Tree (IFTree) to index a graph database byPOFs P .
Merkle IFTree (MIFTree) is proposed by adoptingMHTs on
IFTree for basic authentication.

The overview of our solution is depicted in Fig. 4.1©
The client issues the query graphq to the SP. The SP
first enumerates all thePOFs Pq of q. We then study how
to decomposeq into an optimal setP opt

q which hasthe fewest
number of intersections and smallestCq. 2© P opt

q is then
searched onMIFTree to obtain all the graph IDs ofDp,
denoted asID(Dp), where p ∈ P opt

q and Dp is a set of
graphs that containp. The candidate setCq is determined by
intersectingID(Dp) as shown in Formula 1.3© We derive
a basic method to deriveVOindex from MIFTree which is
similar to MgIndex. 4© In addition, as the query graph size
increases, so does the number of intersections. It is inefficient
to include allID(Dp)s,p ∈ P opt

q in aVO. Hence, to minimize
the VO needed to authenticate intersections, we propose an
enhanced method that uses a compact representationMp for
eachDp of p. We only include the single smallestMp, namely
Mpmin

to VO. Mpmin
itself must be authenticated by the

client but the answer graphs indicated byMpmin
may not

fall into a range. We therefore analyzeMp offline to cluster
the “intersect-able” graphs in eachDp, p ∈ P , for an optimal
ordering of the graphs stored inDp. 5© ForVOCq

, we include
the non-answer candidateCR̄q

q and the mappingsIM between
the query and its answers.6© DO’s signatureψ is added to
VO. The client finally receives theVO to authenticate the
answer.

4 PARTIALLY OVERLAPPING FEATURES

In this section, we derive thepartially overlapping features
(POFs) that aim to minimize the number of intersections
involved in query time. The benefits are threefold. Fewer
intersections are computed in query time; fewer graph IDs are
fetched; and more individual features are implicitly involved
and often lead to small candidate sets.
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O N

f7 f3
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completely g1 g1
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Fig. 5. Illustration of higher-order features

4.1 Types of Overlapping Features

Features can be composed in various ways. We derivePOFs
and call themhigher-order featuresas they themselves are
features and composed by individual features.

To describePOFs, we first present a few notations needed:
Individual featuresF can be features proposed by any existing
works. We adopt discriminative frequent feature [32] as the
individual feature in this paper. We useg andFg to denote a
graph and its individual features. We call the subgraph ofg
that is isomorphic tof as aninstance off , i.e., g ∈ Df . With
these notations, we derivePOFs. We start with the feature of
multiple individual features.

Definition 4.1: A feature{f1, · · · , fn} is aco-existing feature
of g if g contains an instance offi for all i ∈ {1, · · · , n},
where{f1, · · · , fn} ⊆ Fg.

The definition above can be trivially extended to a database
G. Let {f1, · · · , fn} be a co-existing feature ofG, a graphg
in G contains itiff g ∈ Df1 ∩ · · · ∩Dfn .

The next feature, namely overlapping feature, concerns not
only the existence of features but also the overlapping of
features.

Definition 4.2: {f1,· · · ,fn} is anoverlapping featureof g if it
is a co-existing feature ofg and there is a setS:{s1,· · · ,sn} in
g, wheresi∈S is an instance offi, andS forms a connected
graph.

We remark that singleton sets{f1} (i.e., n = 1) are con-
sidered as “overlapping” features since each of their instance
definitely forms a connected graph.

Example 4.1:Fig. 5 illustrates Defs. 4.1 and 4.2. In Fig. 5(a),
{f4, f7} is a co-existing feature ofg1. In Fig. 5(b), {f2, f7}
is an overlapping feature ofg1, as the instances off2 andf7
not only exist but also overlap.

One may be tempted to derive more sophisticated features,
e.g., by exploiting the topology graph of an overlapping fea-
ture. However, such features may introduce a high complexity
in query processing. In this paper, we adopt overlapping fea-
tures. Moreover, consider overlapping featurese.g., in Fig.5(b).
The instances off2 and f7 are completely overlapped. In
practice,Df7 is often a subset ofDf2 . Indexing graphs with
both f2 and f7 are often redundant. Hence, we propose
partially overlapping features defined in Def. 4.3. An example
is shown in Fig. 5(c).

Definition 4.3: p: {f1,...,fn} is apartially overlapping feature
(POF) of g, if (1) it is an overlapping feature ofg and (2) there
does not existfi, fj ∈ p, s.t., for each instancesi of fi and
sj of fj , si is completely overlapping with (i.e., contained in)
sj .

Singleton sets are consideredPOFs since (1) they are special
cases of overlapping features and (2) no two features whose
instances are completely overlapping. This subtle case hasa
practical implication: Clients may issue queries with exactly
one feature and it may be indexed.

p2 = {f2} p3 = {f3} p4 = {f4}p1 = {f1}

pr = {}

p9 = {f1, f2} p10 = {f2, f5} p11 = {f2, f7} p12 = {f2, f8}

· · ·

(maxSize,minSup) = (2, 2)

· · ·

Constraint

of POF

ID(Dp11
) = [2, 4]

ID(Dp3
) = [1, 4]

str(p2) = “2”

str(pr) = “”

str(p11) = “2.7”ID(Dp10
) = [1, 2, 4]

p7 = {f7} · · ·· · ·

Fig. 6. Illustration of IFTree (partial)

To specify the desiredPOFs for indexing, we define a user-
specified constraint. In particular,POFs should be small in size
and have certain minimum support from a database.

Definition 4.4: The constraint of POFs P is (maxSize,
minSup), where maxSize and minSup are the maximum
size and the minimum support ofP in a databaseG, i.e.,
∀p ∈ P, |p| ≤ maxSize and |Dp| ≥ minSup.

The number of allPOFs of a databaseG is exponential
to the number of features in worst case. In practice, many
POFs do not have sufficient support. We adopt an enumeration
algorithm to compute allPOFs that satisfy the user-defined
(maxSize, minSup).

It is worth mentioning that the graphs indexed by aPOF
p :{f1, · · · ,fn} (denoted asDp) are a proper subset of the
graphs inDf1 ∩ · · · ∩ Dfn . Indexing withp may be viewed
as precomputing the intersections. In the rest of the paper,we
use the termfeaturesP to refer to POFs, whereasf1, ..., fn
are referred toindividual features.

5 INTERSECTION-AWARE
FEATURE-SUBGRAPH TREE (IFTREE)
In this section, we presentIFTree that indexes a graph
databaseG with all POFs that satisfymaxSize and minSup.
We present the querying processing ofIFTree, which is
authenticated in Sec. 6.

5.1 IFTree

IFTree is a prefix tree onPOFs where each node represents a
POF and points to a list of graph IDs. Recall from Def. 4.2 that
eachPOF is a set of individual features. The subset operator⊂
over all thePOFs is a partially ordered set. To derive a search
tree on the set, we assume that each individual feature has
an ID and aPOF p is represented by astring of IDs of its
individual features sorted in ascending order. We usestr(p)
to denote the string ofp. For example, letp = {f1, f2}. str(p)
= “1.2”. We saypi precedespj , denoted aspi ≺ pj , iff str(pi)
is a prefix ofstr(pj). With such a representation ofPOFs, we
define a prefix search tree calledIFTree.

Definition 5.1: Intersection-aware Feature-subgraph Tree
(IFTree) is a prefix search tree ofPOFsP on a graph database
G, denoted asTP : (str, node, V, E, ID, pr), where

• str is a function thatstr(p) returns the string ofp;
• node takes aPOF p and returns the node ofp in TP ;
• V = {node(pi) | pi ∈ P};
• E = {(node(pi), node(pj)) | pi ≺ pj ∧ (∄ p′i pi ≺
p′i ∧ p

′
i ≺ pj)}. The children of anode(pi) are sorted in

lexicographical order w.r.tstr;
• ID is a function thatID(Dp) returns thelist of IDs of the

graphs inDp; and
• pr is an emptyPOF ∅ and node(pr) is an artificial root

node of theIFTree.
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Algorithm 1 Query Processing (q, G, TF , TP )
Input: A query graphq, a graph databaseG, the prefix treeTF of features

F and theIFTree TP of G
Output: the answer set ofq Rq

1: Initialize Rq to ∅ andCq to G
2: Fq = find maxfeatures(q, TF ) //Fq fully cover q
3: Pq = find POF(q, Fq , TP ) //Enumeration
4: P opt

q = opt POF MWSC(Fq , Pq)

5: for each p ∈ P
opt
q

6: Dp = search(p, TP ); Cq = Cq ∩Dp

7: for each g ∈ Cq

8: if subIso(q, g) = true then Rq = Rq ∪ g

9: return Rq

Example 5.1:Fig. 6 shows theIFTree of thePOFsP of G of
Fig. 1. Due to space constraints, we skip the enumeration that
yields P :{p1 · · · p15}. Each box of the tree represents aPOF.
The constraint ofPOF (maxSize, minSup) is (2, 2). Consider
p9. TheIFTree has an edge betweenp1 andp9 but notp2 and
p9 asstr(p2) = “2”, str(p9) = “1.2” and thereforep2 6≺ p9.
To illustrate the processing of existing indexes andIFTree,
let’s assume that a query contains two individual featuresf2
andf7. gIndex retrieves and intersectsDf2 andDf7 whereas
IFTree simply retrievesDp11 .

5.2 Query Processing on IFTree

The query processing onIFTree is detailed in Alg. 12. It
takes a query graphq, a graph databaseG, the prefix treeTF
of featuresF and theIFTree TP of G as input. It determines
all maximum individual featuresFq that fully coverq (Line
2). FromFq, it computes all possiblePOFs Pq from Fq (Line
3) and determines the optimalPOFs P opt

q from Pq (Line 4),
which shall be discussed shortly. For eachPOF p in P

opt
q ,

the graphs ofDp are retrieved by searchingIFTree and
maintained in a candidate setCq (Lines 5-6). For each graph
in Cq, the algorithm verifies if it is in fact an answer (Lines
7-8). Following up Example 3.1, we use Fig. 7 to illustrate the
query processing onIFTree (shown in Fig. 6) in the following
discussion.

It is worth noting that Alg. 1 involves two optimizations.
The first one is similar to an existing work [32] — the queryq
is decomposed into maximum individual featuresFq by using
an enumeration method.f is maximum in terms ofq if and
only if there does not exist a largerf ′ such thatsubIso(f, f ′)
= true andsubIso(f ′, q) = true. Unlike previous work, we
determineFq that fully coversq. When compared to non-
covers, a coverFq is expected to be more selective and yields
a small candidate set in the filtering phase.Fq is then used
to enumeratePOFs, as indicated in the RHS of Fig. 7. For
example, as in Example 3.1,gIndex computesFq as{f3,f7}.
However, Alg. 1 determinesFq as {f2,f3,f7} (in Line 2).
Without f2, Fq does not fully coverq.

The second optimization is that an optimal decomposition
P opt
q is determined fromFq. In the filtering-and-verification

framework (e.g., Fig. 7), graph data are fetched from disk
mainly in two steps: (i) when graph IDs ofDp’s are fetched
from disk for performing intersections; and (ii) when candidate
graphs are fetched forsubiso tests. This leads to two

2. Some pseudocode in Alg. 1,e.g., Lines 1 and 2, are straightforward but
verbose. Hence, for concise presentation, we present theirmain ideas in text.

O C O

OH
q

= {g4} Rq = {g4}

O C O O

HNg4

filter via
verify

P
opt
q = {p3, p11}
p3 = {f3}
p11 = {f2, f7}

p2
p3
p7
p11

f2 f3 f7
1

1
1

1

0
0 0

0 1

0
0 0

Mq

Cq = Dp3
∩Dp11

C O O
O H

Fq = {f2, f3, f7}

C O

& fully cover
maximum features Pq = {p2, p3, p7, p11}

via IFTreeenumerate
enumerate

intersections

w2

w3

w7

w11

1
1
1

1/2

Fig. 7. Subgraph query processing on IFTree

competing objectives in computingP opt
q . (i) On one hand,

fewer intersections (i.e., fewer POFs in P opt
q ) on ID(Dp)

(p ∈ P opt
q ) are desirable to minimize I/O due to graph IDs of

Dp’s. (ii) On the other hand, largerPOFs (i.e., more individual
features) inP opt

q cover the query more and reduce the size of
the candidate setCq and the I/O for fetching it. The objectives
can be illustrated with an example. Suppose Alg. 1 (find POF

in Line 3) determinesPq = {p2, p3, p7, p11}. Two possible
decompositions areP 1

q = {p2, p3, p7} and P 2
q = {p3, p11}.

We may chooseP 2
q since the number of intersections and the

candidate set are2 and{g4}, respectively. In contrast, those of
P 1
q are3 and{g1, g4}, respectively.P 2

q is in fact the optimal
decomposition ofq.

Minimization of I/O by using P opt
q . The problem discussed

above can be formulated as an optimization where both|P opt
q |

and I/O are minimized. To present the problem, we define a
binary matrixMq where each rowi represents thePOF pi
from all possiblePOFs Pq of q, each columnj represents an
individual featurefj ∈ Fq and each entryMq(i, j) is 1 if fj
is in pi, otherwise 0. The weight of each rowi of Mq is wi
= 1

hamming(Mq(i,∗))
, wherehamming(Mq(i, ∗)) is the hamming

weight that returns the number of 1s in the rowi of Mq. For
instance, consider Fig. 7.w11 = 1

hamming(Mq(11,∗))
= 1/2 as

p11 = {f2, f7}.

Definition 5.2: Given a weight valuewi to each rowi of Mq,
wi =

1
hamming(Mq(i,∗))

, the problem ofoptimal decomposition

of a queryq from Pq is to determineP opt
q , whereP opt

q ⊆ Pq
andP opt

q fully coversFq s.t.
∑

pi∈P
opt
q
wi is minimized.

The optimal decomposition addresses the above two objec-
tives. (i) To minimize

∑
pi∈P

opt
q
wi, fewer terms are included

in the sum, which not only indicates fewer intersections in
query processing, but also minimizes I/O due to graph IDs.
(ii) For eachpi, the more 1s inMq(i, ∗), the more individual
features it contains, the smallerwi andDpi . Therefore, using
pi leads to a smaller candidate set.

Proposition 5.1: The problem of optimal decomposition of a
queryq from Pq is NP-hard.

The hardness can be established from a simple reduction
from minimum weighted set cover (MWSC). Due to the space
constraint, the proof is presented in Appendix A. We adopt
a classical heuristic algorithm forMWSC to solve the problem.
The idea is simple: it iteratively chooses thePOF with the
smallest weight (covering the most number of uncovered
features inFq) and removes the covered features fromFq. It
terminates whenFq is empty (fully covered). This heuristic
can be exemplified by the exampleMq shown in Fig. 7.
Initially, w2 = w3 = w7 = 1 as the hamming weights
of Mq(2, ∗) Mq(3, ∗) and Mq(7, ∗) are 1. w11 = 1/2 as
hamming(Mq(11, ∗)) = 2. In the first iteration,p11 is chosen.
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Sincef2 and f7 are covered byp11, they are removed from
Fq and the weightsw2, w3 andw7 are updated accordingly.
In the second iteration,p3 is chosen. All features inFq are
covered and the algorithm terminates.P

opt
q is {p3, p11}.

6 MERKLE IFTREE (MIFTREE)
Thanks to the minimization of I/O by usingP opt

q , the query
processing trace needed to be included inVOs is reduced
whenIFTree is adopted for query authentication. To facilitate
efficient authentication, we propose to applyMHTs to IFTree

to obtain MerkleIFTree (MIFTree). Recall thatIFTree is a
prefix tree for the string representations ofPOFs. The index
nodes near the root ofIFTree often have large fanouts, as
thosePOFs may overlap with many other individual features
to form largerPOFs. Therefore, anMHT is embedded to the
children of each index node to minimizeVO. In addition, in
practice, somePOFs may index a large number of graphs. For
instance, in the datasetAIDS, the number of graphs containing
thePOF of an index node near the root of theIFTree is 12%
of the total number of graphs. When some of these graphs are
selected into the candidate set in the filtering phase, a classical
MHT is needed to efficiently authenticate these graphs. Hence,
we propose the MerkleIFTree (MIFTree) as follows.

Definition 6.1: MIFTree is an IFTree extended with two
kinds of MHTs: (i) An MHT is embedded to the child nodes
of eachnode(p) of MIFTree; and (ii) A classicalMHT is built
on top of all graphs(with graph IDs) in Dp for eachnode(p).

The rest of this section describes the signing ofMIFTree

in detail and a basic authentication ofMIFTree.

6.1 Signing MIFTree

Similar to the majority of search trees for query authen-
tication, we associate hash values/digests to the nodes of
IFTree. The data ownerDO signs the root of the digest of
MIFTree. Specifically, we formalize the digests and signatures
of MIFTree below.

Definition 6.2: The digest of a data graphgi is defined as
Hgi = h(mindfs(gi)).

Graphs are cast into some (publicly known) canonical
representation before their digests are computed. In this paper,
we adopt the minimum DFS code [31],3 denoted asmindfs,
but other representations may also be adopted.

Definition 6.3: The digest of a nodenode(p) of MIFTree is
Hp = h(h(str(p))|HDp

|Hr
p), where

• str(p) is the string ofp;
• HDp

is the root digest of the classicalMHT of
ID(Dp) : [j1, · · · , jm]. The data in theMHT are
{(j1,gj1),· · · ,(jm,gjm)}; and

• Hr
p is the root digest of the embeddedMHT of

node(p)’s children. The data in the MHT are
{node(p1), · · · , node(pm)} and the search keys
are {p1, · · · , pm}, wherenode(p1), · · · , node(pm) are
the children ofnode(p).

3. Due to space constraints, we have to omit the details ofmindfs. As an
example,mindfs(g3)=((1,2,C,C), (2,3,C,C), (2,4,C,O)). The first two digits
are the DFS sequence of the vertices of a graph. The followingcharacters are
vertices’ labels.

(p10,Hp10 )

· · ·

Hp2 = h(h(str(p2))|HDp2
|Hr

p2
)

(p11,Hp11 ) (p12,Hp12 )

(p12,Hp10,p12 )

HDp2

· · ·
Hr

p2
= h(h(str(p12))|Hp10,p12 )

h(h(4)|Hg4 )
H(1,g1)

H(1,g1),(2,g2)

(p11,Hp10,p11 )

H(2,g2)
H(3,g3) H(4,g4)

H(3,g3),(4,g4)

H(1,g1),(4,g4)

MHT

MHT of node(p2)’s children

MIFTree

3©

2©

1©
(Sketch)

of ID(Dp11
)

h(H(3,g3)|H(4,g4))

(p10,Hp10 ) (p11,Hp11 ) (p12,Hp12 )

(p2,Hp2 )

Fig. 8. Illustration of MHTs of node(p2) of an MIFTree (partial)

Example 6.1: With reference to Fig. 8, we present an
example of the digest ofnode(p2), denoted asHp2 =
h(h(str(p2))|HDp2

| Hr
p2
). 1© is the sketch ofMIFTree.

HDp2
is the root digest of2© the classicalMHT of ID(Dp2),

which is built on top of the data{(1, g1),· · · ,(4, g4)}. Hr
p2

is
the root digest of3© the embeddedMHT of node(p2)’s children,
which arenode(p10), node(p11) and node(p12). The data it
embeds are{node(p10),· · · ,node(p12)}, while the search keys
are{p10, p11, p12}.

Definition 6.4: Thesignature of the rootnode(pr) of MIFTree
is ψI = sign(h(h(str(pr))|Hpr ), SK), where SK is the
private key of theDO.

It should be remarked that the individual featuresFq must
be authenticated in order to verify the correctness ofPOFs.
We organize all featuresF of G with a prefix treeTF similar
to MIFTree. The authentication process ofFq is simpler than
that ofP opt

q .

6.2 Basic Authentication Method
In this subsection, we present the constitution ofVO and
a basic authentication method. For a concise exposition, we
present the details inset semantics, unless otherwise specified.

Verification object. The overview of the constitution ofVO
can be given as follows.VO consists of theVO for recording
the searches ofP opt

q on MIFTree (VOindex) and theVO for
the candidate set (VOCq

). Informally, VOindex includes the
visited nodes in searchingPOFs (denoted asNv

I ) and some
boundaries of the search paths ofPOFs (denoted asN b

I ). These
are necessary to reconstruct the digest of the root ofMIFTree.
Moreover, the graphs (not only their IDs) in the candidate set
are included inVOCq

for client’s verification. While the query
answersRq must be returned, the non-answers in the candidate
setCq must also be included inVOCq

, denoted asCR̄q
q , where

C
R̄q
q = Cq −Rq, to verify that no graph inCR̄q

q is an answer.
For verification efficiency, the mappings between the query
and the answers are included inVOCq

. To sum up, we define
the constitution ofVO, presented in Def. 6.6 which consists
of the structures and auxiliary structures discussed above.

As discussed in Def. 6.1, we have appliedMHTs in MIFTree

for smallVO. The description ofVO of anMHT is well-known
but verbose, which includes the answers, the boundaries and
the search keys of search paths. For succinct presentation,we
define a term “VO of MHT” to leverage on the known results
from MHT.

Definition 6.5: Suppose anMHT is built on a set of ob-
jectsO :{o1, · · · , on} and the corresponding search keys are
{k1, · · · , kn} (if has). Given a set of objectsO′, O′ ⊆ O, the
VO of theMHT of O is theVO needed to authenticateO′.
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Algorithm 2 Auth Query Processing (q, G, TF , TP , ψ)
Input: A query graphq, a graph databaseG, the prefix treeTF of features

F , theMIFTree TP of G andψ.
Output: the answer set ofq Rq and verification objectVO.
1: Initialize Rq and the structures inVO to ∅ andCq to G
2: Fq = find maxfeatures(q, TF ) //Fq fully cover q
3: Pq = find POF(q, Fq , TP ) //Enumeration
4: P opt

q = opt POF MWSC(Fq , Pq)

/* constructVO of Case 1 ofp of NI */
5: for each pi 6∈ P

opt
q ∧ pi ∈ Pq ∪ {pr}

6: Nv
I = Nv

I ∪ (pi,HDpi
)

7: Nb
I = Nb

I ∪ bi /* the VO of MHT of node(pi)’s children */

8: for each pi ∈ P
opt
q

9: Dpi = search(pi, TP ); Cq = Cq ∩Dpi

/* constructVO of Case 2 ofp of NI */
10: for each pi ∈ P

opt
q

11: Lpi = []
12: for each gj ∈ Dpi

13: if gj ∈ Cq then Lpi = Lpi ⊕ j /* append ID */
14: elseLpi = Lpi ⊕ (j, Hgj ) /* append ID and digest */
15: Nv

I = Nv
I ∪ (pi, Lpi )

16: Nb
I = Nb

I ∪ bi /* the VO of MHT of node(pi)’s children */

/* constructVO for featuresFq */
17: NF = construct NF(Fq)

/* constructVOCq
*/

18: for each g ∈ Cq

19: if subIso(q, g) = true

20: Rq = Rq ∪ g
/* constructVO for answer */

21: IM = IM ∪ m, wherem is the mapping fromq to g.
22: else /* constructVO for non-answer */
23: C

R̄q
q = C

R̄q
q ∪ g

24: VO = ((NI , NF , ψ), (IM , C
R̄q
q ))

25: return Rq andVO

For example, recall from Sec. 3 that Fig. 3(b) shows an
embeddedMHT where {x1, x2, x3, x4} are data values and
{1,2,3,4} are the search keys. The search of the key is 2 and
the answer isx2. The VO of the MHT are (1,Hx1

) and (4,
H3,4), with which Hr can be synthesized.
Definition 6.6: The VO constitutionof basic authentication
for subgraph query is a tuple(VOindex, VOCq

), where
VOindex = (NI , NF , ψ):

• NI = (Nv
I , N

b
I ) is the digest ofMIFTree nodes, where

– Nv
I : {nr, n1, · · · , nm}, wherePq = {p1, · · · , pm}

andpr is the root ofMIFTree.
• Case 1:pi /∈ P

opt
q , ni = (pi,HDpi

).
• Case 2: pi ∈ P opt

q : ni = (pi, Lpi), Lpi :
[l1, · · · , lk], whereID(Dpi) : [1, · · · , k], andlj =
j, if gj ∈ Cq; otherwise,lj = (j,Hgj ).

– N b
I : {br, b1, · · · , bm}, wherebi is the VO of MHT

of node(pi)’s children,pi ∈ Pq ∪ {pr};
• NF = (Nv

F , N
b
F ) is similar toNI , asF is also organized

in a prefix treeTF ordered by themindfs order. The
only difference fromMIFTree is that each node of the
TF points a feature but not a list of graph IDs; and

• ψ = {ψF , ψI} is the signature of theDO.
VOCq

= (IM , C
R̄q
q ):

• IM : {m1, · · · ,mn} is a set of subgraph isomorphism
mappings fromq to Rq : {g1, · · · , gn}; and

• C
R̄q
q are non-answer graphs in the candidate setCq.

VO construction. The VO of a query is constructed by
Alg. 2 at theSP side. Alg. 2 is Alg. 1 extended withVO

p3

pr

p11 p12

HDp11

(2,Hg2 )

· · ·

· · ·

VOindex

Rq

NF , ψ

Nv
I
= {nr, n2, n3, n7, n11}

n2 = (p2,HDp2
)

n3 = (p3, Lp3 ) Lp3 = [(1,Hg1 ), 4]

n7 = (p7,HDp7
)

n11 = (p11, Lp11 ) Lp11 = [(2,Hg2 ), 4]

Case 1:
Case 2:

VOCq IM = {m4, · · ·}, C
R̄q

q = ∅

Nb
I
= {br, b2, b3, b7, b11, · · ·}

MHT of ID(Dp11 )

(p1,Hp1 ) n2 = (p2,HDp2
) n3

(p10,Hp10 ) n11 (p12,Hp12 )

p2
· · ·

· · ·

· · ·

p1 p2

p10
· · ·

· · ·
· · ·

MHT of node(pr)’s children

MHT of node(p2)’s children

MIFTree (sketch)
{g4}

parts of Nb
I

Nv
I

Case 1

Nv
I

Case 2

(partial)

(partial)

to be computed

(4, g4) MHT of ID(Dp3 )

Lp11 from

Lp3 from

HDp3

(1,Hg1 ) (4, g4)

nr = (pr,HDpr
)

p11

1©

2©

2©

1©

Fig. 9. VO for basic authentication

construction: Lines 5-7 and 10-16 forNI , Line 17 forNF , and
Lines 21-23 forVOCq

. The extension offind maxfeatures

with VO construction is presented in Appendix B and that of
find POF is similar (Lines 2-3). As in Alg. 1, to evaluateq,
Alg. 2 determinesP opt

q from q andTF (Lines 2-4). In Lines
5-7, for eachpi in Pq or pr but not inP opt

q , it includes (pi,
HDpi

) in Nv
I (Case 1 of Def. 6.6) andbi in N b

I , where bi
is theVO of MHT of node(pi)’s children. A subtle remark is
that node(pr) is the root ofMIFTree and it is always visited
and considered inNv

I . Cq is computed in Lines 8-9 (same
as Lines 5-6 in Alg. 1). Then, in Lines 10-14, for eachpi in
P opt
q (Case 2 of Def. 6.6), and for eachgj in Dpi , if gj is

in Cq, it addsj to Lpi ; otherwise,(j,Hgj ) to Lpi . The VO
for pi is added toNv

I (Line 15). The construction ofN b
I in

Line 16 is the same as that of in Line 7. In Line 17,NF
for Fq is constructed similar toNI , as bothF and POFs are
indexed by prefix trees. RegardingVOCq

, in Lines 18-23, if a
graphg in Cq is an answer, its mapping between the query is

added toIM ; otherwise,g is added toCR̄q
q . The overallVO

is constructed and returned to the client (Lines 24-25).
Example 6.2: Following up the query processing shown in
Fig. 7, Fig. 9 shows theVO determined by Alg. 2. Recall
that Pq = {p2, p3, p7, p11} andP opt

q = {p3, p11}. Regarding
VOindex, Nv

I = {nr, n2, n3, n7, n11}. nr = (pr,HDpr
). n2 =

(p2,HDp2
) andn7 = (p7,HDp7

) sincep2, p7 6∈ P opt
q (Case

1 of Def. 6.6). Sincep3 andp11 are inP opt
q , n3 = (p3, Lp3)

and n11 = (p11, Lp11) (Case 2 of Def. 6.6). We note that
ID(D3) = [1, 4], ID(D11) = [2, 4] andg4 ∈ Cq. Then, 1© Lp3 =
[(1,Hg1), 4] andLp11 = [(2,Hg2), 4]. Sinceg1, g2 6∈ Cq, only
their IDs are needed. Due to space issues, theN b

I shown is
partial. The RHS of Fig. 9 shows2© the (partial) MHTs of the
children ofnode(pr) andnode(p2). The white boxes indicate
theVO derived fromMHTs and they are parts ofbr andb2 in
N b
I . The IM in VOCq

is the subgraph isomorphism mapping

from q to g4. SinceCq=Rq={g4}, CR̄q
q is empty.

Authentication at client. When the client receivesRq and
VO, he/she verifies the correctness ofRq. Since the process
is similar to Alg. 2 and existing authentication works, we only
give an example and highlight the major steps and elaborate
Step 4) below, which is unique inMIFTree:

1) computeFq and verify Fq is the maximum individual
fully cover features ofq by usingq, NF andψF 4;

4. As F is organized in a prefix treeTF , Fq can be verified by
usingq, NF and signatureψF in a similar way.
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2) computePq and verifyPq is consistent to those inNI
by usingq, Fq andNI ;

3) determineP opt
q by usingFq andPq;

4) synthesizeHpr by usingP opt
q and theVO;

5) verify theHpr with the signatureψI and the public key;
6) determineCq by intersecting theLps fromNv

I , where
p ∈ P

opt
q ; and

7) verifyRq by usingIM ; and if IM is not correct, invokes

subIso; and verifyCR̄q
q by invoking subIso.

In Step 4), the root digestHpr is synthesized bottom-up:
We start the synthesis from thep in Pq that do not have a
p′ ∈ Pq s.t. p ≺ p′. At each synthesis step,pi can only be in
one of the two cases:Case 1pi is in Pq but not inP opt

q . ni
of pi is (pi,HDpi

). Case 2pi is in P opt
q . ni of pi is (pi,Lpi ).

HDpi
is determined fromLpi , C

R̄q
q andRq, which contains

the IDs, digests and the graphs ofDpi . The remaining part to-
be-determined isHr

pi
. In both cases,Hr

pi
is determined from

the VO of MHT of node(pi)’s children, inN b
I . The synthesis

must have computed the digest ofnode(pi)’s children (if it
is not already inVO), as the synthesis is defined bottom-up.
With pi,HDpi

andHr
pi

(Def. 6.3), the client can recompute
Hpi . Then,pi is removed fromPq. In the recursive step, the
synthesis proceeds to anotherp in Pq with nop′ ∈ Pq∧p ≺ p′.
With the Hp for all p ∈ Pq, Hpr is synthesized. We present
the formal proofs of the soundness and completeness of the
basic authentication in Appendix A.

Example 6.3:To illustrate Step 4), we present the major steps
of the synthesis ofHpr of Fig. 9. To computeHpr bottom-
up, we may start the synthesis fromp11 since p11 ∈ P

opt
q

and∄p′ ∈ Pq s.t. p11 ≺ p′. We may start atp3 for a similar
reason. Let’s start atp11. n11 = (p11, Lp11). HDp11

can be
computed fromLp11 and Rq. The root digestHr

p11
of the

MHT of node(p11)’s children can be computed since theMHT
is empty.Hp11 can then be determined fromp11, HDp11

and
Hr
p11

. p11 is removed fromPq. After that, we may proceed to
p2, sincep2 ∈ Pq∧p2 /∈ P

opt
q . n2 = (p2,HDp2

). We determine
Hr
p2

from the computed(p11,Hp11) and theVO of MHT of
node(p2)’s children such asb2. In this case,Hp2 is obtained
andp2 is removed from thePq. We then proceed top3. Hp3 is
obtained, similar to the synthesis ofHp11 . Hp7 is synthesized
similar to Hp2 . With the same logic,nr = (pr,HDpr

). With
Hp2 , Hp3 , Hp7 and theVO of MHT of node(pr)’s children,
Hpr is synthesized.

7 ENHANCED AUTHENTICATION

While the basic method presented in Sec. 6 is natural to au-
thenticate the filtering-and-verification framework of subgraph
query, VO sometimes contains excessive graph IDs. In this
section, we propose two enhancements on the basic method.

Firstly, all graph IDs of each featurep ∈ P opt
q are returned

and in Step 6) of authentication, intersected at the client side
to ensure the correctness ofCq. To optimize this, we propose
a compact representation of graph IDs. Secondly, graph IDs
are needed to synthesize the digests ofMIFTrees nodes, as
elaborated in Step 4) of authentication. As motivated in Sec. 1,
graph IDs ofCq do not fall into a range in general which may
lead to largeVOs when classical authentication techniques

Lp3 = [H(1,g1), 4] Bp3 = {H(1,s1),(8,s8), · · · , (11, s11), . . .}

p1
· · ·
p11

g1 g4
0

0 1

0 s1

s11

00

01
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

H(1,s1),(8,s8)

HMp3

s11 = 01

pmin = p3VOindex

Rq

Nb
I
, NF , ψ

n2 = (2, p2,HDp2
,H|Dp2

|,HMp2
)

n3 = (3, p3, Lp3 , Bp3 )

Case 1:

Case 2:

VOCq IM = {m4, · · ·}, C
R̄q

q = ∅

Nv
I
= {nr, n2,n3, n7, n11}

n7 = (7, p7,HDp7
,H|Dp7

|,HMp7
)

n11 = (11, p11,HDp11
, 2,HMp11

)

MHT of Mp3 (partial)

MHT of ID(Dp3 )

(11, s11)

matrix rep.
Mp3 of ID(Dp3 )

{g4}

Lp3 from

Bp3 from

H(9,s9),(10,s10)

H(13,···,s15)

(12,Hs12 )

HDp3

H(1,g1) (4, g4)

. . .

. . .

. . .

nr = (r, pr,HDpr
,H|Dpr

|,HMpr
)

to be computed

Hs12 = h(s12)

1©

2©

3©

Fig. 10. VO for enhanced authentication

are adopted. Hence, we propose to cluster graphs with similar
feature sets offline. As a result, when a query is retrieved by
using a set of features, the IDs ofCq may be clustered and
represented by a smallerVO.
7.1 Compact Representation of Graph IDs

The main idea to reduce the excessive graph IDs for verifying
the intersections is to encodeall the features of each graph in
aDp in a binary matrixMp. The data owner signs the matrix.
Hence, the client requiresone ID(Dp) andMp to verify the
intersections.

Definition 7.1: For each nodenode(p), the matrix represen-
tation Mp of ID(Dp) is a m × n binary matrix, wheren =
|Dp|, m = |P |. Mp(i, j) = 1 if gj ∈ Dpi , andMp(i, j) = 0,
otherwise.

Next, we build a classicalMHT to eachMp (defined with
HMp

in Def. 7.2). The authentication process can then be
described as follows. ConsiderP opt

q = {p1, · · · , pm}. To
authenticateCq = Dp1 ∩ · · · ∩ Dpm , instead of usingLp in
Nv
I of VO for all p in P

opt
q (Case 2 ofNv

I ), we use only
Mpmin

, wherepmin ∈ P opt
q and|Dpmin

| is the smallest among
all |Dp|, p ∈ P

opt
q . The digestHp of each nodenode(p) in

IFTree includesHMp
and theVO includesonly the graph

IDs of pmin.

Definition 7.2: The digest of a nodenode(p) is
h(h(id)|h(str(p))|HDp

|H|Dp||H
r
p|HMp

), where
• id is the ID of p, str(p), HDp

andHr
p are the same as

in Def. 6.3;
• H|Dp| is the digest of the size ofDp; and
• HMp

is the root digest of the classicalMHT of Mp. The
data in theMHT are{(1, si), · · · , (|P |, s|P |)}, where for
all i, si =Mp(i, ∗).

The modifications onVO constitution are then described as
follows. Other parts ofVO are identical to those in Def. 6.6.

• In Case 2 ofNv
I of VO, for pi ∈ P opt

q but pi 6= pmin,
we include onlyni = (i, pi,HDpi

, |Dpi |,HMpi
) in VO,

where |Dpi | is used to verifypmin in P opt
q at the client

side.
• For pmin, nmin = (min, pmin, Lpmin

, Bpmin
), where (i)

min is the ID of pmin; (ii) pmin is the POF itself; (iii)
Lpmin

contains the IDs of graphs inCq and theVO of
theMHT of ID(Dpmin

); and (iv)Bpmin
is a set of(i, spi),

where (i, spi) ∈ Bpmin
if pi ∈ P opt

q ∧ pi 6= pmin, and
theVO of MHT of Mpmin

.
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We remark thatBpmin
records the bit strings ofsi of

Mpmin
where i 6= min. smin is not needed assmin can be

derived fromLpmin
. Finally, determiningDp1 ∩ · · · ∩Dpm is

equivalent to computings1∧· · ·∧sm which very often requires
smallerVO. We provide the formal proofs of soundness and
completeness of the enhanced method in Appendix A.

Example 7.1: Following up Example 6.2, Fig. 10 shows the
major parts of theVO determined by the enhanced method.
The differences ofVO from the Example 6.2 are localized in
Nv
I . Foremost,Pq = {p2, p3, p7, p11} andP opt

q = {p3, p11}.
Since|Dp3 | = |Dp11 | = 2, we just choosep3 as thepmin. We
show 1© the (partial) matrix Mp3 in the LHS of the figure.
The bit strings are shown next to the matrix. On the RHS
of Mp3 is its 2© (partial) MHT. Regarding theVO, we first
discussp11. Sincep11 is in P opt

q but p11 6= pmin. Thus,n11 =
(11, p11,HDp11

, 2,HMp11
). Next, forpmin (i.e., p3), n3 of Nv

I

is (3, p3, Lp3 , Bp3). From previous examples, we haveDp3

= {g1, g4} and Cq = {g4}. Lp3 = [H(1,g1), 4], where 4 is
the graph ID inCq andH(1,g1) is 3© the VO of the MHT of
ID(Dp3). RegardingBp3 , only p11 is in P opt

q but p11 6= pmin.
Thus,(11, s11) is included inBp3 . Finally, theVO of MHT of
Mp3 is included inBp3 . We remark that the ID ofg1 is not
needed inLp3 , sinces11[1] = 0 ands11 will be authenticated
in Bp3 . Thus,g1 is certainly not inCq.
7.2 Clustering Intersect-able Graphs

The matrixMp (defined in Def. 7.1) not only minimizes the
number of graph IDs by usingMpmin

, but also indicates how
much VO is needed for authenticating the candidate set. In
particular, let intv(Mp, i) denote the number of intervals
in the row of pi, where all entries in each interval are 1s.
The 1s inMp(i, ∗) correspond to the graphs inDp ∩ Dpi

and intv(Mp, i) is the number of ranges needed to be
authenticated. To authenticate a range, the upper and lower
bounds of the range are needed inVO. This argument can be
generalized to the intersections of multiple sets.

In this subsection, we define the problem of optimal permu-
tation (of columns) ofMp. The ordering of graphs inID(Dp)
is optimal when intersecting the graphs of otherPOFs, the
number of the intervals is minimized. We remark that the
ordering is optimal in the absence of queries.

Definition 7.3: Given am×n binary matrixMp for node(p),
theoptimal permutation forMp (OPM) is to transformMp into
M ′
p by column permutations.t.cost(M ′

p) =
∑m

i=1
intv(Mp, i)

is minimized, where|P | = m and |Dp| = n.
Finding the optimal ordering of graphs ofID(Dp) is to

determine the optimal column permutation ofMp. Its hardness
is established by a reduction from Shortest Hamiltonian Path
(SHP). Details are shown in Appendix A.

Proposition 7.1: The problem ofOPM is NP-hard.
The OPM problem can be solved by heuristics ofSHP. We

cast an instance ofOPM into that of SHP. Specifically, given
an instance ofOPM Mp, we generate a complete graph in
terms ofMp. Each column (graph ID inID(Dp)) of Mp is
a vertex and the weight of the edge between two vertices is
the total number of different 1s between the two respective
columns. The difference of the row ofpi states that one graph
haspi but the other does not. That is, one graph appears in

Dp ∩ Dpi and the other does not. A final trick is to add an
artificial nodes0 as the source and sink of the graph being
constructed. We extendMp with a column of zeros fors0.
The SHP of such a complete graph encodes a permutation of
columns ofMp. We have proved that the total sum of the
weight of the optimalSHP is twice of the number of intervals
in Mp after the optimal permutation. One of the most efficient
approximation algorithms forSHP LKH-2 [18] is adopted. The
algorithm isK-opt and the approximation ratio is preserved
under the above conversion.

Example 7.2: To illustrate the effect of the permutation, we
create a small artificial example. Suppose thatP opt

q is {pi, pj},
ID(Dpi) = [1, 3, 5, 7, 9] and ID(Dpj ) = [2, 3, 8, 9]. Assume
further pi and pj are the onlyPOFs of the database. Then,
Cq = {g3, g9}. pmin is pj as |Dpj | = 4 and|Dpi | = 5. Before
permutation, theLpmin

in VO is [H(2,g2), 3,H(8,g8), 9]. In
contrast, after the permutation,ID(Dpmin

) = [2, 8, 3, 9]. The
Lpmin

contains[H(2,g2),(8,g8), 3, 9].

8 EXPERIMENTAL EVALUATION
In this section, we present a detailed experimental evaluation
that verifies the performance of our proposed techniques and
the effectiveness of our optimizations.
8.1 Experimental Setup

Running Platform. We conducted all our experiments on a
machine with an Intel Core 2 Quad 2.4GHz CPU and 4 GB
memory running Windows 7 OS. All our techniques were
implemented using C++. We implemented our algorithms on
top of iGraph [8].SHA andRSA were used as our cryptographic
signing schemes.
Dataset.Following previous experiments of iGraph, we used
the same real-world and synthetic datasets in our experimental
evaluation. The real-world dataset consists of 10,000 graphs,
all of which are drawn from a realAIDS Antiviral dataset
(hereafter denoted asAIDS) [24]. AIDS has been used in many
studies of subgraph queries [3], [9], [12], [28], [29], [32], [36],
[37]. On average,AIDS has 25.42 vertices and 27.40 edges.
The number of distinct vertex labels and distinct edge labels
are 51 and 4.

For the synthetic dataset, we used SYN.10K.E30.D3.L50
(denoted asSYN). It contains 10,000 graphs of which the
average size (the number of edges) is 30; the average density
is 0.3; and the number of distinct vertex/edge labels is 50.

We used gSpan [31] with the default settings [32] on the
above two datasets to obtain a set ofdiscriminative frequent
features, which are served asindividual features for our
experiment.
Query sets.For bothAIDS andSYN, the query sets (denoted as
Qn) used have been benchmarked in previous works [3], [9],
[12], [28], [32], [36]. Each Qn contains 1000 graphs with size
(the number of edges) ofn, e.g., Q4 represents 1000 graphs
sized 4.
I/O cost and query time comparison. We used two rep-
resentative indexes, namelygIndex [32] and FGIndex [3],
to compare the I/O cost (number of graph IDs and graph
data fetched) and query time ofIFTree. We used the same
settings forgIndex and FGIndex as in previous experiment
[8]. We note thatgIndex often outperformedFGIndex except
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Fig. 11. I/O cost and query performance
for small queries and hence we concentrated on comparisons
usinggIndex.
Baseline comparison.Since there is no existing work on
subgraph query authentication, we implemented the authenti-
cation ongIndex [32] as a baseline, denoted asMgIndex (see
SubSec. 3.4). ForMgIndex, we also used the same settings
as gIndex. Since it is known that binaryMHTs yield smaller
VO, in our implementation, theMHTs used are binaryMHTs.
Offline computation and memory overhead. The offline
computation mainly involves (1) the selection of individual
features, which takes around 0.5min and 1min forAIDS and
SYN, respectively; (2) the selection ofPOFs, which takes
around 30min and 1min for each of the dataset; and (3) the
clustering of the intersect-able graphs, which takes around
24h for each of the dataset. For both basic authentication
and enhanced authentication, the memory consumptions at the
server side and the client side are always smaller than 300MB
and 8MB, respectively.

8.2 Experiments on AIDS

Effects of maxSize and minSup of POF. Fig. 11(a) reports
the effects of the maximal size (maxSize) and the minimum
support (minSup) of POF s by varyingmaxSize andminSup
for Q8 queries. Thex-axis is (maxSize, minSup), e.g., (4,
0.5) representsmaxSize = 4 andmaxSup = 500. The trends
were that whenminSup increasedor maxSize decreased, the
number ofPOFs of theIFTree (i.e., the index nodes needed
by IFTree) decreased and the candidate size increased (which
is directly related toVO size). We set the default values of
maxSize andminSup to 4 and500 to strike a balance between
pruning andIFTree size.

1 I/O cost and query performance.
Average number of graph IDs.Fig. 11(b) shows the average
number of graph IDs fetched at query time by varying the
query sizes. Since the numbers forFGIndex were over 70K,
we could not show them here. In Figure 11(b), we can see
that IFTree had significantly fewer graph IDs thangIndex,
especially when the query size was large. The reason was
because the size ofP opt

q was small as eachp ∈ P opt
q was

chosen by our heuristic discussed in Sec. 5.2. Moreover, the
size of eachDp (p ∈ P opt

q ) was small.
Average number of non-answer graphs (CR̄q

q ) in the can-
didate set.Fig. 11(c) shows that the average size ofC

R̄q
q by

varying the query sizes.IFTree produced smallerCR̄q
q when
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Fig. 12. Basic authentication method

compared togIndex andFGIndex in most cases. For example,
at Q4, theCR̄q

q of IFTree contained27.2% fewer graphs than
that of gIndex. At Q24, IFTree resulted in13.2% fewer
graphs. AsFGIndex was verification-free5, Q4 queries were
small graphs. Most of them were features already and in such
cases, there was no non-answer graph in the candidate set.
However, when queries were larger than 4,FGIndex produced
largerCR̄q

q .
Average query time. Fig. 11(d) reports the average query
time at the service provider. At Q4, the average query times
on gIndex and IFTree were large since the size ofCR̄q

q

was large for small queries. ThesubIso test on those graphs
dominated the query time.FGIndex was verification-free and
Q4 queries in most cases did not require to verify. When the
query size increased after Q12, the query time onIFTree

became slightly larger. The reason was that the size ofPq
became large and finding the optimal decomposition fromPq
incurred relatively large overhead, while theirC

R̄q
q s of gIndex

andIFTree were being similar. However, the benefits of using
P opt
p become clear in the experiments on authentication.

2 Performance of basic authentication
Query composition.Prior to a detailed performance analysis,
we show the composition of queries ofAIDS, presented in Fig.
12(a). TQ1 are queries that contain exactly onePOF in their
P opt
q , In this case,MIFTree does not perform intersections

at query time. TQ2 are queries decomposed into multiple
POFs and all proposed algorithms inMIFTree affect the
performances. From Fig. 12(a), we note that TQ2 dominated
the query sets as the query size increased.
Average number of intersections.Fig. 12(b) shows us the
average number of intersections needed versus the query
size. MIFTree required significantly fewer intersections at
query time compared toMgIndex. For instance, at Q4 and
Q24,MIFTree required45.2% and50.8% fewer intersections,
respectively, thanMgIndex.
Total VO size.The small number of intersections performed
by MIFTree is reflected in the size ofVO. Fig. 12(c) shows
the VO sizes ofMIFTree and MgIndex with varying query
sizes. Looking atMgIndex, when the query size increased,
the size of the feature set|Fq| rapidly became larger and the

5. Given a query graphq, if q is a feature,i.e., q = f , it implies that there
is no need to verify thesubIso betweenq andg ∈ Cq asDf=Cq=Rq . Such
strategy is called “verification-free” [3].
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Fig. 13. Enhanced authentication method
number of intersections performed at query time also increased
accordingly. For each addition of feature,f , all the graph IDs
of Df were added toVO (see Fig. 11(b)). Therefore,VO
enlarged rapidly with query size. ForMIFTree, VO increased
with the query size, although at a slower rate. However, since
|P opt
q | was often clearly smaller than|Fq| (see Fig. 12(b)) and

for eachp in P opt
q , |Dp| was relatively small (see Fig. 11(b)),

MIFTree clearly outperformedMgIndex. Moreover, theVO
of MIFTree did not increase as rapidly as that ofMgIndex.
We highlight that theVO size at Q4 was large since the size
of non-answers in the candidate set (C

R̄q
q ) was clearly larger

than others, which required someVO to authenticate them.
Average authentication time.Fig. 12(d) reports the average
authentication time at client side. We observed that the authen-
tication time ofMIFTree was often4 times faster than that of
MgIndex. The number of intersections,i.e., |P opt

q | was smaller.
Thus, fewerMHTs of ID(Dp) were reconstructed, which is
a performance bottleneck during authentication. Further,the
sizes ofDps of P opt

q were smaller (refer to Fig. 11(b)). These
factors madeMIFTree clearly more efficient thanMgIndex.

3 Performance of enhanced authentication.
While the basic authentication already outperformed

MgIndex, in this part, we verify the enhanced method further
optimizes authentication performances.
Performance on clustered graphs.We study theVO size
due to theMHT of ID(Dpmin

) in Fig. 13(a) and Fig. 13(b). The
queries used were TQ2. Fig. 13(a) first shows the average
number of the intervals onMpmin

for each queries. Recall
SubSec. 7.2, the fewer intervals onMpmin

, the smallerVO
size due to theMHT of ID(Dpmin

). Therefore, Fig. 13(b) reports
suchVO size, whose trends were similar to Fig. 13(a). We
note that the average size ofVO at Q4 and Q8 increased. The
reason was that most of the query features were frequent, then
Cq in Dpmin

was relatively large. Therefore, theVO became
larger. At Q12 - Q24, their features contained more infrequent
features. ThenCq was relatively small. Hence, theVO for
computingHDp

decreased with the query size. However, in
all queries, the graph permutations of the graph IDs ofDpmin

clearly led to smallerVO size.
Total VO size. Fig. 13(c) shows the comparison ofVO sizes
between basic method and enhanced method for TQ2. For
TQ1, theVO of enhanced method was almost the same to
that of basic method as there was no intersection for TQ1.
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Fig. 14. Authentication performance on synthetic dataset
The figure shows that the enhanced method reducedVO sizes
significantly. For basic method,VO contained all the graph
IDs in ID(Dp) (p ∈ P

opt
q ) that were needed to be authenticated

(see Fig. 11(b)). Instead,VO for enhanced method contained
theVO of MHT of ID(Dpmin

) to authenticate. For instance, at
Q24,VO by enhanced method was about 20KB whereas that
of the basic method was around 120KB.
Average authentication time.Fig. 13(d) shows the compari-
son of authentication time of the basic and enhanced methods.
At Q4, since the candidate set contained a large number of
non-answer graphs (shown in Fig. 11(c)), thesubiso test
dominated the authentication time. When the query size went
beyond Q4, more queries required the basic method to re-build
the root digest of theMHT of eachID(Dp), p ∈ P

opt
q and

the graph IDs were intersected to determine the candidate set.
Thus, the authentication time increased rapidly as the query
size increased. In comparison, while the authentication time
for the enhanced method increased with the query size, it
increased in a much slower rate. The reason was that only
Mpmin

andID(Dpmin
) were needed to authenticate.

Overall response time.The overall response time consists
of the time for query processing, data transmission and au-
thentication. Although the query times of different methods
(Fig. 11(d)) were close, the improvements of our methods of
VO size (Figs. 12(c) and 13(c)) and authentication times (
Figs. 12(d) and 13(d)) were often an order of magnitude more
than those of the baseline, which led to better response times.

8.3 Experiments on Synthetic Dataset
Finally, we tested our techniques onSYN. We varied (maxSize,
minSup) and observed the same trends as those fromAIDS. We
chose (5, 300) as default. Since the results are similar to those
from AIDS, we present some major results in this subsection.
Average query time and authentication time. Fig. 14(a)
and Fig. 14(b) show the query time and authentication time,
respectively. In Fig. 14(a), we note that the query time
of MIFTree was slightly longer than that of theMgIndex.
Importantly, Fig. 14(b) shows that the authentication timeof
MIFTree of basic and enhanced method were at least3 and
4 times faster than theMgIndex, respectively. The speedup of
the enhanced method was up to8 times. These results were
due to smallerVOs.
Performance on clustered graphs.Fig. 14(c) shows the
clustering of graphs of TQ2 queries reduced at least50% of
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the VO size due to theMHT of ID(Dpmin
). The reasons for

the trends were the same to theAIDS. The permutations on
ID(Dpmin

) of SYN performed even better than that ofAIDS.
Total VO size. We comparedVO size for TQ2 queries
between basic method and enhanced method, shown in
Fig. 14(d). The figure shows that the enhanced method con-
sistently generated smallerVOs when the query sizes were
larger than 4.

9 CONCLUSIONS
We investigated the authentication of subgraph query services
of outsourced graph databases. We proposed an indexIFTree

that minimizes the I/O cost of the popular filtering-and-
verification framework for subgraph query processing. We
then proposedMIFTree by extendingIFTree to authenticate
subgraph query. To optimize theVO derived fromMIFTree,
we proposed a compactVO representation and a clustering
of graphs having similar subset of features. We conducted a
detailed experiment to evaluate the performance of our pro-
posed techniques and the effectiveness of the enhancements.
For future work, we are investigating the authentication of
subgraph similarity query.
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APPENDIX A
PROOFS

In this appendix, we present all the proofs of the propositions
in this paper. We then present the proofs of the correctness of
our proposed authentication techniques.

A.1 Proof of Prop. 5.1

Proposition 5.1: The problem of the optimal decomposition
of a queryq from Pq is NP-hard.

Proof: The proof is established from a simple reduction
from minimum weighted set cover problem. For the given
query graphq, the universe setU contains all the individual
features inFq, i.e., U = Fq. The set of subsets ofU is denoted
as S, in our cases,S = Pq. For eachpi in S, its weight is
w(pi) =

1
|pi|

. A collectionS′ of sets fromS, which covers all
the individual features inU and minimizes the

∑
pi∈S′ w(pi),

is the optimal decomposition ofq from Pq, i.e., S′ = P
opt
q .

That means finding such collectionS′, which is the optimal
decompositionP opt

q of q from Pq, is finding theminimum
weighted set coverof S. Therefore, the problem of finding
the optimal decomposition ofq from Pq is NP-hard.

A.2 Proof of Prop. 7.1

Proposition 7.1: The problem ofOPM is NP-hard.

Proof: The proof is established from a reduction from
Shortest Hamiltonian Path (SHP) problem. LetK = (V,E,W )
be an undirected weighted complete graph withn ver-
tices. V,E,W are the set of vertices, edges and weight
values, respectively. In particular,w(vi, vj) ∈ W where
vi, vj ∈ V and ei,j ∈ E. M is a m × n binary matrix
generated fromK, where the j-th column of M repre-
sents vj , vj ∈ V , i.e., the permutation of columns ofM
is p = (v1, v2, · · · , vn−1, vn) and n = |V |. For all i, j
≤ n, dist(M, i, j) = w(vi, vj), where dist(M, i, j) =
|M(∗, i) ⊕M(∗, j)|. Specially,M(∗, 1) = M(∗, n) = 0. Fix
the 1-st andn-th column ofM , M ′ is the OPM for M by
columns permutations.t. for all possible matrices permuted
from M cost(M ′) is the minimized. Thus the permutation
of columns ofM ′ is denoted asp′ = (v1, v

′
2, · · · , vn−1, vn).

Then we can get a pathP on K in terms of p′, where
P = (v1, v

′
2, · · · , v

′
n−1, vn). Since cost(M ′) is the min-

imized, and cost(M ′) = 1
2

n−1∑
i=1

dist(M ′, i, i + 1) =

1
2

n−1∑
v′
i
∈p′,i=1

w(v′i, v
′
i+1). Therefore

n−1∑
v′
i
∈p′,i=1

w(v′i, v
′
i+1) is min-

imized. In this case,P is exactly theSHP of K. Because
finding a SHP from a weighted complete graph is NP-hard,
thus the problem ofOPM is NP-hard.

A.3 Proof of Soundness and Completeness of the
Basic Authentication

Theorem A.3:The basic authentication method is sound
and complete.

Proof: We establish our theorem with reference to the
authentication steps presented in the end of Sec. 6.2. In order
to prove the soundness and completeness of the query answers

of the basic authentication, we first comment how we establish
the correctness ofFq, Pq andP opt

q .

Proof of correctness ofFq. F is organized in a prefix tree.
We can establish the correctness ofF from the authentication
of prefix trees, studied in [19]. More specifically, in Step 1 of
the basic authenticationFq is computed by the client fromq
andNF . (Recall thatNF contains the digests of the nodes for
the prefix tree ofF ). The client hasq. The client can verify
the features inNF are sound and complete with respect to the
prefix tree ofF by synthesizing the root digest of the prefix
tree and the data owner’s signatureψF [19]. After verifying
NF is not forged, the client computes ifFq is the maximum
individual fully cover features ofq.

Proof of correctness ofPq andP opt
q . Pq andP opt

q are com-
puted fromq andFq (in Step 2) and 3) of the authentication).

The MIFTree is a prefix tree of the string representations
of POFs. The soundness ofNI can be established by the
correctness of the authentication of prefix trees [19]. The client
can computePq by applyingfind POF on q, Fq andNI . If
NI is not consistent to thePq computed, then the client can
be alerted thatNI is tampered with. The client can compute
the correctP opt

q usingopt POF MWSC.

With the correct ofFq, Pq andP opt
q , we can then analyze

the soundness and completeness of the query answers.

Proof of soundness ofRq. Assume that a graphg in Rq is
modified or bogus. There are only two possible cases:

• subIso(q, g) = false: this is detected when the client
performssubIso by using the isomorphic mappingIM
(in Step 7) of authentication); or

• subIso(q, g) = true: sinceg is a bogus, the digest of
the node thatg belongs to cannot be synthesized because
h is a one-way collision-resistant function. Subsequently
the digestHpr is not generated correctly and the client
can detect this with the signatureψI and the public key
(in Steps 4) and 5) of authentication).

Proof of completeness ofRq. Assume a graphg is an answer
but not inRq. There are two possible cases:

• g ∈ C
R̄q
q : This is detected when the client performs

subIso on all graphs inCR̄q
q (in Step 7) of authenti-

cation); or
• g /∈ C

R̄q
q : DenoteP opt

q as {p1, · · · , pm}. SinceP opt
q is

correct andg is an answer,g contains an instance ofP opt
q .

There are only two cases that lead tog /∈ C
R̄q
q ∧ g /∈ Rq:

– ∃pi, g 6∈ Dpi . In this case,SP had modified
Dpi . Hence,Hpi and Hpr cannot be synthesized
correctly, and this will be detected when comparing
the signatureψI ; or

– ∀pi, g ∈ Dpi . While the SP may perform the
intersections of allDpis incorrectly, the client will
performs the intersections on allLpi , pi ∈ P

opt
q (in

Step 6) of authentication). Hence, the client will be
able to detect thatg is an answer.
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A.4 Proof of Soundness and Completeness of En-
hanced Authentication

Theorem A.4:The enhanced authentication method is
sound and complete.

Proof: The proof of correctness ofFq, Pq andP opt
q is the

same as the one presented in Theorem A.3. The proof of the
soundness ofRq is the same as that of Theorem A.3. Here,
we focus on the proof of the completeness.

Proof of completeness ofRq. Assume a graph is an answer
but not inRq. There are two possible cases:

• g ∈ C
R̄q
q : This is detected when the client performs

subIso on all graphs inCR̄q
q ; or

• g 6∈ C
R̄q
q : Denote P opt

q as {p1, · · · , pm}. g contains
instances ofP opt

q asg is an answer. There are again two
cases that lead tog /∈ C

R̄q
q ∧ g /∈ Rq:

– ∃pi, g 6∈ Dpi . In this case,SP had modifiedDpi ,
i.e., Mpi had been modified. Hence,HMpi

cannot
be synthesized correctly which leads to wrongHpr ,
and the client will be alerted when comparing the
DO signature; or

– ∀pi, g ∈ Dpi . TheSP has performed the intersection
incorrectly. However, this is detected when the client
performs the conjunctions on allsi, pi ∈ P opt

q .

APPENDIX B
DETAILS OF THE BASELINE APPROACH – MGIN-
DEX

In this section, we provide the details of the baseline ap-
proach for authenticated subgraph query processing algorithm
(Alg. 3). These details supplement the verbose pseudo-code,
that is used to construct the running example in Example 3.2.

The overall authentication algorithm (auth MgIndex). The
overall algorithm can be described as follows. The inputs
of Alg. 3 are the query graphq and TF , whereTF is the
prefix tree of featuresF . The outputs are the query result
Rq and theirVO. It first finds all the maximal featuresFq
by usingfind maxfeatures (Line 2). find maxfeatures

(to be elaborated next) is a traversal on the search tree
TF that constructsVOindex. After computing Fq, it then
computes the candidate setCq (Lines 3-4) by intersections.
In Lines 5-10,VOindex is modified according to the candidate
answer determined in Lines 3-4. The construction ofVOCq

is
presented in Lines 11-15. Finally, Alg. 3 generates the total
VO and returns withRq (Lines 16-17).

Enumeration of features (find maxfeatures). Alg. 4
presents the algorithm forfind maxfeatures. The algorithm
is presented in the style ofgIndex [32], which is a depth
first search ofminimum DFS order[32] to enumerate all the
maximal featuresFq of q. In Alg. 4, the only difference from
[32] is that it needs to record theVOindex while searching
for the features, which will be used in Alg. 3. In Line 1,
VOindex

′ is theVOindex at the boundary of the search;S is a
set of features enumerated so far;Fq is the maximal features
of q; andU is the edges ofq covered byS. The algorithm

first sorts all the (individual) edges inq ordered by minimum
DFS order (Line 2). It records the feature and the associated
digest for each child node of the root ofMgIndex (Lines 3-5)
in VOindex, as they are at the boundary of the current search.
Alg. 4 then invokes the traversal algorithmauth DFS (Lines
6-8) to enumerate the features ofq. After generating all the
features ofq, the algorithm then computes and returns the
maximal featuresFq (Lines 9-10).

The traversal pseudo-code of a prefix search tree
(auth DFS). The Procedure 4.1 is a depth first search pro-
cedure with generating the features ofq and theVOindex. At
each traversal step, if the current features is not the minimum
[32], then the current recursion is terminated (Lines 11-12). If
s is in TF (Line 13), thens is a feature ofq (Line 13). The
edgee is covered bys ands is added toS (Lines 14-15). The
feature and the associated digest for each child node ofs is
involved inVOindex(Lines 16-18). Then,auth DFS proceeds
to each childc of s in q (Lines 20-22), again in the minimum
DFS order.

Example B.1: We use Example 3.1 to illustrate the search of
the query features in Alg. 4. The searchfind maxfeatures

starts at the artificial root nodefr. The child nodes offr are
the current boundary nodes and they are recorded inVOindex

′

(Lines 3-5). The search proceeds to the child nodes offr with
the minimumDFS orderS1 (Lines 6-8).

According to the example, the first edgee in S1 is (C,O). In
the sub-procedureauth DFS, sinces is a minimum (Lines 11-
12) ands is exactlyf2 (Line 13), wheres = e, e is added inU
as covered (Line 14) ands is added inS as a feature ofq (Line
15). s (i.e., f2) is the current visited node, and the child nodes
of f2 are the boundary nodes which are recorded inVOindex

(Lines 16-19). Theauth DFS then recursively expands the
search to the child ofs in q (Lines 20-22),i.e., expands(O,H)
and(O,O) respectively. However,s expanded with(O,H) is
not a feature ofq (Line 13). The traversal then proceeds tos
expanded with(O,O) (i.e., f7) and modifiesVOindex

′.
After auth DFS finishes traversing the search tree rooted

at f2, the only edge ofq not covered byS is (O,H).
find maxfeatures then proceeds to search(O,H) as it is
the next edge inS1 (Line 6). Similarly, auth DFS traverses
the subtree rooted atf3 (Lines 7-8). After the traversal,S
coveredq (i.e., U = q) and the traversal terminates (Line 10).

Finally, find maxfeatures determinesFq = {f7, f3}
from S and returnsFq (Lines 9-10).

APPENDIX C
AUTHENTICATED SUBGRAPH QUERIES ON
L IGHTWEIGHT DEVICES

This experiment verifies thatMIFTree is a practical approach
that enables clients to access authenticated subgraph query
services via lightweight devices. We chose an extreme hard-
ware setting where the client uses a commodity smartphone.
We report both the time for query processing and energy
consumption of the subgraph queries on the smartphone.

Hardware setting. The smartphone used in this experiment
has an 1GHz processor, 1GB internal memory and 3.7 Volt,
1500 mAh battery running the Android 2.2 system.



17

Algorithm 3 auth MgIndex(q, TF )
Input: q is a query graph, the prefix treeTF of featuresF
Output: Rq , VO
1: Initialize Rq ={ }, Cq = G, VOindex= [ ], VOCq

= { }
2: Fq = find maxfeatures(q, TF , VOindex)

/* computeCq */
3: for each f ∈ Fq

4: Cq = Cq ∩Df

/* constructVOindex*/
5: for each f ∈ Fq

6: Initialize a listL = []
7: for each gj ∈ Df

8: if gj ∈ Cq then L = L ⊕ j /* append ID */
9: elseL = L ⊕ (j, Hgj ) /* append ID and digest */

10: VOindex[f ] = (f , L)

/* constructRq andVOCq
*/

11: for each g ∈ Cq

12: if subIso(q, g) = true

13: Rq = Rq ∪ g
14: else /* constructVO for non-answer */
15: VOCq

= VOCq
∪ g

16: VO= (VOindex, VOCq
, ψF )

17: return Rq andVO

Algorithm 4 find maxfeatures (q, TF , VOindex)
Input: q is a query graph, the prefix treeTF of featuresF , VOindex is the

VO records the search
Output: Fq

1: Initialize VOindex
′ = [ ], S = { }, Fq = { }, U = { }

2: S1 is a list of edgese of q ordered by the minimumDFS order
3: for each child f of fr in TF /* fr is the root node ofTF */
4: VOindex

′[f ] = (f , Hf ) /* boundary nodes */
5: VOindex[fr ] = (fr, VOindex

′ ) /* visited nodes */

6: for each edgee in S1, e 6∈ U ∧ q 6= U
7: s = e
8: auth DFS (e, s, S, VOindex

′, q, TF , U )

9: computeFq ⊆ S, s.t., Fq is a set of maximal features
10: return Fq

Procedure 4.1auth DFS (e, s, S,VOindex, q, TF , U )
11: if s 6= mindfs(s)
12: return
13: if VOindex[s] 6= ∅ /* s is a feature inTF */
14: U = U ∪ e /* mark e as covered */
15: S = S ∪ s
16: initialize VOindex

′ = [ ]
17: for each child f of s in TF
18: VOindex

′[f ] = (f , Hf ) /* boundary nodes */
19: VOindex[s] = (s, VOindex

′) /* visited nodes */
20: for each child c of s in q ∧ q 6= U
21: e′ = c− s
22: auth DFS (e′, c, S, VOindex

′, q, TF , U )

Software setting. We implemented the seminal subgraph
isomorphism algorithm, namely the Ullman’s algorithm, by
Java on Android. The dataset we used is the benchmark dataset
AIDS [24], which was used in Sec. 8. The queries we tested
are Q4,i.e. the query graphs of the size 4.

Results and discussions.In our experiment, we consider three
cases as follows. (1) Prior to our work, there is no indexing
technique that supports authenticated subgraph queries. In the
absence of indexing techniques, theSP or DO is required
to send the whole database and theDO’s signature to the
client, for each query. The client can verify the integrity of
the database withDO’s signature. Next, the client scans the
graphs to compute the answers. For each Q4 on the dataset

TABLE 1
Frequently Used Symbols

Symbol Description
q, g, G a query graph, a graph data and a graph database
f an individual feature
F a set of all individual features inG or the prefix tree that indexes

all features ofG
p, P a partially overlapping featurePOF and a set of allPOFs inG
Dp a set of graphs that each of which containsp
ID(Dp) a list of IDs of the graphs inDp

Pq , P opt
q the POFs of q and the optimal decomposition ofPOFs

Cq ,Rq ,C
R̄q
q the candidate set, the answer set and the non-answer candidate set

Hg , Hp a digest of graphg andnode(p) of MIFTree
HDp a root digest of the classicalMHT on all graphs inDp

Hr
p a root digest of the embeddedMHT on node(p)’s child nodes

VOindex the digests that record the search of features
VOCq the non-answer graphs in the candidate set
NI , NF the digest ofMIFTree nodes and the digest of prefixF nodes
IM a set of subgraph isomorphism mappings fromq to g ∈ Rq

ψI , ψF a signature ofMgIndex andMIFTreefrom DO
pmin the minimalPOF in P opt

q

Mp a binary matrix ofID(Dp) of p (for minimizing I/O)
HMp a root digest of the classicalMHT on ID(Dp)

AIDS (containing 10K), the smartphone took around 32.6
minutes to determine the answers and 11.7% of the battery
was consumed. It is not surprising that the bottleneck is the
subgraph isomorphism computation. Moreover, large queries
of the AIDS dataset exhibited similar or worse performances.
Hence, it is imperative to propose an efficient authentication
mechanism on top of indexing techniques. (2) Suppose the
client can access to an authenticated subgraph query service
using the baseline method. We simulated the evaluation of Q4
again. The authentication on the smartphone required to invoke
subgraph isomorphism on 960 graphs. The main reason is that
the baseline method also minimizes the number of candidate
graphs in theVO. It took 3.3 minutes and drained around 1.1%
of the battery for one Q4 query. (3) We tested ourMIFTree

approach. Subgraph isomorphism was then invoked on 700
graphs only. This further reduced the battery consumption of
one Q4 query to 0.81%. The answers were authenticated in
around 2.4 minutes. In this case, the battery saved by using the
MIFTree approach is about 27% of the battery consumption
of the baseline approach.

APPENDIX D
FREQUENTLY USED SYMBOLS

We present the list of frequently used symbols of our discus-
sions in Tab. 1.

APPENDIX E
VO SIZE VS. AUTHENTICATION TIME

In this appendix, we report a supplementary experiment of the
basic authentication method onAIDS dataset in order to show
the relationship betweenVO size and authentication time. The
reason for not using enhanced authentication method is thatits
VO size and authentication time are affected by several non-
trivial optimizations,e.g., the matrix representation of graph
IDs and the clustering of intersect-able graphs. Therefore, we
opt to use the basic method for this supplementary experiment.

The experimental results of Q4-Q24 are reported in
Figs. 15(a)-(f), respectively. Each figure is obtained froman
experiment of a specific query set on theAIDS dataset. All
the query sets used (i.e., Q4-Q24) are the same to those in
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Fig. 15. VO size vs. authentication time of various query sizes
of the basic authentication method on the AIDS dataset.

Sec. 8. Each dot in the figure represents a query; the x-axis
of the figure represents theVO size due to the query; and the
y-axis stands for its authentication time. From the figures,we
can easily observe that there are (roughly) linear correlations
betweenVO size and authentication time. Therefore, a major
portion of this paper discussesVO minimization techniques
for IFTree to address efficient authenticated subgraph query
processing.


