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Abstract —Graphs have been a powerful tool that is suitable for a large variety of applications including chemical databases and the
Semantic Web, among others. A fundamental query of graph databases is subgraph query: given a query graph g, it retrieves the
data graphs from a database that contain ¢. Due to the cost of managing massive data coupled with the computational hardness of
subgraph query processing, outsourcing the processing to a third-party service provider is an appealing alternative. However, security
properties such as data integrity and the response time are critical Quality of Service (QoS) issues in query services. Unfortunately, to
our knowledge, authenticated subgraph query services have not been addressed before. To support the service, we propose Merkle
IFTree (MIFTree) where Merkle hash trees are applied into our Intersection-aware Feature-subgraph Tree (IFTree). IFTree aims to
minimize 1/O in a well-received subgraph query paradigm namely the filtering-and-verification framework. The structures required to be
introduced to verification objects (VOs) and authentication time are minimized. Subsequently, the overall response time is minimized.
For optimizations, we propose an enhanced authentication method on MIFTree. Our detailed experiments on both real and synthetic
datasets demonstrate that MIFTree is clearly more efficient than a baseline method.

Index Terms —13.0.1 Security Concerns of Service-Oriented Solutions, 13.11.1 Service-Oriented Security Enablement at Software Level,
Subgraph Query Service, Query Answer Authentication, Outsourced Graph Databases
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THere have been a wide range of emerging applications & & 6@ out outmg}g Avewersot &
. . . . . . utsource et
of graph databases, including bio-informatics, cheml-gz.m @ Objects

informatics, and web topology [6], [23], [24], whose data 93 @g o ——
are modeled as graphs. To retrieve graphs from large grap94 ©-00 Data _ 7% @ ¢ ©
databases, many structural queries have been proposed.® ® Owner public key Client

Among others, subgraph isomorphism query (or singp- Fig. 1. System model of graph database outsourcing
graph query (e.g, [3], [9], [12], [28]-[30], [32], [36], [37])
has been a fundamental and popular query. Specifigalgn
a query graphy and a graph databas€, retrieve all graphs in

owners’ behalf. For instance, according to [23], PubChem ha
managed 19 million unique compound structures. PubChem

G that tai b hE le. in biol th allows laboratories to submit their data [22]; and PubChem
atcontaing as a subgraph or example, In biology, there manages the data on the laboratories’ behalf. In addition

are more than 1,500 enline mo_lecular biplogy databasek{G].to PubChem, in drug engineering, many commercial service
chemistry, PubChem [23] provides public access to numerogfq]viderS e.9, [1], [2], [11]) support outsourcing of pharma

;:]e.m'?al c;ompo_un?s. Uzgrst C?n query compounds contain abases owned by laboratories. Laboratories then fatcus o
eir structuresvia its web interface. the curation of their data.

Due to the cost of hosting the explosive volume of data Security properties such adata integrity are listed as

3”? Eerforming Iartgel-scalehcom;:ﬁtations,dumelfrsgffgrﬁ Quality of Service(QoS) issues [20] in (query) services. A
atabases may not always have the necessary IT Infraigtuct o oo s that the service provider may be untrusted and/or

and _expertls_e to provide the _be_st usage of the_lr data. A_n Eb%'mpromised to attacks and clients may receive tampered
peallr)g solution to address this issue of managing VOIU_[mnoresuIts. For instance, Fig. 1 shows an example of a graph
data.(;s to outso:rce the Evcv:r;ers éjaéa to Ia tfglrd-;()jaeéy/m(_a database&r and a query graph. Suppose the service provider
provider (e.g.,. mazon an oogle lou erV'CegtoresG and its index and the client retrieves graphs that con-
Then, the service provider provides query services on thee d?ain 4. Supposey, is the answer graph. However, the service
provider might return incorrect results,g, g1, simply abort
o Z}[ﬂé Fan, \t(unSPeng, ByLOH Cf:<0i anté Jie}nliaSg_Xu é}tre Vg;h theddiepent  the computation or return partial answers as some querigs ma
of Computer Science, Hong Kong Baptist University, China. . - - .
E-mail: zfan, ypeng, bchoi, xujl@comp.hkbu.edu.hk in fact take long to evaluate. In this scenario, the owniericl
e Sourav S. Bhowmick is with School of Computer Engineerirmybing may never be sure whether the data was outsourced correctly.
EeCh'?IS"Og'Ca' U”'Veis'tyas'”gapme- In practice, the query can be some sensitive chemical com-
“mail: assourav@ntu.edu.sg pound such as benzopyrene, a carcinogenic substancelyecent
_ found in some ramen. A compromised service provider might
1. There are two streams of research work on subgraph queries [8]. One strea@laborate with some ramen companies and convenientny ski

handles a very large graph. The other stream concerns a large number of small grag o . ’ )
which is the focus of this study. their ingredients that contain benzopyrene. Another irgmdr




attribute of QoS is thaesponse timeof a service. In this POFs (.e. fewest intersections) are used in querying time and
paper, it consists of the times for query processing, dat@eanwhile, more individual features are implicitly used in
transmission and authentication of query results. These tthe filtering phase. As a result, fewer graph IDs are fetched
attributes of QoS significantly influence the practicalifyoat- while the candidate set is minimized. As we shall see later, t
sourcing graph databases. Hence, there is a need for efficiemimber of fetched graph IDs in query processingI&free
guery authentication framewotk support the subgraph queryis 5 times smaller than that of a baseline. Moreover, thedfize
services. candidate set usiniFTree is around 25% smaller than that of
Majority of existing querying or indexing algorithms fora baseline. Consequently, th® size and authentication time
subgraph queries adopt fltering-and-verification frame- are reduced by a factor of 3.6 and 3.3, respectively. For the
work [3], [12], [28], [29], [32], [36] consisting of two key second problem, we propose a compact matrix representation
steps. (1) In thdiltering phase, the query is decomposed intof intersection of graph IDs oMIFTree to form an enhanced
a set of individual features and an index is searched witeghaauthentication. Our experiments show that the compacerepr
features. The search of each individual feature yields afsetsentation improves th& O size and the authentication time
graphs (represented by graph IDs) containing this search®d a factor around 2.5 and 3.4 (respectively). For the last
feature. The sets of graphs are intersected to form a caedidaroblem, we determine the optimal ordering of graphs that ar
set (a superset of answers). (2) In tregificationphase, each “intersect-able”. Our empirical study demonstrates thrapbs
graph in the candidate set is checked by an exact subgraygeded to be authenticated form the fewest number of ranges
isomorphic algorithm to compute the final result set. Howeveand the correspondinyyO size is reduced by around 40%.
to the best of our knowledge, none of the existing subgraple observe that the overall improvement of the response time
guerying works addresses authentication of such a frankewaover the baseline is often more than an order of magnitude.
In this paper, we take the first step towards this goal We show that the energy saving on smartphone by using our
In a typical query authentication system [7], a data own@roposed techniques is about 27% over the baseline.
publishes his database and signature; A service providein summary, the contributions are listed as follows.

processes queries from a client and transmits to the client, We propose a novel higher-order feature, calfeaf-
both the answer and a verification obje®({) which stores tially overlapping featurefor indexing graphs. We lever-
the processing traces such as index traversals and; By using age these features to propose a novel index, namely
the answer and’O, the client synthesizes the digest of the |ntersection-aware Feature-subgraph Tr&&Tree). For
database/index and compares it with the data owner’s signat basic authentication, we appHiTs to various structures

to verify the authenticity of the answer. of IFTree calledMIFTree.

As the filtering-and-verification framework is not spegiall « We propose a novel matrix representation of intersection
designed for authentication, we note at least three prablem of graph IDs for enhanced authentication.

that may cause larg&O to be transmitted to clients and o We cluster the graphs that are “intersect-able” by adopt-
inefficient authentication at clients. Firstly, query f@@is must ing approximation algorithms.

be authenticated to ensure the correct graph IDs are fetched we conduct extensive experiments with real and synthetic
and intersected. The more the query features, the larger the datasets to demonstrate the effectiveness and superiority
VO. Unfortunately, none of the previous work minimizes the  of our proposed methods.

number of query featu_res us_ed in query processing. Secondlyrhe rest of the paper is organized as follows. Sec. 2
all graph IDs involved in the intersections must be represen yiscysses related works. We present the preliminaries and
in t_he VO so that_the clle_nt can efficiently and correctlyyerview in Sec. 3. We present partially overlapping feaiar
verify the intersections. Thirdly, the answer graphs do nefec 4. Wwe ProposEFTree and its query processing in Sec. 5.
generally form a range. In the worst case, each answer graghl propose Merkl@FTree and a basic authentication in Sec.

is authenticated separately. This makes direct appliest@ g gec. 7 proposes an enhanced authentication and the bptima
classical technique(g, MHT [21] or signature chaining [25]) ordering of graphs. Sec. 8 presents a detailed experimeat. S

inefficient. Observe that both the query features and theply g concludes this paper. We present all the detailed proofs in
IDs (described in the first two problems) dominate the 1/0 ‘prendix A

the filtering phase and therefore, the problem of minimizing
VOs is directly related to minimizing I/O of the filtering-and-2 ~RELATED WORK
verification framework. Although there are several efforts in the literature on yuer
In this paper, we propose a novel authenticatiorauthentication for relational and range queries [17], [25]
friendly index called Intersection-aware Feature-subgraphstream queries [27], [34], spatial queries [33], XML qusrie
Tree (IFTree) to address the aforementioned technical chdB], text search [26], and multi-dimensional queries [48rw
lenges. We then applyHTs to IFTree called MerkleIFTree few work focus on authentication of graph query processing.
for efficient authentication. Specifically, for the first ptem, Yiu et al. [35] propose authentication of shortest path ser
in order to minimize the number of features used in then road networks. However, the ordering of objects in road
filtering phase, we propose a novegiher-order featurecalled networks can be determined offline,g, by network-based
Partially Overlapping FeatureqPOF) which are themselves distance. Such ordering is absent in graph databases inagjene
features composed bindividual features We propose to and it is not clear how to adopt this work to subgraph queries.
decompose a query into an optinRlF set such that fewest Kundu et al. [13]-[16] propose a series of methods for a



maxL = 2 fr

closely related problem. They verify tla@ithenticityof agiven SISF(1) = 1, SISF(2) = 2
portion of data (subtree/subgraph that users’ have the right™ ="' hed [200] [FOd 10T (200
to access to) without any leakage of extraneous information 000 /GO0 1) (oY
of the data (tree/graph/forest). They optimize the sigmatu G234~ "'"'The graph ID's of Dy,

i (@ OO ecnumerate inf etresreénﬁms Cq =Dy, N Dy, verif 94 0000
needed and recently propose a schemg that uses one S|gnatu ¢ tersections 1 = 1 0.7 v 1
[13], [14]. However, in our problem setting, the portion bét Fy={fs,fr} ~ Cpdidate 2Ry = {ga}

data retrieved is the answer of a client’s query, which is yet _ ) _

to be processed by an untrusted service provider. Therefdrd- 2- lllustration of gIndex and its query processing

the client is required to authenticate both the soundneds ah2l: [28], [29], [32], [36]) and non-feature-based.g, [9],
completeness (see SubSec. 3.3) of the portion of retrieated d[371) indexes. From Sec. 2 above, iGraph [8] concludes that
Search DAGs (Directed Acyclic Graph) [19] is a generalize‘@e former often outperforms the latter. This work contésu
model for authenticating a large class of data structuees, to the feature-based approach_es. o
binary trees, multi-dimensional range trees and tries. ¢V Feature-based approaches index graphs by their individual

subgraph query processing can hardly be efficiently cast ifeatures. The tgm’ndividual featureis used to refer to those.
a DAG search. proposed previously, as the one we put forward comprise

A large number of indexing techniques have been prg’j’ldiv_idual features that form “higher-order” features. kudex
posed for evaluating subgraph queries. These efforts &fthis approach uses these features as the search keyfor th
be roughly classified into two approaches, namiggture- 9raphs that contain them. _
based approachete.qg, [3], [12], [28], [29], [32], [36]) and A well-recel\(ed _query par_a_dlgm for feature-based ap-
non-feature-based approach¢s.g, [9], [37]). Examples of proaches is théiltering-and-verificationframework [3], [_12],
features are frequent subgraphs, using tools such as gSpan [28, [29], [32], [36]. Early work on subgraph query process
and CAM code [10]. Recently, iGraph [8] implemented thes&/Ch as Shasha et al. [29] proposigsring graphs via paths
techniques on a common platform and reported that formfdfd thenverifying the remaining graphs throughubIso.

approaches outperform latter approaches in most caseseHegOMe later works [3], [12], [28], [29], [32], [36] proposed
we adopt the feature-based approach in our study. innovative solutions that follow such a framework. To ithage

the filtering-and-verification framework, we present a s&hi

3 BACKGROUND AND OVERVIEW : o o=
In this section, we first discuss the background to subgra@?ex calledgIndex [32] which is shown efficient in many

query processing and query authentication. We then fonaulS2SeS [8].gIndex proposesdiscriminative frequent features

the problem studied. A baseline approach and an overviewfaosflnd'\/'dua1| featuresdenoted ad, for indexing. A discrim-

. . inative frequent featurg, f € F, is
our solution are discussed. b
« a subgraph whose size is smaller than or equalate.,
wheremaxL is a user-definednaximum feature size
« afrequent featurghat |Ds| > SISF(|f|), whereD; =
{fl f € g,9 € G}, |Dy| is called thesupportof f and

3.1 Background for Subgraph Query
This paper assumemdirected labeled connected graptior

simplicity, we may use the terrgraphsto refer to them. A
graph is denoted ag = (V, E,%,[), whereV(g), E(g), £ . ' . . :
and! are the set of vertices, the set of edges, the set of labels i?SeI;cl:i? l;srg-deflne&lze—lncreasmg—Support-Funct|on
of vertices and edges and the function that maps a vertex or . """ ' ° INprempprcy Dyl .

edge to a label, respectively. We ugg to denote the size ° d|scr|m|r}at|v§,s.t:, Dl 2 dr, wheredr is a

of graphg, where|g| = |E(g)|. Following the literature of a user-definedliscriminative ratio

popular stream of graph databases [3], [9], [12], [28], [29] The function.SISF returns a support that increases with the
[32], [36], [37], we consider graphs of modest sizes. input feature sizegIndex setsSISF(1) = 1 by default.STSF
Definition 3.1: Given two graphsy = (V, E,3,1) and ¢’ = gives the fIgX|b|I|ty to allow indexing with infrequent fe:a‘es. .
(V', E',3,1'), a subgraph isomorphisrfrom ¢ to ¢’ is an The |n(_:i|y|dual features are represented byacanomcalgstn
injective functiony : V(g) — V(¢') such that called minimum DFS code [31] angIndex is a prefix tree

, o . of the minimum DFS codesgIndex processes queries in
» Vu € V(g p(u) €V(g),1(u) = I'(¢(u)); and two phases. (1Filtering: enumerate the maximum individual

 V(wv) € Elg), (pu)ev) € BElg), Uuv)= feature setf, from ¢, where F, = {f|f C q,f € F, }f’,

U(p(u)p(v))- Y -
’ i ) s.t., f C f', f' C q}, and filter out the graphs that do not
Subgraph query can be formally defined in Def. 3.1. We,nain 4 feature inf, to obtain the candidate s&t, by

say a grapfy.is a subgraph of another graghif there exists performing the following intersections:
a subgraph isomorphism fromto ¢/, denoted ag C ¢’ or

subIso(g,¢’) = true. It is known that deciding whethey Cy= ﬂ Dy (1)
is the subgraph of’ is NP-hard. Subgraph query processing fE€F,,F,CF
can be described as follows. (2) Verification determine the query answer3, from the

Definition 3.2: Given a graph databasé = {g1,¢2,...,g»} candidate set by invokingubIso, whereR, = {g|¢ C g,9 €
and a query graph, we want to determine the query answer§’, }.

R, = {gi|subIso(q,g:),9: € G}. It is worth noting that the intersections in the filtering
Subgraph query paradigms. Two query paradigms for sub- phase are performed on graph IDs whereasIso in the
graph queries have been proposed: feature-basey [3], Verification phase is invoked with graph data. Therefork, al



Haywp = h(Hay [Hay) Hi2 = h(h(h(1)|Hay)]| ,Hr = h(h(4)[H1,0)

previous indexes (see [3], [12], [28], [29], [32], [36]) mwse R(h(2)|Horn))
innovative ideas to filter more non-answer graphs that aim i) e [0
- T1,T2 23,74 search key

minimize the candidate sét,,. 4 ) ‘ ! .
(Ao ) (oo ) [y ] [l ] (O] [(CHe) ] [(GHa) ] (G Hey) ]

Example 3.1: We illustrate the filtering-and-verification (a) Classical MHT (b) Search tree embedded with an MHT
framework with an example in Fig. 2. The upper half of

Fig. 2 shows thegIndex constructed from a set of individual F19- 3. Two kinds of Merkle Hash Trees used

features mined frond in Fig. 1, F = {f1, fo.--- , fs}, where Suppose thathe search of the ke needs to authen-
SISF(1) = 1, SISF(2) = 2, maxL anddr are set t@ and0.1, fticate. TheVO contains (1,#.,) and (4, Hz4) and the
respectively.f, is an artificial root node. The lower half ofdata owner's signature on the root digedt.. The client
Fig. 2 shows its query processing: Given a query grapime computes,, = h(xz2), Hi2 = h(h(h(1)|[Hz,)| h(h(2)|
filtering phase first enumerates all the maximum individudtz.)), Hi,a = h(h(h(2)|[H12)| h(h(4)] Hs,4)), and finally
featuresF, = {fs, f-} of ¢ and performsintersectionsof the root digest, = h(h(4)|#1.4). Similarly, by comparing
the graphgvia IDs) containing the individual feature(§)D;, the synthesized root digest and the data owner's signahee,

and D;,) to compute the candidate s€t, = Dy, (\ Dy, = client verifies the authenticity of the data from the service
{91794}_ The verification phase invokesibIso on each graph prOVider. From the bOUndarie.Bd., 1 and 4) of the SearCh, the
in C,, and computes the answeRs, = {g,}. client verifies that the search is correct.

In this paper, we apply both kinds ®fiTs (Figs. 3 (a) and
3.2 Background for Query Authentication (b)) to various structures of our index to minimix.

Cryptographic primitives. Similar to other works on authen-3.3 Problem Formulation

tication, we assumeane-way coIIision—resista_nt hash functionsystem Model.The system model follows the existing authen-
(., SHA andMDs) is denoted a#(z), wherex is a data value ication framework, that comprises three parties —d@a
to be hashed and the hash vakfg) is often referred 0 as o\nerp, (i) service providerSP and (jii) querying client
the digestof z. It is infeasible to determine the preimage of a () The DO owns a graph databasg. The DO or SP
digest. We assumegublic-key d|g|tql _S|gnature schemsuch o generates an index to support subgraph query progessin
asRsA, that guarantees the authenticity of a message or valggo, po signs the root digest of the index. (i) Th&P
The signer has a private kegK) and can produce a signedreceives a query from a client, processes it on behalf Bt

messagey = sign(z, SK). Any public user has a public key ong retyrns the answer grapRs to the client. Since&SP may
(PK) and can verify the message by decryption. _ not be trusted, it is required to return not orfiy, but also a
Merkle Hash Tree (MHT). The Merkle Hash Tree [21] is y)) and theDO’s signature to the client. (iii) Upon receiving
a classical authentication technique. The main ided’®¥f ho1) (. the client verifies ther, the SP returns. We assume

is illustrated with an example shown in Fig(a3. It is & the client has the public key of tHRO for authentication. In
classicalMHT built on data values{z;, ..., z4}. Each leaf particular, the client verifies the following:
node is associated with the digest (hash) of its data value, d - all h dth
ed. H. — h Each | | nod . he di « Soundness: all graphs R, are answers and they are not
.9, Hay (x1). Each internal node contains the digest tampered withi.e. Vg & R, g ¢ G A ¢ C g: and
of the concatenation of the digest of its child nodes, . Completeness-ltr.;ere i< ng graph that & r;oRlpbut S
Hay 2y = M(Hay |Ha,). A data owner signs the digest of the an answeri.e .39 ¢ RygeGhgC
root node. €. 19 a9 Sg.
To authenticate a data valueg, x, the service provider | nréat Model. In our system model, th&’> may not always

sends to the client, and a)VO that consists of the digestsP® usted. It may be a potential adversary or have been
H . andH and the signed root digest f,.. The client tampered with by attackers. In either case, we assume that th
x1 xr3,Tq T

computes from th¥’O, H,,, = h(zs), H = h(Ha,|Ha,) SP may alter the graph data or the index structure, introduce
and finally the root d'igévé‘H :’ h(f;[’“ I xl) The Wrong answers, skip certain answers or abort the compatatio
client uses the data owner’szE)’leIic key o gémp%g and An authentication framework is considersecureif attacking

y T4

the signed root digest. If they agree, has not been tamperedit un(_jer thi; threat model is_ as hard as inverting a one-way
with. MHT can be extended to authenticate a set of data valuggllision-resistant hash function.

MHT has been generalized to raulti-way index (such as Given the above preliminaries, we are ready to formally
Merkle B-tree [17]) for database applications. Moreoviehas present the problem statement.

beenembeddedhto index nodes (see the Embedded Merkle é?roblem statement. Gi_vgn the abO\_/e _system and threat
tree (EMB-tree) [17]) to minimiz&’© sizes. Fig. 8) shows models, we seek an efficient authentication framework where

a search tree embedded with 8T The data in thetT are € client may submit a subgraph query and verify the sound-
{1 24}, the search keys arfd, 2, 3, 4 ness and completeness of the answers returned by the service

. . . Provider.
o Each leaf node is associated with the search key and the

digest (hash) of its data value,g, (1,%,,) wherel is <-4 Baseline Authentication — Mgindex
the search key of;; and In this subsection, we derive a baseline technique from
« Each internal node contains the search key and the diggshdex. We sketch the main ideas of thisima authentication
of the concatenation of the digest of its child nodesg,, approach and discuss the drawbacks of such an approach. For
(2,H1,2) whereH; o = h(h(h(1)|Hz, )| R(h(2)|Hey))- a concise exposition, we present the detailséh semantics



unless otherwise specified. For detailed algorithm, pleafgg | Client | |Service Provider I@m:if:ii:@md EnmET
to Appendix B. minimiss YOumses | o8 _ (1 py | | comirgare st

With reference to Formula 1 in Sec. 3.1, in order to authen% Query| | |@D = @Al T Dy Dpn | & Cya”
ticate the answer of the query the client must authenticate 4] | |Qrtimar C-0nnO 5l 5 +0
the correctness of (i) the query featu€sand (ii) their graph sition S) Fnbanced “::“‘“ ofa ol
IDs Dy (for all f € Fy) in order to verify the authenticity of e CUE| [Eeer s ¥
the candidate sef,. Therefore, the client can examidg, to ® v mesrix Top- ®
obtain the answerz,. Ry vO o = 7,

index VOc, = (Inr UCy")| Ry

The baseline approach calle@Index simply appliesMHT
to (i) the children of each index node gindex; and (ii) the
graphs (with IDs) ofD; of each featuref, respectively. The
guery processing dfgIndex is similar to that ofgIndex but
incorporates withVO construction. More specifically, the©

Fig. 4. Overview of efficient authentication method

To minimize VOinaex While keepingC, small, we propose
essentially to precompute some intersections offline, shah
of MgIndex consists of three main parts: fewer intersections are involved at query time and hencel nee
to be authenticated by clients. In particular, we propogbér-
VO = VOinaex UVOq, U ¢r order features Rartially Overlapping FeaturesPOFs). In a

1) VOineex cONtains the digests that record the search BHtshell, aPOF consists of a set of overlapping individual
each individual featurg € F, during query processing featur.es. If a dgta_ graph contains.PaF, this implies it also
and all the graph IDs (and the graphs’ hash values if t§@ntains tho§e mdmdya! features in ther. Hence,POFs are
graphs are not present ift,) of D; for all f € F; more selective than individual feature, and result in semall

2) VOg, contains the non-answer graphs in the candidsg@ndidate sets.
seti.e, VOo, = C, — Ry, denoted aff"; and We propose the Intersection-aware Feature-subgraph
3) +p is simply the signature of the data owner. Tree (FTree) to index a graph database DBOFS P.
) Merkle IFTree (MIFTree) is proposed by adoptingHTs on

Example 3.2: We use Example 3.1 to illustrate th&). IFTree for basic authentication.
1) VOineex CcONtains the digests that record th_e search OfThe overview of our solution is depicted in Fig. 4
Fy = {3, J7}. Suppose the search locaigsfirst. The po client issues the query graghto the SP. The SP
VOindex mpludes the dlges'ts of the nodes f, f4 qnd first enumerates all th@0Fs P, of ¢q. We then study how
f5. The digest of nodef; is computed by the client. to decomposg into an optimal seP;** which hasthe fewest
When the search locatgf, the digest off; in VOinaex number of intersections and smalleSt,. @ P;Pt is then
is replaced by the actual content of the nofle ThUS,  so51cheq ormuIFTree to obtain all the graph IDs ofD,,
Fhe client can ver|fyf3. The graph IDs for each graphdenoted asID(D,), wherep € PP and D, is a set of
in Dy, and Dy, (i.e, {1,24 and {14} respectively), ganns that contaip. The candidate sef, is determined by
and the hash value g, are added td}oi}‘d“' and ., intersectingID(D,) as shown in Formula 13 We derive
VO, contains the non-answer graphs in the candid €phasic method to deriv’Osoue, from MIFTree which is

setie, VOc, = Cy— Ry = {g1}, whereCy = {91,094}  gjmilar to MgIndex. @ In addition, as the query graph size

2)

and R, = {g4}.

increases, so does the number of intersections. It is ireffic

Regarding the authentication at the client side, firstlg thg include allIp(D,)s, p € P2P* in aVO. Hence, to minimize

client rebuilds the root digest dfigIndex using VOingex
and VO, to verify that F, and C; are not tampered with.
Secondly, it enumerates the query again to verify that

the VO needed to authenticate intersections, we propose an
enhanced method that uses a compact representafjofor
eachD,, of p. We only include the single smallesf,,, namely

is exactly f3 and f; by using VOjugex. Thirdly, the client

_ _ _ M to VO. M, itself must be authenticated by the
performs intersections of1,4} and {1,2,4 to verify the

Pmin Pmin
. _ client but the answer graphs indicated By, . may not
correctness oty Finally, the client performs theubIso testS {5 jnto a range. We therefore analy2é, offline to cluster
to verify g, is the answer but naj; . the “intersect-able” graphs in eadh,, p € P, for an optimal

The sketch of the baseline approach r'eve.als the performagpgermg of the graphs stored i, ) For VO, we include
bottlenecks of s_ubgraph_ query authentication. The more fqﬁe non-answer candida(Ef‘? and the mappingé,; between
tures (.e., more intersections) are used to determing(For- the query and its answer® DO's signatures is added to

mula 1), the MoreOsngex 1 _needed to authentlcaﬂ@q and VO. The client finally receives th& O to authenticate the
the more graph IDs oD are introduced. This not only leads swer

to largeV O, but also requires high time costs to authenticate

them. Similar to query prOCESSing, query authenticati@o a|4 PART'ALLY OVERLAPP'NG FEATURES

requires to minimizeC, as the non-answer graphs (not the

IDs) are included inVOc¢, . In this section, we derive thpartially overlapping features
3.5 Overview of our Approach (POFs) that aim to minimize the number of intersections

In response to the drawbacks of the baseline approach, we pfyolved in query time. The benefits are threefold. Fewer
pose more efficient authentication techniques. The freueniNtersections are computed in query time; fewer graph I@s ar

used symbols of our discussions are listed in Appendix E. fetched; and more individual features are implicitly irxexd
and often lead to small candidate sets.
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4.1 Types of Overlapping Features Fig. 6. lllustration of IFTree (partial)

Features can be composed in various ways. We d@0rs To specify the desire#0Fs for indexing, we define a user-
and call themhigher-order featuresas they themselves are specified constraint. In particula&QFs should be small in size
features and composed by individual features. and have certain minimum support from a database.

To describePOFs, we first present a few notations neede@efinition 4.4: The constraint of POFs P is (maxSize,
Individual featurest” can be features proposed by any existinginSup), where maxSize and minSup are the maximum
works. We adopt discriminative frequent feature [32] as th§ze and the minimum support d® in a databases, i.e.,
individual feature in this paper. We ugeand F, to denote a ), ¢ p, |p| < maxSize and |D,| > minSup.
graph and its individual features. We call the subgraply of The number of allPoFs of a database is exponential
that is isomorphic tof as aninstance off, i.e, g € D;. With 5 the number of features in worst case. In practice, many
these notations, we deriiFs. We start with the feature of pgrs do not have sufficient support. We adopt an enumeration

multiple individual features. algorithm to compute alPOFs that satisfy the user-defined

Definition 4.1: A feature{f,,-- -, f,} is aco-existing feature (maxSize,minSup).

of g if g contains an instance of; for all i € {1,---,n}, It is worth mentioning that the graphs indexed byP@F

where{f1,---, fn} C F,. p {f1, ---,fn} (denoted asD,) are a proper subset of the
The definition above can be trivially extended to a databaggaphs inDy, N --- N Dy, . Indexing withp may be viewed

G. Let{f,---, fn} be a co-existing feature @¥, a graphg as precomputing the intersections. In the rest of the payer,

in G contains itiff g € Dy, N---N Dy, . use the ternfeaturesP to refer to POFs, whereasfi, ..., f»

The next feature, namely overlapping feature, concerns rmge referred tandividual features
only the existence of features but also the overlapping gf
features. INTERSECTION-AWARE

Definition 4.2: { f1,---,f.} is anoverlapping featuref g if it FEATURE-SUBGRAPH TREE (IFTREE)

is a co-existing feature af and there is a sef:{s1,---,s,} in In this section, we presentFTree that indexes a graph
g, wheres; €S is an instance of;, and.S forms a connected databases with all POFs that satisfymaxSize andminSup.
graph. We present the querying processing IfTree, which is
We remark that singleton sefs,} (i.e, n = 1) are con- authenticated in Sec. 6.

sidered as “overlapping” features since each of their itsta 51 IFTree

definitely forms a connected graph. :
Example 4.1:Fig. 5 illustrates Defs. 4.1 and 4.2. In Figiad, 1FTree is a prefix tree orPOFs where each node represents a
{f1, f=} is a co-existing feature of. In Fig. 5b), {fo, fr} POF and pomts to a_hst.o.f graph IDs. Recall from Def. 4.2 that
is an overlapping feature af,, as the instances of, and f- eachPOF is a set pf mdwujual features. The subsgt operator
not only exist but also overlap. over all thePOFs is a partially ordered set. To derive a search

One may be tempted to derive more sophisticated featurd§€ On the set, we assume that each individual feature has
e.g, by exploiting the topology graph of an overlapping fea@n _ID and aPQF p is reprgsented by atring of IDs of its
ture. However, such features may introduce a high complexifdividual features sorted in ascending order. We sise(p)
in query processing. In this paper, we adopt overlapping fe® denote the string of. For example, lep = {f1, f2}. str(p)
tures. Moreover, consider overlapping featuees in Fig.5(b). = 1.2 We sayp; precedegp;, denoted ap; < p;, iff str(p:)
The instances off, and f; are completely overlapped. IniS @ prefix ofgtr(pj). With such a representation BOFs, we
practice, D, is often a subset oDy, Indexing graphs with define a prefix search tree calledTree.
both f, and f; are often redundant. Hence, we proposPefinition 5.1: Intersection-aware Feature-subgraph Tree
partially overlapping features defined in Def. 4.3. An exéanp(IFTree) is a prefix search tree ®0Fs P on a graph database
is shown in Fig. 5(c). G, denoted agd'p : (str,node, V, E, ID, p,.), Where

Definition 4.3: p: { f1,..., f» } is apartially overlapping feature  « str is a function thatstr(p) returns the string op;
(POF) of g, if (1) it is an overlapping feature gf and (2) there  « node takes aPOF p and returns the node ¢fin Tp;
does not existf;, f; € p, s.t, for each instance; of f; and e V ={node(p;) | p; € P};

s; of f;, s; is completely overlapping withi.e, contained in) o E = {(node(p;),node(p;)) | pi < p;j A (P D} pi <
5. P, A p; < p;)}. The children of anode(p;) are sorted in
Singleton sets are considere@Fs since (1) they are special lexicographical order w.rgtr;

cases of overlapping features and (2) no two features whose ID is a function thatD(D,,) returns thdist of IDs of the
instances are completely overlapping. This subtle caseahas graphs inD,; and

practical implication: Clients may issue queries with ékac « p,. is an emptyPOF () andnode(p,.) is an artificial root
one feature and it may be indexed. node of theIFTree.



Algorithm 1 Query_Processing (¢, G, Tr, Tp) maximum features- - My P = {p2,p3,p7, p11}

& tully cover @ _
Input: A query graphg, a graph databas@, the prefix treel'» of features ! ) fgmmerate D2 fl2 ]83 ]87 w2 1
F and theIFTree Tp of G q 0-C-0O enumerate @ VialFTree P30 [1 0 [[w3]1
Output: the answer set of R, ® O > - prl0 0 [1][wr]1
1: Initialize Ry to ¢ andCy to G pij110 1
2. F, = find_maxfeatures(q, Tr) /I Fy fully cover g PP = {ps,p11} . filter via C —D.AD .
3. P, = find_POF(q, Fy, Tp) /[Enumeration p3 = {f3} intersections ~a = . PS} p11 verify g1 ®®
4: PZ" = opt_POF_MWSC(Fy, Py) P = {f2, fr} T Ry = {94}
5: for eachp € PgP* . .
. s :pseaquh(p, Ty Cy=CynD, Fig. 7. subgraph q_uery processmg _on IF:."reg
7 for eachg € C, competing objectives in computing;*". (i) tOn one hand,
8:  if sublso = true then B, = R, U fewer intersectionsi.e. fewer POFs in P,®") on ID(D,
(¢,9) q q Vg q P
9: retun R are desirable to minimize ue to gra SO
. € Pyt desirable t I/0 due t h IDs of

D,’s. (ii) On the other hand, large&0Fs (.e., more individual
Example 5.1:Fig. 6 shows thaFTree of thePOFs P of G of  features) inPS** cover the query more and reduce the size of
Fig. 1. Due to space constraints, we skip the enumeratidn thge candidate set, and the 1/O for fetching it. The objectives
yields P:{p; ---p15}. Each box of the tree represent®@F. can be illustrated with an example. Suppose Algt infi_POF
The constraint oPOF (maxSize,minSup) is (2,2) Consider in Line 3) determinequ — {pz,p3,p7,p11}- Two possib|e
py. TheIFTree has an edge between andpy but notp, and  decompositions arqul = {p2.ps, pr} and pq2 = {ps, p11}-

py aSstr(ps) = “2", str(pg) = “1.2" and thereforep, A py.  We may choose?? since the number of intersections and the
To illustrate the processing of existing indexes d@Riree, candidate set arzand{g,}, respectively. In contrast, those of

let's assume that a query contains two individual featykes P} are3 and{gi, g4}, respectively.P? is in fact the optimal
and f7. gIndex retrieves and intersect3;, and Dy, whereas decomposition of;.

IFTree simply retrievesD,,,. Minimization of 1/0 by using P{¥*. The problem discussed

5.2 Query Processing on IFTree above can be formulated as an optimization where baff’ |

The query processing ofFTree is detailed in Alg. 12, It and I/O are minimized. To present the problem, we define a
takes a query grapl, a graph databas@, the prefix treel»  binary matrix M, where each row: represents th@QF p;

of featuresF’ and theIFTree Tp of G as input. It determines from all possiblePOFs P, of ¢, each columry represents an

all maximum individual featured”, that fully coverq (Line individual featuref; € Iy, and each entry\, (i, ) is 1 if f;

2). From F,, it computes all possibleoFs P, from F, (Line 1S in p;, otherwise 0. The weight of each rowof M, is w;

3) and determines the optimabFs PP from P, (Line 4), = mamming(i7, o)+ Wherehamming(M, (i, +)) is the hamming
which shall be discussed shortly. For earttF p in P3¢, Weight that returns the number of 1s in the rowf A/,. For
the graphs ofD, are retrieved by searchingFTree and instance, consider Fig. 7w, = WM:;(IL*)) =172 as

maintained in a candidate sét, (Lines 5-6). For each graphpii = {f2, f7}.
in Cy, the algorithm verifies if it is in fact an answer (LinesDefinition 5.2: Given a weight valuev; to each rowi of M,,
7-8). Following up Example 3.1, we use Fig. 7 to illustrate thy, = m the problem ofoptimal decomposition
. . . . . q\?s

query processing OIFTree (shown in Fig. 6) in the following ¢ 5 queryq from P, is to determineP®®, where PCP* C P,
discussion. and Pg** fully covers F, s.t. Y _ o w; iS minimized.

It is worth noting that Alg. 1 involves two optimizations i i i

: hoting g. L p © The optimal decomposition addresses the above two objec-

The first one is similar to an existing work [32] — the query ties. (i) To minimize", _ pore w;, fewer terms are included
is decomposed into maximum individual featud€sby using i, the sum, which not only indicates fewer intersections in
an enumeration methodf. is maximum in terms of; if an/d query processing, but also minimizes 1/0 due to graph IDs.
only if there does not exist a larg¢f such thatsubIso(f, f') (ii) For eachp;, the more 1s in\/, (i, +), the more individual

= true andsubIso(f’,q) = true. Unlike previous work, We featyres it contains, the smalles and D,,,. Therefore, using
determine F; that fully coversq. When compared to non- . |eads to a smaller candidate set.

covers, a covery is expected to be more selective and yield%r
a small candidate set in the filtering phagg. is then used
to enumeratePOFs, as indicated in the RHS of Fig. 7. Fo
example, as in Example 3.gIndex computesF, as{ fs,f7}.
However, Alg. 1 determined, as {f..fs,fr} (in Line 2).
Without f,, F;, does not fully coveg.

oposition 5.1: The problem of optimal decomposition of a
Jaueryq from P, is NP-hard. O
The hardness can be established from a simple reduction
from minimum weighted set coveM(SC). Due to the space
constraint, the proof is presented in Appendix A. We adopt
o . ... a classical heuristic algorithm fowscC to solve the problem.
The second optimization is that an optimal decompositiq =1~ e Gimoe itgiteratively ohooSes tREF with the
qup 'S ditermlned fromF. Inhtr;e f|Itermgf—ang-vder]:flcauc()jn smallest weight (covering the most number of uncovered
.0, Fig. 7 i .
ramework €.d, Fig. 7), graph data are fetched from ISi?eatures inFy,) and removes the covered features fréin It

mainly in two steps: (i) when graph IDs @b,’s are fetched : . : .
from disk for performing intersections; and (ii) when catate terminates wher.fq is empty (fully covered). Th!s hgunsﬂc
can be exemplified by the exampl&/, shown in Fig. 7.

graphs are fetched fosubiso tests. This leads to two Initially, ws — ws — wr — 1 as the hamming weights

2. Some pseudocode in Alg. &g, Lines 1 and 2, are straightforward but®f Mq(2,%) Mq(3,*) and Mq(7».*) are 1 w1 = 1/2 as
verbose. Hence, for concise presentation, we presentrtiair ideas in text. hamming(M, (11, %)) = 2. In the first iterationp;; is chosen.



Hpy = h(h(stx(p2))[Hp,, [H},) (3 MHT of node(pz)’s children

Since f, and f; are covered by, they are removed from ’ Hy, = h(A(str(p12))|Hp1o.p12)

F, and the weightsu,, w; andw; are updated accordingly. © f5rmess .- - - e
In the second iteratiorps is chosen. All features irF;, are
. . opt : [ (P10, Hp1o) l l (pllpru)l I(P127HP12)I I(Pll,Hmo,pu)l
covered and the algorithm terminatd3."" is {ps, p11}. @ MHT o,
6 MERKLE IFTREE (MIFTREE) of ID(Dy,,) "2 (10, o) | (@1, Hor) | (12 )]
S IH(I,gl),(Z,gg)l I’H(3,g3),(4,g4)1°'“Ah(H(S'QSHHM’gd))

opt

Thanks to the minimization of /O by using;*", the query
processing trace needed to be includedVi@s is reduced
whenIFTree is adopted for query authentication. To facilitat
efficient authentication, we propose to apfiTs to IFTree
to obtain MerkleIFTree (MIFTree). Recall thatiFTree is a Example 6.1: With reference to Fig. 8, we present an
prefix tree for the string representations riffs. The index example of the digest ohode(py), denoted asH,, =
nodes near the root afFTree often have large fanouts, ash(h(str(p2))|Hp,,| H;,). @ is the sketch ofMIFTree.
thosePOFs may overlap with many other individual featured{p,, is the root digest of2 the classicaMHT of ID(D,,),
to form largerPOFs. Therefore, aMHT is embedded to the which is built on top of the datd(1, g1), --,(4,94)}. H,, is
children of each index node to minimi2¢®. In addition, in the root digest of3) the embeddeMHT of node(p-)’s children,
practice, som@0Fs may index a large number of graphs. Fowhich arenode(pio), node(pi1) andnode(pi2). The data it
instance, in the dataseIDS, the number of graphs containingembeds arg¢node(p1o),- - - ,node(p12)}, while the search keys
the POF of an index node near the root of th&Tree is 12% are {pio, P11, P12 }-

of the total number of graphs. When some of these graphs géfinition 6.4: Thesignature of the rootiode(p, ) of MIFTree
selected into the candidate set in the filtering phase, aiclls s ¢, = sign(h(h(str(p,))|[H,,), SK), where SK is the
MHT is needed to efficiently authenticate these graphs. Henggivate key of theDO.

we propose the Merkl@FTree (MIFTree) as follows. It should be remarked that the individual featufgsmust
Definition 6.1: MIFTree is an IFTree extended with two be authenticated in order to verify the correctnesP@fs.
kinds of MHTs: (i) An MHT is embedded to the child nodeswWe organize all features' of G with a prefix treel’r similar
of eachnode(p) of MIFTree; and (ii) A classicaMHT is built to MIFTree. The authentication process 6}, is simpler than
on top of all graphgwith graph IDg in D,, for eachnode(p). that of P;**.

The rest of this section describes the signingiofTree 6.2 Basic Authentication Method

h(h(4)[Hgs)

[Fon | [Hew | [Hews | [Hag]

?:ig. 8. lllustration of MHTs of node(p2) of an MIFTree (partial)

in detail and a basic authentication MfFTree. In this subsection, we present the constitutionW® and
o a basic authentication method. For a concise exposition, we
6.1 Signing MIFTree present the details iset semantigaunless otherwise specified.

Similar to the majority of search trees for query authenrification object. The overview of the constitution fO
tication, we associate hash values/digests to the nodescgh pe given as follows/O consists of the’O for recording
IFTree. The data owneDO signs the root of the digest of the searches aPSP* on MIFTree (VOingex) and theVO for
MIFTree. Specifically, we formalize the digests and signatur@ge candidate sebO¢,). Informally, VOspaex includes the

of MIFTree below. visited nodes in searchingoFs (denoted asVy) and some
Definition 6.2: The digest of a data graply; is defined as boundaries of the search pathsgiffs (denoted asv?). These
Mg, = h(mindfs(g;)). are necessary to reconstruct the digest of the rodiBTree.

Graphs are cast into some (publicly known) canonicMoreover, the graphs (not only their IDs) in the candidate se
representation before their digests are computed. In tpep are included iVOc, for client’s verification. While the query
we adopt the minimum DFS code [3[Jenoted asmindfs, answersk, must be returned, the non-answers in the candidate

but other representations may also be adopted. setC, must also be included iWO¢,, denoted as’,’*, where
Definition 6.3: The digest of a nodeaode(p) of MIFTree is C,* = C, — Ry, to verify that no graph irc;* is an answer.
Hp = h(h(stx(p))|Hp,|H,), where For verification efficiency, the mappings between the query
« str(p) is the string ofp; and the answers are includedW®c, . To sum up, we define
« Hp, is the root digest of the classicallHT of the constitution ofYO, presented in Def. 6.6 which consists
ID(D,) : [j1, -, jm). The data in theMHT are of the structures and auxiliary structures discussed above
{G1.95)r - (mrgj,,)}; and As discussed in Def. 6.1, we have appldHI's in MIFTree

« M} is the root digest of the embeddeMHT of for smallVO. The description oi’O of anMHT is well-known
node(p)’s children. The data in theMHT are but verbose, which includes the answers, the boundaries and
{node(p1),--- ,node(p,,)} and the search keys the search keys of search paths. For succinct presentateon,
are {p1,--- ,pm}, Wherenode(p;), --- , node(p,,) are define a term YO of MHT” to leverage on the known results

the children ofnode(p). from MHT.

Definition 6.5: Suppose arMHT is built on a set of ob-

3. Due to space constraints, we have to omit the detailsiaéifs. As an jects 9] :{01 . On} and the corresponding search keys are
examplemindfs(gs)=((1,2C,C), (2,3C,C), (2,4C,0)). The first two digits o . . ,
are the DFS sequence of the vertices of a graph. The folloaliagacters are 1¥1: " » kn} (if has). Given a set of object®’, 0" C O, the

vertices’ labels. VO of theMHT of O is the VO needed to authenticate’.



Algorithm 2 Auth_Query_Processing (¢, G, Tr, Tp, ©)

Input: A query graphg, a graph databas@, the prefix treel’» of features

F, theMIFTree Tp of G and1.
Output: the answer set of R, and verification objecvO.
. Initialize R, and the structures iwO to ) andC, to G
/I Fy fully cover g
/[Enumeration

F, = find_maxfeatures(q, Tr)
: P%pt: find_POF(q, Fq,Tp)

Pq = opt_POF_MWSC(Fq, Pq)
/* constructVO of Case 1 ofp of N; */
. for eachp; ¢ PSP Ap; € PaU {pr}
N} = N7 U (pi; Hp,,)
N?=NY U b; /*the VO of MHT of node(p;)’s children */

. for each p; € PP*
Dy, = search(p;, Tp); Cq=CqN Dy,
/* constructVO of Case 2 ofp of Nj */
. for each p; € PyP*
Ly, =1
for each g; € Dy,
if gjeCqythenLy,, =Ly, ©j /[*append ID*
elseLy, = Lp, ® (j, Hg;) /* append ID and digest */
N} = NP U (i Ly,)
Ny =Ny Ub; [*the VO of MHT of node(p;)’s children */
* constructVO for featuresrFy */
Npg = construct_NF(Fy)
I* constructVOc, */
for each g € C
if subIso(q,g) = true
Ry=RqUg
[* constructVO for answer */
Ipns = Ipg U m, wherem is the mapping fromy to g.
B I* con}gtruct]}(’) for non-answer */
Cy"=Cg"Uyg B
R,
VO = ((Nr, Np, ¥), (Unr, Cg )
return R, and VO

© N AwhE
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Case 1: nr = (pr,Hp,, ) n2=2,Hp,,) = (p7,#p,.) [ ] pai s ob A
Case 2: n3 = gpa,LLpg) ) LLP;} = {(ng]g,ﬂ D Ny Case 1
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Fig. 9. VO for basic authentication

construction: Lines 5-7 and 10-16 fof;, Line 17 for N, and
Lines 21-23 forVOc, . The extension of ind_maxfeatures
with VO construction is presented in Appendix B and that of
find_POF is similar (Lines 2-3). As in Alg. 1, to evaluaig
Alg. 2 determinesP;®* from ¢ and T (Lines 2-4). In Lines
5-7, for eachp; in P, or p, but not in P;**, it includes f;,
Hp,,) in N} (Case 1 of Def. 6.6) and; in Nt whereb;

is the VO of MHT of node(p;)’s children. A subtle remark is
thatnode(p,) is the root ofMIFTree and it is always visited
and considered inVy. C, is computed in Lines 8-9 (same
as Lines 5-6 in Alg. 1). Then, in Lines 10-14, for egghin
PJP* (Case 2 of Def. 6.6), and for eag)y in D,,, if g; is
in Cy, it addsj to L,,; otherwise,(j,H,,) to L,,. The VO
for p; is added toN}? (Line 15). The construction ofN? in
Line 16 is the same as that of in Line 7. In Line 1¥p
for F, is constructed similar taV;, as both/” and POFs are

For example, recall from Sec. 3 that Fig. 3(b) shows dndexed by prefix trees. RegardiffIc,, in Lines 18-23, ifa
embeddedMHT where {1, z2, z3, 24} are data values andgraphg in Cy is an answer, its mapping between the query is
{1,2,3,4 are the search keys. The search of the key is 2 aadded tol,,; otherwise,g is added ton‘*. The overallVO

the answer iszo. The VO of the MHT are (1,H,,) and (4,
Hs 4), with which #,. can be synthesized.

is constructed and returned to the client (Lines 24-25).
Example 6.2: Following up the query processing shown in

Definition 6.6: The VO constitutionof basic authentication Fig. 7, Fig. 9 shows th@’O determined by Alg. 2. Recall

for subgraph query is a tupl@’Ojingex, VOc,), Where
VOindex = (va NF7 7/))
e Ny = (N?,N?)is the digest oMIFTree nodes, where
— N7 : {np,ni, - ,ny}, WherePy = {p1, - ,pm}
andp, is the root ofMIFTree.
. Case 1p; ¢ Pi™, ni = (i, Hp,,)-
. Case 2:p; € P ni = (pi,Lp,), Ly,
(l1,--- 1], whereID(D,,) : [1,--- ,k], andl; =
J» if g; € Cy; otherwise,l; = (j,H,,).
— NV : {b;,b1, -+ by}, Whereb; is the VO of MHT
of node(p;)’s children,p; € P, U {p,};

e Np = (N, Nb) is similar to Ny, asF is also organized
in a prefix treeTr ordered by themindfs order. The

that P, = {p2,p3,p7,p11} and P;** = {ps,p11}. Regarding
VOingexs Nf = {nr,n2,n3,n7,n11}. np = (pr, Hp, ). N2 =
(p2,Mp,,) andny = (p7,Hp, ) sincepy,pr ¢ Py (Case
1 of Def. 6.6. Sinceps andp;; are in Py, ng = (ps, Ly,)
andni1 = (p11, Ly,,) (Case 2 of Def. 6.6 We note that
ID(D3) =[1,4], ID(D11) = [2,4] andgs € Cy. Then,@D L,,, =
[(1,Hg, ), 4] @and L, = [(2,Hg,),4]. Sinceg:, g2 & Cy, only
their IDs are needed. Due to space issues,Njeshown is
partial. The RHS of Fig. 9 show® the (partial) MHTs of the
children ofnode(p,) andnode(p2). The white boxes indicate
the VO derived fromMHTs and they are parts @f. andb, in
Nb. The I, in VOc, is the subgraph isomorphism mapping
from ¢ to g4. SinceCy=R,={g4}, Cf“ is empty.

only difference fromMIFTree is that each node of the Authentication at client. When the client receive®, and

T points a feature but not a list of graph IDs; and
o 1 ={Yp,9r} is the signature of th&®O.
VOcq = (IM, qu)i

VO, helshe verifies the correctness ®f. Since the process
is similar to Alg. 2 and existing authentication works, weyon
give an example and highlight the major steps and elaborate

o Iny : {my,---,m,} is a set of subgraph isomorphismStep 4) below, which is unique MIFTree:

mappings fromg to R, : {g1,--- ,gn}; and
« CJ are non-answer graphs in the candidate(sgt

1) computef, and verify F;, is the maximum individual
fully cover features of; by usingg, Ny andr #;

VO construction. The VO of a query is constructed by 4 as r is organized in a prefix tre@s, F, can be verified by

Alg. 2 at theSP side. Alg. 2 is Alg. 1 extended withvO

usingq, Nr and signature)r in a similar way.



2) computeP, and verify P, is consistent to those iV;

by usingg, F, and Ny;

determineP;®* by usingF,, and P,;

synthesizeH,, by using P;** and theVO;

verify the{,,. with the signature); and the public key;

determineC, by intersecting thel,s from N}, where

p € PyP*; and

7) verify R, by usingl,s; and if 17 is not correct, invokes
subIso; and verifnyq by invoking subIso.

In Step 4), the root digest,, is synthesized bottom-up:
We start the synthesis from thein P, that do not have a
p’ € P, s.t.p < p'. At each synthesis step, can only be in
one of the two casease 1p; is in P, but not in P;**. n;
of p; is (pi, Hp,,). Case 2p; is in P3P* . n; of p; is (pi,Ly,).
Hp,, is determined fromL,,, ¢y« and R,, which contains
the IDs, digests and the graphsiof,. The remaining part to-
be-determined i${; . In both casesH; is determined from
the VO of MHT of node(p;)’s children, in N}). The synthesis
must have computed the digest méde(p;)’s children (if it
is not already inVQ), as the synthesis is defined bottom-u

3)
4)
5)
6)

With p;, Hp, and?#; (Def. 6.3), the client can recompute
Hp,. Then,p; is removed fromP,. In the recursive step, the

synthesis proceeds to anothein P, with nop’ € P,Ap < p/'.

With the #,, for all p € P,, H,, is synthesized. We present

the formal proofs of the soundness and completeness of
basic authentication in Appendix A.

Example 6.3:To illustrate Step 4), we present the major sterJ

of the synthesis of{,, of Fig. 9. To computeH,, bottom-
up, we may start the synthesis from, sincep;; € P;**
andfp’ € P, s.t.p1; < p’. We may start ap; for a similar
reason. Let’s start ap11. n11 = (p11, Lpy, )- Hp,, can be
computed fromL,,, and R,. The root digestH,  of the
MHT of node(p11)’s children can be computed since tHMET
is empty.H,,,, can then be determined from;, Hp,  and
H,,,- p11 is removed fromP,. After that, we may proceed to
P2, Sincepy € PyAps ¢ P .ny = (p2, Hp,, ). We determine
H,,, from the computedpii, H,,,) and theVO of MHT of
node(p2)'s children such a$,. In this case},, is obtained
andp, is removed from the’,. We then proceed tps. H,, is
obtained, similar to the synthesis #f,, .. #,, is synthesized
similar to #,,,. With the same logicn, = (p.,Hp,, ). With
Hpys Hp,r Hp, and theVO of MHT of node(p,)’s children,
H,, is synthesized.

7 ENHANCED AUTHENTICATION
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VOingex | N} = {nr,n2,n3,n7,n11}
Case 1: nr = (r,pr,Hp,, , Hp,, |, HM,,)
n2 = (2,p2, "D, H|p,, | Hay,) 7 = (T,p7, 1D, Hip,. |, My, )

Case 2: n3g = (3,p3, Lps, Bps)

Pmin = P3

Lps = [H(1,g1):4] Bps = {H(1,61),(8,8)> *» (11,811), ...}
ni1 = (1, p11, Hp, 2 Hry
b
N{,Np, ¢ _ @ Bp, from
VOc, | Ing = {ma,---},Ci1 =0 MHT of My, (partial) | ! to be computed
Rq | {94} :
; g1 [ ga
@ matrix rep. 5
My, of ID(Dpy) pl 0 ‘ g ..1. 00
celpii [ 0 [ 1 S11 | 01
@ Ly, from VN P
: D, ; s, = h(si:
MHT of ID(Dpy) - " "Dy L o (s12)
,92) s =01 Fiha)] [(2Hep)]

Fig. 10. VO for enhanced authentication

are adopted. Hence, we propose to cluster graphs with simila
feature sets offline. As a result, when a query is retrieved by
using a set of features, the IDs 0f, may be clustered and
represented by a small@tO.

7.1 Compact Representation of Graph IDs

The main idea to reduce the excessive graph IDs for verifying
he intersections is to encoad the features of each graph in
a D, in a binary matrix},. The data owner signs the matrix.
Hence, the client requiresne ID(D,) and M,, to verify the
intersections.

[pgfinition 7.1: For each nodewode(p), the matrix represen-
tation M, of ID(D,) is am x n binary matrix, wheren =
Dy, m = |P|. My(i.j) = 1if g; € D,,, and M,(i. ) = 0,
Stherwise.

Next, we build a classicalHT to each, (defined with
Hu, in Def. 7.2). The authentication process can then be
described as follows. ConsideP;® = {pi,--- ,pn}. TO
authenticateC, = D,, Nn---N D, , instead of usingL, in
Ny of VO for all p in Py® (Case 2 ofNY), we use only

oins WNETED i € P3P° and|D,, . | is the smallest among
all [D,|, p € Pg*. The digestH,, of each nodenode(p) in
IFTree includes?,;, and theVO includesonly the graph
IDs of pin.

Definition 7.2: The digest of a nodewode(p) is
h(h(id)|h(stx(p))|Hp,|H D, |Hy Hu,), Where
« id is the ID ofp, str(p), Hp, andH, are the same as
in Def. 6.3;
« Hp,| is the digest of the size ab,,; and
o M, is the root digest of the classiceHT of M,. The
data in theMHT are {(1,s;),---, (|P],sp|)}, Where for

While the basic method presented in Sec. 6 is natural to au-The modifications on’O constitution are then described as

thenticate the filtering-and-verification framework of grdgph

query, VO sometimes contains excessive graph IDs. In thise In Case 2 ofN} of VO, for p; € P;

follows. Other parts o O are identical to those in Def. 6.6.
oP* bUt Pi 7& Prmin

section, we propose two enhancements on the basic method. we include onlyn; = (i,p,;,?—[Dpi, |Dpi|,7-[Mpi) in VO,

Firstly, all graph IDs of each featurec P;** are returned
and in Step 6) of authentication, intersected at the clietg s
to ensure the correctness @f. To optimize this, we propose

a compact representation of graph IDs. Secondly, graph IDs

are needed to synthesize the digest31TfTreesS nodes, as
elaborated in Step 4) of authentication. As motivated in $ec

graph IDs ofC', do not fall into a range in general which may
lead to largeVOs when classical authentication techniques

where|D,,| is used to verifyp,,:, in P;** at the client
side.

FOr Dimin, Nmin = (Min, Pmin, Lp...;..» Bp,.... ), wWhere (i)
min IS the ID of pyin; (i) pmin 1S the POF itself; (iii)

L, ... contains the IDs of graphs i@, and theVO of
theMHT of ID(D,,, ., ); and (iv) B,,,,, is a set of(s, s,,, ),

where (i, s,,) € B if pi € Py A pi # Dmin, and

Pmin

the VO of MHT of M,

Pmin®
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We remark thatB,,,, records the bit strings of; of D, N D, and the other does not. A final trick is to add an
M,.... wherei # min. s, IS not needed as,,;, can be artificial nodes, as the source and sink of the graph being
derived fromL,, . . Finally, determiningD,, N---N D, is constructed. We extend/, with a column of zeros fox.
equivalent to computing; A- - - As,,, which very often requires The SHP of such a complete graph encodes a permutation of
smallerVO. We provide the formal proofs of soundness andolumns of M/,,. We have proved that the total sum of the
completeness of the enhanced method in Appendix A. weight of the optimakHP is twice of the number of intervals
Example 7.1: Following up Example 6.2, Fig. 10 shows thdn M, after the optimal permutation. One of the most efficient
major parts of theV® determined by the enhanced methoddPproximation algorithms fogHP LKH-2 [18] is adopted. The
The differences ob® from the Example 6.2 are localized in@lgorithm is K-opt and the approximation ratio is preserved
N}. Foremost,P, = {pa,ps,pr, p11} and Py®* = {ps, p11}. under the above conversion.

Since|D,,| = |Dyp,,| = 2, we just chooses as thep,,;,,. We Example 7.2: To illustrate the effect of the permutation, we
show (@) the (partial) matrix M, in the LHS of the figure. create a small artificial example. Suppose gt is {pi,p;},
The bit strings are shown next to the matrix. On the RHB)(D,,) = [1,3,5,7,9] and ID(D,,) = [2,3,8,9]. Assume
of M, is its @ (partial) MHT. Regarding theVO, we first further p; and p; are the onlyPOFs of the database. Then,
diSCUS%)ll. Sincep11 isin P;pt bUtp11 7é Pmin- Thus,ni; = Cq = {gg, gg}. Pmin is Py aS‘Dp7.| =4 and|Dpi| = 5. Before
(11,p11,Hp,, 2, Hu,,, )- Next, forpi, (i.e, p3), ng of Ny permutation, theL,, . in VO is [(H(2,95) 3, H(s,95), 9] IN

is (3,ps, Ly,, Bp, ). From previous examples, we have,, contrast, after the permutationd(D,, . ) = [2,8,3,9]. The

= {91, g4} and C; = {ga}. Ly, = [H(1,4,),4], Where 4 is L contains[H 2 g,),(8,gs)s 3 9]-

the graph ID inC, andH, ,4,) is @ the VO of the MHT of
ID(D,,). RegardingB,,, only p1; is in Py¥* butpiy # puin.
Thus, (11, s11) is included inB,,. Finally, theVO of MHT of
M, is included inB,,. We remark that the ID of; is not
needed inL,,, sinces;;[1] = 0 andsq; will be authenticated
in B,,. Thus, g, is certainly not inC,.

7.2 Clustering Intersect-able Graphs

Pmin
8 EXPERIMENTAL EVALUATION

In this section, we present a detailed experimental evialuat
that verifies the performance of our proposed techniques and
the effectiveness of our optimizations.

8.1 Experimental Setup

Running Platform. We conducted all our experiments on a
. i . L machine with an Intel Core 2 Quad 2.4GHz CPU and 4 GB
The matrix M, (defined in Def. 7.1) not only minimizes thememory running Windows 7 OS. All our techniques were
number of graph IDs by using/,,,,,, but also indicates how 1o mented using C++. We implemented our algorithms on
muc_h VO is needed for‘ authenticating the candldgte set. {Bp of iGraph [8].SHA andRSA were used as our cryptographic
parucular, let intv (M, 1) denotg the numbgr of mtervalssigning schemes.

in the row Ofpf" where all entries in each Int_erval are Ispataset. Following previous experiments of iGraph, we used
The 1s in My (i, ) correspond to the graphs iP, N Dy, the same real-world and synthetic datasets in our expetahen
and intv(M,,i) is the number of ranges needed {0 bg 4 ation. The real-world dataset consists of 10,000 gap
authenticated. To authenticate a range, the upper and Iov(;j{ﬁrof which are drawn from a realIDS Antiviral dataset
bounds of the range are needed/i@. This argument can be o eafter denoted asns) [24]. AIDS has been used in many
genergllzed to th.e intersections of multiple sets. _ studies of subgraph queries [3], [9], [12], [28], [29], [3136],

I'n this subsection, we define the problem of opt'lmal PETMs7] On averageAIDS has 25.42 vertices and 27.40 edges.
tation (of columns) ofl/,,. The ordering of graphs iBD(D,)  The number of distinct vertex labels and distinct edge Ebel
is optimal when intersecting the graphs of otiraFs, the are 51 and 4.
number of the intervals is minimized. We remark that the o yhe synthetic dataset, we used SYN.10K.E30.D3.L50
ordering is optimal in the absence of queries. (denoted asSYN). It contains 10,000 graphs of which the
Definition 7.3: Given am x n binary matrixM,, for node(p), average size (the number of edges) is 30; the average density
the optimal permutation for/,, (0PM) is to transform,, into  js 0.3; and the number of distinct vertex/edge labels is 50.
M, by column permutatios.t.cost (M) =37, intv(M,,i)  We used gSpan [31] with the default settings [32] on the
is minimized, whergP| = m and|D,| = n. above two datasets to obtain a setdicriminative frequent

Finding the optimal ordering of graphs ab(D,) is t0 features which are served asndividual featuresfor our
determine the optimal column permutation/df,. Its hardness experiment.
is established by a reduction from Shortest Hamiltoniarn P@uery sets.For bothAIDS andsSYN, the guery sets (denoted as
(sHP). Details are shown in Appendix A. Qn) used have been benchmarked in previous works [3], [9],
Proposition 7.1: The problem ofoPM is NP-hard. [0 [12], [28], [32], [36]. Each @ contains 1000 graphs with size

The 0PM problem can be solved by heuristics &P. We (the number of edges) of, e.g, Q4 represents 1000 graphs
cast an instance dPM into that of SHP. Specifically, given sized 4.
an instance ofoPM M,, we generate a complete graph in/O cost and query time comparison. We used two rep-
terms of A4,. Each column (graph ID irID(D,)) of M, is resentative indexes, namepindex [32] and FGIndex [3],

a vertex and the weight of the edge between two verticestes compare the I/O cost (number of graph IDs and graph
the total number of different 1s between the two respectigata fetched) and query time aFTree. We used the same
columns. The difference of the row pf states that one graphsettings forgIndex and FGIndex as in previous experiment
hasp; but the other does not. That is, one graph appears[8]. We note thaigIndex often outperforme@@GIndex except
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Fig. 11. 1/O cost and query performance Fig. 12. Basic authentication meth.od

for small queries and hence we concentrated on comparis6R§1Pared t@Index andFGIndex in most cases. For example,
using gIndex. at Q4, thec;« of IFTree contained27.2% fewer graphs than
Baseline comparison.Since there is no existing work onthat of gIndex. At Q24, IFTree resulted in13.2% fewer
subgraph query authentication, we implemented the athe/@aphs. AsFGIndex was verification-fre€, Q4 queries were
cation ongIndex [32] as a baseline, denoted MgIndex (see small graphs. Most of them were features_already anq in such
SubSec. 3.4). FoMgIndex, we also used the same setting§@Ses, there was no non-answer graph in the candidate set.
as gIndex. Since it is known that binaryHTs yield smaller However, when queries were larger tharFéIndex produced
VO, in our implementation, theHTs used are binaryHTs.  largerc;.

Offline computation and memory overhead. The offline Average query time. Fig. 11(d) reports the average query
computation mainly involves (1) the selection of indivitluatime at the service provider. At Q4, the average query times
features, which takes around 0.5min and 1min fobS and On gIndex and IFTree were large since the size Giff"

SYN, respectively; (2) the selection afoFs, which takes was large for small queries. ThaibIso test on those graphs
around 30min and 1min for each of the dataset; and (3) tdeminated the query tim&GIndex was verification-free and
clustering of the intersect-able graphs, which takes atouR4 queries in most cases did not require to verify. When the
24h for each of the dataset. For both basic authenticatigdery size increased after Q12, the query time I6Mree

and enhanced authentication, the memory consumptiong atllecame slightly larger. The reason was that the sizeé’of
server side and the client side are always smaller than 300MBcame large and finding the optimal decomposition fildm
and 8MB, respectively. incurred relatively large overhead, while theifs of gIndex

8.2 Experiments on AIDS andIFTree were being similar. However, the benefits of using

. P2P* become clear in the experiments on authentication.
Effects of maxSize and minSup of POF. Fig. 11(a) reports ~” P

the effects of the maximal size4xSize) and the minimum 2 Performance of basic authentication

support fiinSup) of POF s by varyingmaxSize andminSup Query composition. Prior to a detailed performance analysis,
for Q8 queries. Ther-axis is (maxSize,minSup), e.g, (4, We show the composition of queries &DS, presented in Fig.
0.5) representsaxSize = 4 andmaxSup = 500. The trends 12(3). TQ1 are queries that contain exactly @& in their
were that wheminSup increasecbr maxSize decreased, the Fz* » In this caseMIFTree does not perform intersections
number ofPOFs of the IFTree (i.e. the index nodes neededat query time. TQ2 are queries decomposed into multiple
by IFTree) decreased and the candidate size increased (whi@F's and all proposed algorithms iMIFTree affect the

is directly related toVO size). We set the default values ofP€rformances. From Fig. 12(a), we note that TQ2 dominated

maxSize andminSup to 4 and500 to strike a balance betweenthe query sets as the query size increased.
pruning andIFTree size. Average number of intersections.Fig. 12(b) shows us the

average number of intersections needed versus the query
size. MIFTree required significantly fewer intersections at
uery time compared ttigIndex. For instance, at Q4 and

1 1/0O cost and query performance.

Average number of graph IDs.Fig. 11(b) shows the average

number of graph IDs fetched at query time by varying th . : .

query sizes.g SiFr)me the numbers R‘?Hndyex Wereyoverym?( 24, MIFTree required45.2% and50.8% fewer intersections,
%spectively, thamigIndex.

we could not show them here. In Figure 11(b), we can sér tal VO size. Th I ber of int . ¢ d
that IFTree had significantly fewer graph IDs thatIndex, ota size.the small number of Intersections periorme

especially when the query size was large. The reason V\Pé/SMIFTr?e is reflected in the size obO. Fig. 12(c) shows
because the size aP®* was small as each € PPP* was the VO sizes ofMIFTree and MgIndex with varying query

chosen by our heuristic discussed in Sec. 5.2. Moreover, (fJg€S: L00King atgIndex, when the query size increased,
size of eachD, (p € P was small. the size of the feature séf,| rapidly became larger and the

Average number of non-answer graphs () in the can- _ L _ A
- 5. Given a query graph, if ¢ is a featurej.e., ¢ = f, it implies that there

didaj[e set.Fig. 11(C_) shows that the average Sizgcﬁfl BY is no need to verify theubIso betweery andg € Cy as D y=Cy=Rg4. Such
varying the query sizeSFTree produced smallecs when strategy is called “verification-free” [3].
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Fig. 13. Enhanced authentication method Fig. 14. Authentication performance on synthetic dataset

number of intersections performed at query time also ireéa The figure shows that the enhanced method redi@dizes
accordingly. For each addition of featurg, all the graph IDs significantly. For basic method/© contained all the graph

of D; were added toVO (see Fig. 11(b)). Therefor/O IDsinID(D,) (p € P;*") that were needed to be authenticated
enlarged rapidly with query size. FliFTree, VO increased (see Fig. 11(b)). Instead}© for enhanced method contained
with the query size, although at a slower rate. However,esinthe VO of MHT of ID(D,, ., ) to authenticate. For instance, at

| PSP*| was often clearly smaller thad, | (see Fig. 12(b)) and Q24,10 by enhanced method was about 20KB whereas that
for eachp in P;**, |D,| was relatively small (see Fig. 11(b)),of the basic method was around 120KB.

MIFTree clearly outperformedigIndex. Moreover, theY© Average authentication time.Fig. 13(d) shows the compari-

of MIFTree did not increase as rapidly as that \gfIndex. son of authentication time of the basic and enhanced methods
We highlight that theVO size at Q4 was large since the sizé\t Q4, since the candidate set contained a large number of
of non-answers in the candidate sef’() was clearly larger non-answer graphs (shown in Fig. 11(c)), tkebiso test
than others, which required som& to authenticate them. dominated the authentication time. When the query size went
Average authentication time.Fig. 12(d) reports the averagebeyond Q4, more queries required the basic method to rd-buil
authentication time at client side. We observed that theemit the root digest of theHT of eachID(D,), p € P;** and
tication time ofMIFTree was oftend times faster than that of the graph IDs were intersected to determine the candidate se
MgIndex. The number of intersectionise., | P;*°| was smaller. Thus, the authentication time increased rapidly as theyquer
Thus, fewerMHTs of ID(D,) were reconstructed, which issize increased. In comparison, while the authenticatioe ti

a performance bottleneck during authentication. Furttiex, for the enhanced method increased with the query size, it
sizes ofD,s of PyP* were smaller (refer to Fig. 11(b)). Thesencreased in a much slower rate. The reason was that only
factors madeIFTree clearly more efficient thagIndex. M. andID(D, . ) were needed to authenticate.

Pmin Pmin

3 Performance of enhanced authentication. Overall response time.The overall response time consists

While the basic authentication already outperforme®f the time for query processing, data transmission and au-
MgIndex, in this part, we verify the enhanced method furthdhentication. Although the query times of different method
optimizes authentication performances. (Fig. 11(d)) were close, the improvements of our methods of
Performance on clustered graphs.We study theVO size VO size (Figs. 12(c) and 13(c)) and authentication times (
due to theMHT of ID(D,,,.) in Fig. 13(a) and Fig. 13(b). The Figs. 12(d) and 13(d)) were often an order of magnitude more
queries used were TQ2 F|g 13(a) first shows the averdﬁ@n those of the base”ne, which led to better reSponSSIime
number of the intervals o, . for each queries. Recall 8.3 Experiments on Synthetic Dataset
SubSec. 7.2, the fewer intervals ad, . , the smallerv©O Finally, we tested our techniques B¥N. We varied faxSize,
size due to th&HT of ID(D,,, ,, ). Therefore, Fig. 13(b) reports minSup) and observed the same trends as those frobs. We
such VO size, whose trends were similar to Fig. 13(a). Wehose (5, 300) as default. Since the results are similaraseth
note that the average size BO at Q4 and Q8 increased. Thefrom AIDS, we present some major results in this subsection.
reason was that most of the query features were frequemt, theerage query time and authentication time. Fig. 14(a)
C,in D, . was relatively large. Therefore, th&O became and Fig. 14(b) show the query time and authentication time,
larger. At Q12 - Q24, their features contained more infrequerespectively. In Fig. 14(a), we note that the query time
features. TherC, was relatively small. Hence, thBO for of MIFTree was slightly longer than that of thEgIndex.
computing? p, decreased with the query size. However, itmportantly, Fig. 14(b) shows that the authentication tiofe
all queries, the graph permutations of the graph ID$gf,  MIFTree of basic and enhanced method were at |&aand
clearly led to smalle)O size. 4 times faster than thBgIndex, respectively. The speedup of
Total VO size. Fig. 13(c) shows the comparison B sizes the enhanced method was up §dimes. These results were
between basic method and enhanced method for TQ2. FEore to smallen’Os.

TQ1, the VO of enhanced method was almost the same Rerformance on clustered graphs.Fig. 14(c) shows the
that of basic method as there was no intersection for TQdustering of graphs of TQ2 queries reduced at |&ast of



the VO size due to theHT of ID(D,,, ., ). The reasons for [24]
the trends were the same to theDS. The permutations on [25]
ID(Dy,,,.) of SYN performed even better than that &fDS.

Total VO size. We comparedVO size for TQ2 queries [26]
between basic method and enhanced method, shown i
Fig. 14(d). The figure shows that the enhanced method C(£2n7-
sistently generated smallefOs when the query sizes were[28]
larger than 4.

9 CONCLUSIONS

We investigated the authentication of subgraph query sesvi [30]
of outsourced graph databases. We proposed an irtlexee (31]
that minimizes the I/O cost of the popular filtering-and-
verification framework for subgraph query processing. Wez2l
then proposediIFTree by extendingIFTree to authenticate 33]
subgraph query. To optimize tHéO derived fromMIFTree,

we proposed a compadtO representation and a clustering34l
of graphs having similar subset of features. We conducted a
detailed experiment to evaluate the performance of our prgs)

(29]

14

NIC. AIDS. http:/dtp.nci.nih.gov/docs/aids/aidtata. html

H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifyingne

pleteness of relational query results in data publishing.SIGMOD,

2005.

H. Pang and K. Mouratidis. Authenticating the queryutes of text
search enginesPVLDB, 2008.

S. Papadopoulos, Y. Yang, and D. Papadias. Continuotieatication
on relational streamsThe VLDB Journal (2):161-180, 2010.

H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verificatibardness:
an efficient algorithm for testing subgraph isomorphistwv.LDB, 2008.
D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics appliaations
of tree and graph searching. RODS 2002.

H. Wang, J. Li, J. Luo, and H. Gao. Hash-base subgraphyque
processing method for graph-structured xml documeRt4_DB, 2008.

X. Yan and J. Han. gspan: Graph-based substructurerpattining. In
ICDM, 2002.

X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequenicstire-based
approach. InSIGMOD, 2004.

Y. Yang, S. Papadopoulos, D. Papadias, and G. Kolliospati&l

outsourcing for location-based services.|GDE, 2008.

K. Yi, F. Li, G. Cormode, M. Hadjieleftheriou, G. Kolligsand D. Sri-
vastava. Small synopses for group-by query verification asauwced
data streamsACM Trans. Database Syst3):15:1-15:42, 2009.

M. L. Yiu, Y. Lin, and K. Mouratidis. Efficient verificatin of shortest

posed techniques and the effectiveness of the enhancements path search via authenticated hints.IGDE, 2010.

For future work, we are investigating the authentication el
subgraph similarity query. [37]
Acknowledgements Z. Fan, Y. Peng and B. Choi are partially
supported by GRF210510 and FRG2/12-13/079.

REFERENCES
[1]
[2]
[3]
[4]
[5]

(6]

O2l. http://mww.outsource2india.can2013.

Silico. http://wbbiotech.nic.in/wbbiotech/writereaddata/silicogene, 2@13.

J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards veafion-free
query processing on graph databasesSIGMOD, 2007.

W. Cheng and K.-L. Tan. Query assurance verification fotsourced
multi-dimensional database§. Comp. Sec.(1):101-126, 2009.

P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls,das. G.
Stubblebine. Flexible authentication of xml documentsCI2S 2001.
M. Y. Galperin and X. M. Ferandez-Suarez. The 2012 nucleic acids
research database issue and the online molecular biologbai
collection. Nucleic Acids Researcl2012.

P. H. and T. K-L. Query Answer AuthenticationMorgan & Claypool
Publishers, 2012.

W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu. igraph: a franmwfor
comparisons of disk-based graph indexing techniq@®4.DB, 2010.
H. He and A. K. Singh. Closure-tree: An index structure fgraph
queries. InICDE, 2006.

J. Huan, W. Wang, and J. Prins. Efficient mining of frequsuwbgraphs
in the presence of isomorphism. 16DM, 2003.

|. Outsourcing.http://www.informaticsoutsourcing.cgn2013.

K. Klein, N. Kriege, and P. Mutzel. Ct-index: Fingerptibased graph
indexing combining cycles and trees. I@DE, 2011.

A. Kundu, M. J. Atallah, and E. Bertino. Efficient lealafree
authentication of trees, graphs and forestACR Cryptology ePrint
Archive 2012:36, 2012.

A. Kundu, M. J. Atallah, and E. Bertino. Leakage-freedaetable
signatures. CODASPY '12, pages 307-316, 2012.

A. Kundu and E. Bertino. Structural signatures for toega structures.
PVLDB, 1, 2008.

A. Kundu and E. Bertino. How to authenticate graphs withleaking.
In EDBT, 2010.

F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. yDamic
authenticated index structures for outsourced databaseSIGMOD,
2006.

LKH-2. Lkh-2. http://www.akira.ruc.dk/ keld/research/LKH/

C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. KwongdaS. G.
Stubblebine. A general model for authenticated data strestuAlgo-
rithmica, 2004.

D. A. Menasé. Qos issues in web servicdEEE Internet Computing
(6):72—75, 2002.

R. C. Merkle. A certified digital signature. IBRYPTQ 1989.

NCBI . Sumit data to NCBIhttp://www.ncbi.nim.nih.gov/guide/howto/submit-
data/

NCBI. PubChem.http://pubchem.ncbi.nim.nih.gav/

(71
(8]
9]
[10]

[11]
[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]
[22]

[23]

D. Yuan and P. Mitra. Lindex: a lattice-based index foagh databases.
The VLDB Journal(2):229-252, 2012.
L. Zou, L. Chen, J. X. Yu, and Y. Lu. A novel spectral cogim a large
graph database. IBDBT, 2008.

: Zhe Fan is a PhD student in the Department of
Computer Science, Hong Kong Baptist Univer-
sity. He received his BEng degree in Computer
Science from Sourth China University of Tech-
nology in 2011. His research interests include
graph-structured databases. He is a member
of the Database Group at Hong Kong Baptist
University. (http://www.comp.hkbu.edu.hk/~db/).

Yun Peng is a PhD student in the Department
of Computer Science, Hong Kong Baptist Uni-
versity. He received his BSci and MPhil degrees
in Computer Science from Shandong University
in 2006 and Harbin Institute of Technology (HIT)
in 2008, respectively. His research interests in-
clude graph-structured databases. He is a mem-
ber of the Database Group at Hong Kong Baptist
University. (http://www.comp.hkbu.edu.hk/~db/).

Byron Choi received the bachelor of engineer-
ing degree in computer engineering from the
Hong Kong University of Science and Technol-
ogy (HKUST) in 1999 and the MSE and PhD de-
grees in computer and information science from
the University of Pennsylvania in 2002 and 2006,
respectively. He is now an assistant professor
in the Department of Computer Science at the
Hong Kong Baptist University.

Jianliang Xu is an associate professor in the
Department of Computer Science, Hong Kong
Baptist University. He received his BEng degree
in computer science and engineering from Zhe-
jilang University, Hangzhou, China, in 1998 and
his PhD degree in computer science from Hong
Kong University of Science and Technology in
2002. He held visiting positions at Pennsylvania
State University and Fudan University.

Sourav S Bhowmick is an Associate Profes-
sor in the School of Computer Engineering,
Nanyang Technological University. He is a Vis-
iting Associate Professor at the Biological En-
gineering Division, Massachusetts Institute of
Technology. He held the position of Singapore-
MIT Alliance Fellow in Computation and Sys-
tems Biology program (05-12"). He received his
Ph.D. in computer engineering in 2001.



15

APPENDIX A of the basic authentication, we first comment how we establis
opt

PROOES the correctness aof,, P, and P;"".

In this appendix, we present all the proofs of the proposgio Proof of correctness of,. F' is organized in a prefix tree.
in this paper. We then present the proofs of the correctniessée can establish the correctnessfofrom the authentication
our proposed authentication techniques. of prefix trees, studied in [19]. More specifically, in Stepfl o
the basic authenticatiofy, is computed by the client from
and Nr. (Recall thatNg contains the digests of the nodes for
Proposition 5.1: The problem of the optimal decompositiorihe Prefix tree off”). The client has;. The client can verify
of a queryq from P, is NP-hard. 1 the features inVg are soun(_JI _and complete_wnh respect to t_he
. . . . prefix tree of F' by synthesizing the root digest of the prefix
Proof: The proof is established from a simple reductiofae and the data owner’s signatupe [19]. After verifying

from minimum weighted set cover problem. For the givewF is not forged, the client computes K, is the maximum
query graphg, the universe setV contains all the individual individual fully cover features of.

features inFy, i.e, U = F,. The set of subsets &f is denoted opt opt
as S, in our casesS = P,. For eachp; in S, its weight is Proof of correctness ofy; and F;*". P, and P;*" are com-

w(pi) = 7+ A collection s” of sets froms, which covers all puted fromg and I, (in Step 2) and 3) of the authentication).
the individual features i/ and minimizes the_ ¢, w(p:), The MIFTree is a prefix tree of the string representations
is the optimal decomposition of from P,, i.e, S’ = P;*". of POFs. The soundness aiN; can be established by the
That means finding such collectiosf, which is the optimal correctness of the authentication of prefix trees [19]. Thest
decompositionP®** of ¢ from P,, is finding theminimum can compute’, by applyingfind_POF on ¢, F, and N;. If
weighted set coveof S. Therefore, the problem of finding /N1 is not consistent to thé’, computed, then the client can
the optimal decomposition af from P, is NP-hard. 1 be alerted thatV; is tampered with. The client can compute

the correctP;®* using opt_POF_MWSC.
A2 Proof of Prop. 7.1 With the correct ofF,, P, and P;**, we can then analyze
Proposition 7.1: The problem ofiPM is NP-hard. 1 the soundness and completeness of the query answers.

Proof: The proof is established from a reduction fronProof of soundness aR,. Assume that a graph in R, is
Shortest Hamiltonian PatiSiP) problem. Letk = (V, E, W) modified or bogus. There are only two possible cases:
be an undirected weighted complete graph withver-
tices. V, E,W are the set of vertices, edges and weight
values, respectively. In particulaty(v;,v;) € W where
vi,v; € V ande;; € E. M is am x n binary matrix
generated fromK, where thej-th column of M repre-
sentsv;,v; € V, i.e, the permutation of columns of/
is p = (v1,v2, - ,Un_1,v,) @and n = |V|. For all i,j
< n, dist(M,i,5) = w(v;,v;), wheredist(M,i,j) =
|M (x,i) @& M(*,7)|. Specially,M (x,1) = M(x,n) = 0. Fix
the 1-st andn-th column of M, M’ is the OPM for M by

A.1 Proof of Prop. 5.1

o sublso(q,g) = false: this is detected when the client
performssubIso by using the isomorphic mappinb,
(in Step 7) of authentication); or

» subIso(q,g) = true: sinceg is a bogus, the digest of
the node thay belongs to cannot be synthesized because
h is a one-way collision-resistant function. Subsequently
the digestH,,. is not generated correctly and the client
can detect this with the signatute and the public key
(in Steps 4) and 5) of authentication).

of columns of M’ is denoted ag’ = (v, 05, -+, Upn—1,Un). _
Then we can get a pat® on K in terms of p/, where e g € Cf’q: This is detected when the client performs
P = (v1,v3, "+ ,v,_1,0s). Since cost(M’) is the min- subIso on all graphs inC, (in Step 7) of authenti-
n—1 . .
imized, and cost(M’) = 1 Y dist(M',i,i + 1) = Cat'on)fé or ot . ot
i=1 e g ¢ Cy: Denote P;*" as{p1, -+ ,pm}. Since P;*" is
n—1 n—1 . . . opt
LS w(lul,,). Therefore S w(v),vl,,) is min- correct angy is an answetry contains an msgance ar,>".
vjep! i=1 vlep! i=1 There are only two cases that leadgte® C;* A g ¢ Ry:

imized. In this casepP is exactly theSHP of K. Because

finding a SHP from a weighted complete graph is NP-hard, — Jpi, g ¢ Dp. In this case,SP had modified

D,,. Hence, H,, and #H,, cannot be synthesized

thus the problem oBPH is NP-hard. = correctly, and this will be detected when comparing
A.3 Proof of Soundness and Completeness of the the signatura);; or
Basic Authentication — Vpi, g € D,,. While the SP may perform the

intersections of allD,,s incorrectly, the client will
performs the intersections on dll,,, p; € P;** (in
Step 6) of authentication). Hence, the client will be
able to detect thag is an answer.

Theorem A.3:The basic authentication method is sound
and complete.
Proof: We establish our theorem with reference to the
authentication steps presented in the end of Sec. 6.2. kr ord
to prove the soundness and completeness of the query answers O
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A.4  Proof of Soundness and Completeness of En- first sorts all the (individual) edges inordered by minimum

hanced Authentication DFS order (Line 2). It records the feature and the associated
Theorem A.4:The enhanced authentication method idigest for each child node of the root bIndex (Lines 3-5)
sound and complete. in VOingex, as they are at the boundary of the current search.

Proof: The proof of correctness df,, P, and P2" is the Alg. 4 then invokes the traversal algorithaath_DFS (Lines
same as the one presented in Theorem A.3. The proof of §i8) {0 enumerate the features @f After generating all the
soundness of?, is the same as that of Theorem A.3. Herdeatures ofg, the algorithm then computes and returns the

we focus on the proof of the completeness. maximal featured, (Lines 9-10).
Proof of completeness dt,. Assume a graph is an answerl he traversal pseudo-code of a prefix search tree
but not in Rq- There are two possib'e cases: (auth_DFS). The Procedure 4.1 is a depth first search pro-

R,. L . cedure with generating the featuresqoénd theVO;pgex. At
» g € Cg': This is de.tec%ed when the client performseach traversal step, if the current featuris not the minimum
SUbIS"Ig” all graphs inCg*; or [32], then the current recursion is terminated (Lines 1)1-1f2
« g & Cq: Denote P;*" as {pi,--- ,pm}. g CONtAINS  is in T; (Line 13), thens is a feature ofy (Line 13). The
instances ofP;*" asg is an answer. There are again tWedgee is covered bys ands is added toS (Lines 14-15). The
cases that lead tg ¢ Cf”" Ng ¢ Ry feature and the associated digest for each child node isf
— 3pi, g € D,,. In this caseSP had modifiedD,,, involved in VOjpqex(Lines 16-18). Thenauth_DFS proceeds
i.e, M, had been modified. Hencé{,;, cannot to each childe of s in ¢ (Lines 20-22), again in the minimum
be synthesized correctly which leads to wrokg,, DFS order.
and the client will be alerted when comparing th&xample B.1: We use Example 3.1 to illustrate the search of
DO signature; or the query features in Alg. 4. The seartind_maxfeatures
— Vpi, g € Dp,. TheSP has performed the intersectionstarts at the artificial root nodg.. The child nodes off, are
incorrectly. However, this is detected when the clienthe current boundary nodes and they are record@if,qe,’
performs the conjunctions on all, p; € Py*". (Lines 3-5). The search proceeds to the child nodeg. ofith
] the minimumbDFS order S* (Lines 6-8).
According to the example, the first edgén S* is (C, O). In
APPENDIX B the sub-procedurguth_DFS, sinces is a minimum (Lines 11-
DETAILS OF THE BASELINE APPROACH — MaGIN- 12)andsis exgctlyfg (Ling 13), wh_eres = e, eis added ilrU
DEX as covgred (Llne 14) andis ad.dcl—:‘d inS as a feature of (Llne
15). s (i.e, f2) is the current visited node, and the child nodes
In this section, we provide the details of the baseline ags f» are the boundary nodes which are recorde® @ qex
proach for authenticated subgraph query processing &#igori (| ines 16-19). Theauth DFS then recursively expands the
(Alg. 3). These details supplement the verbose pseudo-cog€srch to the child of in q (Lines 20-22)j.e., expandgO, H)
that is used to construct the running example in Example 33'41d(0, 0) respectively. However; expanded with O, H) is

The overall authentication algorithm (auth_MgIndex). The ot a feature of; (Line 13). The traversal then proc/:eed&gto
overall algorithm can be described as follows. The inpugkPanded withO,O) (i.e, f7) and modifiesVO;ngex".

of Alg. 3 are the query graplp and 7=, where Tx is the After auth_DFS finishes traversing the search tree rooted
prefix tree of features”. The outputs are the query resul@t f2, the only edge ofg not covered bysS is (O, H).

R, and theirVO. It first finds all the maximal feature, ~find_maxfeatures then proceeds to searqly, H) as it is

by usingfind maxfeatures (Line 2). find maxfeatures the next edge in5™ (Line 6) Similarly, auth_DFS traverses
(to be elaborated next) is a traversal on the search ti€§ subtree rooted af; (Lines 7-8). After the traversaly

Tr that constructsVO;qqex. After computing F,, it then covgredq (i.e, U = q) and the traversgl terminates (Line 10).
computes the candidate sét, (Lines 3-4) by intersections. Finally, find maxfeatures determinesF, = {f7, fs}

In Lines 5-10,V 046 is modified according to the candidateffom S and returnst;, (Lines 9-10).
answer detgrmined in Lines 3-4. The constructionV’6tc, is  AppeENDIX C

presented in Lmeg 11-15_. Finally, Alg. 3 generates thel Ot& UTHENTICATED SUBGRAPH
VO and returns withR, (Lines 16-17).

Enumeration of features (find maxfeatures). Alg. 4 ) . B ) )

presents the algorithm fdrind_maxfeatures. The algorithm 1hiS €xperiment verifies thatTFTree is a practical approach

is presented in the style gfIndex [32], which is a depth that_enabl_es _cllents_ to access authenticated subgraply quer
first search ofminimum DFS ordef32] to enumerate all the S€rvices via lightweight d_eV|ces. We chose an extreme hard-
maximal featuresF,, of ¢. In Alg. 4, the only difference from ware setting where th_e client uses a commo_d|ty smartphone.
[32] is that it needs to record thBO;.qe. While searching We report both the time for query processing and energy
for the features, which will be used in Alg. 3. In Line 1.c0nsumption of the subgraph queries on the smartphone.
VOingex’ 1S the Ve, at the boundary of the searchi;is a Hardware setting. The smartphone used in this experiment
set of features enumerated so fay; is the maximal features has an 1GHz processor, 1GB internal memory and 3.7 \olt,
of ¢; and U is the edges of; covered byS. The algorithm 1500 mAh battery running the Android 2.2 system.

QUERIES ON
LIGHTWEIGHT DEVICES



Algorithm 3 auth_MgIndex(q, TF)

Inp
1

2:

»w

11:
12:
13:
14:
15:

16:
17:

cooNo;

ut: ¢ is a query graph, the prefix trégr of featuresF’

Output: Ry, VO

Initialize Ry ={ }, Cq = G, VOinaex=[1, VOc,= { }
Fy = find_maxfeatures(q, 7%, VOindex)

* computeCy */
. for each f € F,
Cq = Cq n Df

I* constructV Oipgex*/
. for each f € Fy
Initialize a list L =[]
for each g; € Dy
if gjeCythenL=L & j /*append ID*
elseL = L & (j, Hqg;) /*append ID and digest */
VOingex[f] = (f, L)

I* construct Rq andVOc¢,*/
for each g € Cy
if subIso(g,g) = true
Ry=R4Ug
else /* constructVO for non-answer */
VOc,=VOc,Ug

VO= (Voindex; VOC,,, wF)
return R, and VO

Algorithm 4 find_maxfeatures (¢, Tr, VOindex)

Input:

Ou

©

10:

q is a query graph, the prefix tré€r of featuresF’, VOingex IS the
VO records the search

tput: Fy

¢ Initialize VOinaex’ =[], S={ }, Fu={},»\ U={}

. Sl is a list of edges: of ¢ ordered by the minimurdFs order

: for eachchild f of f. in T [* f,. is the root node ofl'x */

VOinaex'[f1 = (f, Hy) /* boundary nodes */

Y VOindex|fr] = (fr, VOindex” )  [* visited nodes */

. for eachedgee in S', e ¢ U A q#U

s=e€

auth_DFS (e, s, S, VOindex’, q, Tr, U)

. computeF,; C S, s.t, Fy is a set of maximal features
return Fy

Procedure 4.1auth_DFS (e, 5,5, VOindex, ¢, Tr, U)

11

12:

13

14:
15:
16:
17:
18:
19:
20:
21:
22:

L if s # mindfs(s)

return

D if VOinaex[s] #0  I* s is a feature inl'r */
U=UUe [*marke as covered */
S=SUs

initialize VOindex” =[]
for each child f of s in T

VOinaex'[f1 = (f, Hy) [* boundary nodes */
VOingex[s] = (s, VOingex’) [* Visited nodes */
for each child c of sing A g #U

e =c—s

auth_DFS (¢/, ¢, S, VOingex', ¢, Tr, U)
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TABLE 1
Frequently Used Symbols
Symbol Description
q, 9, G a query graph, a graph data and a graph database
f an individual feature
F a set of all individual features i+ or the prefix tree that indexe
all features ofG
p, P a partially overlapping featureOF and a set of alPOFs in G
D, a set of graphs that each of which contajns
ID(D,) a list of IDs of the graphs irD,,
Py, P;Pt the POFs of ¢ and the optimal decomposition 80Fs
Cq, Rq, Cq the candidate set, the answer set and the non-answer candidate set
Hy, Hp a digest of graply andnode(p) of MIFTree
Hp, a root digest of the classic#HT on all graphs inD,,
H, a root digest of the embedd@®T on node(p)’s child nodes
VOingex the digests that record the search of features
VOc, the non-answer graphs in the candidate set
Ni, Nr the digest ofMIFTree nodes and the digest of prefix nodes
Ing a set of subgraph isomorphism mappings frero g € R,
vr, YR a signature oMgIndex andMIFTreefrom DO
Pmin the minimalPOF in P;Pt
M, a binary matrix ofID(D,,) of p (for minimizing 1/0)
Huip a root digest of the classic#HT on ID(D,,)

AIDS (containing 10K), the smartphone took around 32.6
minutes to determine the answers and 11.7% of the battery
was consumed. It is not surprising that the bottleneck is the
subgraph isomorphism computation. Moreover, large gserie
of the AIDS dataset exhibited similar or worse performances.
Hence, it is imperative to propose an efficient authenticati
mechanism on top of indexing techniques. (2) Suppose the
client can access to an authenticated subgraph query servic
using the baseline method. We simulated the evaluation of Q4
again. The authentication on the smartphone required tkew
subgraph isomorphism on 960 graphs. The main reason is that
the baseline method also minimizes the number of candidate
graphs in the/O. It took 3.3 minutes and drained around 1.1%
of the battery for one Q4 query. (3) We tested tldFTree
approach. Subgraph isomorphism was then invoked on 700
graphs only. This further reduced the battery consumption o
one Q4 query to 0.81%. The answers were authenticated in
around 2.4 minutes. In this case, the battery saved by useg t
MIFTree approach is about 27% of the battery consumption
of the baseline approach.

APPENDIX D
FREQUENTLY USED SYMBOLS

We present the list of frequently used symbols of our discus-
sions in Tab. 1.

APPENDIX E

Software setting. We implemented the seminal subgraph/O SIZE VS. AUTHENTICATION TIME
isomorphism algorithm, namely the Ullman’s algorithm, by, yhis appendix, we report a supplementary experimentef th

Java on Android. The dataset we used is the benchmark dat%%%g

ic authentication method @anDS dataset in order to show

AIDS [24], which was used in Sec. 8. The queries we testgs re|ationship betweeno size and authentication time. The
are Q4,i.e. the query graphs of the size 4.

reason for not using enhanced authentication method istthat

Results and discussiondn our experiment, we consider threeVO size and authentication time are affected by several non-
cases as follows. (1) Prior to our work, there is no indexingivial optimizations,e.g, the matrix representation of graph
technique that supports authenticated subgraph queni¢lgel IDs and the clustering of intersect-able graphs. Therefore
absence of indexing techniques, t§& or DO is required opt to use the basic method for this supplementary expetimen

to send the whole database and th&'s signature to the

The experimental results of Q4-Q24 are reported in

client, for each query. The client can verify the integritfy oFigs. 15(a)-(f), respectively. Each figure is obtained fram
the database wittPO’s signature. Next, the client scans thexperiment of a specific query set on thegDS dataset. All
graphs to compute the answers. For each Q4 on the datdketquery sets used.€., Q4-Q24) are the same to those in
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Fig. 15. VO size vs. authentication time of various query sizes

of the basic authentication method on the AIDS dataset.

Sec. 8. Each dot in the figure represents a query; the x-axis
of the figure represents théO size due to the query; and the
y-axis stands for its authentication time. From the figuves,

can easily observe that there are (roughly) linear coicglat
betweenV O size and authentication time. Therefore, a major
portion of this paper discusse&?D minimization techniques

for IFTree to address efficient authenticated subgraph query
processing.
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