
Privacy-Preserving Reachability Query Services

Shuxiang Yin1, Zhe Fan2, Peipei Yi2, Byron Choi2, Jianliang Xu2, Shuigeng Zhou1

1Shanghai Key Lab of Intelligent Information Processing, Fudan University, China
{sxyin,sgzhou}@fudan.edu.cn

2Computer Science Department, Hong Kong Baptist University, Hong Kong, China
{zfan, csppyi, choi, xujl}@comp.hkbu.edu.hk

Abstract. Due to the massive volume of graph data from a wide range of recent
applications and resources required to process numerous queries atlarge scale,
it is becoming economically appealing to outsource graph data to a third-party
service provider (SP), to provide query services. However,SP cannot always
be trusted. Hence, data owners and query clients may prefer not to expose their
data graphs and queries. This paper studies privacy-preserving query services
for a fundamental query for graphs namely the reachability query where both
clients’ queries and the structural information of the owner’s data are protected.
We proposeprivacy-preserving 2-hop labeling(pp-2-hop) where the queries are
computed in an encrypted domain and the input and output sizes of any queries
are indistinguishable. We analyze the security ofpp-2-hop with respect to cipher-
text only and size based attacks. We verify the performance ofpp-2-hop with an
experimental study on both synthetic and real-world datasets.

1 Introduction

There is a wide range of emerging applications of graph-structured data,e.g., bioinfor-
matics, communication networks, social networks, web topology and semi-structured
data. Many graph queries have been proposed to retrieve suchgraph data. However,
as the volume of graph data is increasing at an unprecedentedrate, hosting efficient
query services has become a technically challenging task. The ownersof graph data
may not always be equipped with the expertise required to provide such services and
therefore may employquery service providers(SPs) to hostquery services, which are
often supported by high performance computing. Security (such as the confidentiality
of messages exchanged) has been stated as one of the attributes of Quality of Services
(QoS) [23], asSP s cannot always be trusted. This attribute may influence the willing-
ness of both data owners and query clients to useSP ’s services.

Take the reachability query — one of the mostfundamental and populargraph
queries [3, 4, 7, 8, 10, 16–18, 25–29, 31] — as an example:Given two nodesu andv of
a graph, the reachability query is used to test ifv is reachable fromu or not. A query
client may prefer not to expose his/her reachability query to anSP. On the other hand,
the data owner may prefer that theSP not be able to infer the structure of their graph
data. Therefore, the query results must be protected as maliciousSPs can exploit the
results from multiple queries to infer the graphs’ structures.

Motivating example. Consider a pharmaceutical company whose revenue depends
mostly on the invention of Health Care Products, illustrated in Fig. 1. The company may
have discovered new compounds for a new product. To save laboratory experiments, it

Data owner
Query service

Client

Secret key K

pp-2-hop

Query

Rk

Attacker

(Pharmaceutical

(Laboratory)
provider

company)

(ue, ve)

& Salt s2

Fig. 1.Overview of the system model

1

2

6

0 3

4

5

v Lin(v) Lout(v)
0
1
2
3
4
5
6

0 0, 1, 2, 3, 5, 6
1, 2, 3, 5, 6
2, 3, 5, 6
3, 4
4
5, 6
6

1
2
3

0, 1, 2, 4
4, 5
4, 6

Fig. 2. A (partial) schematic of a biological net-
work (LHS) and its2-hop labeling (RHS)

may often query the compounds from web-accessible biological pathway networks of
massive size (such as [2]) to understand the compounds’ characteristics, such as whether
it is possible for the compounds to form other compounds via any chemical reactions
(reachability in the network). However, on the one hand, thecompany does not want
theSP to know about the queries (the compounds), as it may apply forpatents for the
synthesis. On the other hand, the owner of the pathway networks may not only lack the
experience to host query services (which is best supported by IT companies,e.g.,[15])
but also be reluctant to release the networks to the public. Alternatively, the owner is
willing to release a license only to paid users. Therefore, it is crucial to protectboththe
queries and the network from theSP .

This paper studies the problem ofevaluating the reachability query at anSP without
compromising the privacy of the reachability of the query nodes and the graph structure
under cipertext-only and size-based attacks, in the paradigm of query services(to be
detailed with Fig. 1 in Sec. 3). To our knowledge, this has notbeen addressed before.

There have been many recent studies on efficient reachability query (e.g., [3,4,6–8,
17,18,25–28,31]). Jin et al. [16] show that these studies can be roughly categorized into
transitive closure compressions, refined online searchandhop labeling. The first two
categories suffer from high storage costs and require online searches, respectively (to
be discussed in Sec. 2). In this paper, we propose our techniques based on hop labeling
[10], in particular2-hop labeling. The benefits of adopting2-hop labeling are threefold.
Firstly, the structures of2-hop labels are simple, where each node is associated with two
sets of nodes calledLin andLout. Secondly, the query evaluation with2-hop labeling
is an intersection between anLin and anLout. Such simple structure and algorithm
make privacy preservation plausible. Thirdly,2-hop labeling is an active research topic.
The recent works on large graph partitioning (e.g., [8]), compression (e.g., [7]) and
maintenance (e.g., [3,25]) of2-hop labeling can be readily adopted.

This paper proposespp-2-hop (privacy-preserving2-hop), which adopts2-hop la-
beling. Firstly, the evaluation of each query on2-hop labeling only involves an inter-
section between two sets of center nodes. Hence, we minimizethe size of the maximum
cardinality of the intersection results and addminimalartificial nodes (called surrogate
nodes) toLins andLouts such that the intersection results for all possible queries are
of thesamesize. We unify each of theLin andLout labels such that the difference of
the label set sizes are within a user-defined parameter. Secondly, we encrypt the2-hop
labels, after adding surrogate nodes and evaluate queries in the encrypted domain. We
analyze the privacy ofpp-2-hop.
The contributions of this paper are summarized as follows.

– We propose algorithms to unify the sizes of2-hop labels and the query result sizes;
– We propose private query processing over the encrypted2-hop labels;

– We propose a new heuristic2-hop construction that yields2-hop labeling that min-
imizes the intermediate results in private query processing; and

– We conduct an empirical study to confirm that our techniques are efficient.

The rest of this paper is organized as follows. We introduce some related work in
Sec. 2. We then present the background, the problem and the overview of our solution
in Sec. 3. We proposepp-2-hop, the index construction, optimization and query pro-
cessing in Sec. 4. We conduct a privacy analysis in Sec. 5. We present an experimental
evaluation in Sec. 6. We end this paper with the conclusion inSec. 7.

2 Related Work
In this section, we present some related works on security ofgraph queries.

Authentication of graph queries.Query authentication is a security problem where the
SP cannot be trusted. It requires the client to verify the correctness of the data graphs
returned. Kundu et al. [21, 22] focus on the verification of the authenticityof a given
portion of data(subtree/subgraph that users’ have the right to access to) without leakage
of extraneous information of the data (tree/graph/forest). They optimize the signature
needed [22]. Zhe et al. [12] propose an efficient authenticated subgraph query services
framework under the outsourced graph databases system. In comparison, the input of
our problem is a reachability query not a subgraph for verification. Our problem focuses
onprotecting both the query and its answer fromSPs.

Privacy-preserving graph query. He et al. [14] analyze the node reachability of the
graph data, with the preservation of edge privacy. Unfortunately, the method reveals the
reachability of the query nodes and partial structure of thegraph data to theSP. Gao
et al. [13] propose neighborhood-privacy protected shortest distance in the paradigm
of cloud computing. This aims to preserve all the neighborhood connections and the
shortest distances between each pair of nodes in outsourcedgraph data. When this work
is directly applied to reachability queries, some information about the graph structure
and the reachability of the query nodes are still exposed to theSP .

Mouratidis et al. [24] determine the shortest path of the query nodes with no infor-
mation leakage by using the PIR [9] protocol. Firstly, the high computational cost of
PIR has been well known. Secondly, the PIR approach requiresthe transfer of the same
amount of data for every query, which can be large. Reachability queries are simple (yet
fundamental) queries and do not require the use of the costlyPIR method. Cao et al. [5]
propose to support subgraph query over an encrypted database of small graphs. Their
work protects the query privacy, index privacy and feature privacy. However, reacha-
bility queries cannot be expressed as subgraph queries. Karwa et al. [19] present an
efficient algorithm for outsourcing useful statistics of graph data by protecting the edge
differential privacyand they support counting queries but not reachability queries.

Approaches for reachability query.Numerous approaches for reachability query have
been proposed recently in the literature. Jin et al. [16] recently discuss the approaches
based on three main categories:transitive closure compressions, refined online search
andhop labeling. (i) Transitive closure compressions (e.g., [1, 17, 28]) offer the best
query performance. It is known that their storage costs are the highest. (ii) Refined on-
line search (e.g., [26,27,31]) relies on online searches (e.g., DFS and BFS) by definition
leaks graph structure information and it is not clear how they can be adopted here. (iii)

The seminal2-hop labeling is proposed by Cohen et al. [10] and further optimized
by many studies [7, 8, 25]. Due to the simple structure of the2-hop labeling approach
and the simple query evaluation (as motivated in Sec. 1), in this paper, we propose our
techniques based on the2-hop labeling approach.

3 Problem Formulation and Overview

This section formulates the problem studied and gives an overview of our solution.

Data model. We considerdirected node-labeled graphs. A graph is denoted asG, and
V (G) andE(G) are the node and edge sets ofG, respectively. Since the reachability in-
formation of nodes in a strongly connected component is identical, we assume directed
acyclic graphs (DAG), for presentation brevity. A reachability query takes twonodesu
andv as input, denoted asu v, and returns trueiff v is reachable fromu.

System model. We follow the system model that is commonly used in the literature of
database outsourcing, presented in Fig. 1. The model consists of three parties:

– Data owner: An owner owns the graph data and computes the privacy-preserving
2-hop labeling offlineonce. It outsources them to the service provider and delivers
query clients a salts2 to encrypt queries and the secret keyK to decrypt results;

– Service provider(SP): TheSP has high computational utility such as cloud com-
puting. TheSP handles massive query requests over the encrypted data on behalf
of the data owner and returns the encrypted results to clients; and

– Client: A client encrypts a query usings2, sends the encrypted query to theSP and
decrypts the result withK. We assume that the clients andSP do not collude.

Privacy target. Our privacy target is required to keep the following two pieces of in-
formation private fromattackersusing the two attacks defined in the attack model:

– Reachability of the query nodesa.k.a the query result. In particular, given a reach-
ability queryu v, attackers cannot infer whetheru can reach tov; and

– Graph structurea.k.a. the topology of the data graph,e.g., the existence of an edge.

Attack model. As other outsourcing work, we assume theSPs arehonest-but-curious[20].
The attackers may be theSP or another adversary hacking theSP . For simplicity, we
term the attackers as theSP. TheSP can adopt the following popular attacks.1

– Ciphertext only attack, where theSP can access only the ciphertext (encrypted
graph data) and does not know what their original graph is; and

– Size based attack, where theSP attempts to infer the two pieces of private infor-
mation from the sizes of the data and the query results.

2-hop labeling.As motivated in Sec 1, we undertake the2-hop approach to address the
problem. In2-hop labeling, each nodeu ∈ V (G) is associated with two sets of nodes,
denoted asLout(u) andLin(u), called2-hop labels. Nodes inLout(u) (respectively,
Lin(u)) can be reachable fromu (respectively, can reachu), which are also called
center nodes. Given two nodesu andv, u v iff Lout(u) ∩ Lin(v) 6= ∅.

1 There are admittedly many other attacks in the literature. We do not claim them inthis paper
since their theoretical privacy guarantees have yet to be established.

Example 1.Consider the simplified biological pathway network shown inthe LHS of
Fig. 2. The node ID represents the chemical ID and the edge denotes a chemical reac-
tion. The nodes’ labels of the graph data are omitted for simplicity of presentation. The
original 2-hop labeling (RHS) of the graph is shown in the RHS of Fig. 2. Consider
two nodes1 and5. Node1 can reach Node5, i.e., 1 5. Lout(1) ∩ Lin(5) = {5}.
However, Node0 is not reachable from Node6 asLout(6) ∩ Lin(0) = ∅.

2-hop construction.To ensure that the2-hop labels ofV (G) contain all the reacha-
bility (a.k.a connectivity) information ofG, the labels must cover all the elements in
the transitive closureT (G) of G. 2-hop labels (covers) are known to be costly to con-
struct. In practice, they are constructed offline. In addition, there are various works that
significantly optimize the construction time (e.g., [8]).

The majority of previous2-hop constructions focus on minimizing the size of2-hop
labeling, defined as

∑
u∈V (G)(|Lout(u)|+ |Lin(u)|). As we shall present our heuristic in

Sec 4.1, we briefly outline the heuristic construction approach [10] for2-hop construc-
tion. Initially, a variableT ′ is defined to represent the uncovered elements ofT (G), i.e.,
T ′ = T (G). Elements ofT (G) are iteratively covered and removed fromT ′. For each
nodew ∈ G, an undirected bipartite graph (a.k.acenter graph)Gw(Lw, Rw, Ew) is
built, whereLw are nodes that can reachw andRw are thosew can reach.(u, v) ∈ Ew

iff (u, v) is in T ′. The heuristic algorithmselectsthe centerw whose induced subgraph
Gi(Li, Ri, Ei) of Gw has the largest ratiomaxDensCover defined below.

maxDensCover =
|Ei ∩ T

′|

|Li ∪Ri|
(1)

In each iteration, the nodew with the largestmaxDensCover is selected as a center. For
all u ∈ Li andv ∈ Ri, the algorithm addsw into Lout(u) andLin(v), and removes
(u,w), (w, v) and(u, v) from T ′. The iterations terminate whenT ′ is empty.

4 Privacy-preserving 2-hop Labeling
This section presents the details of privacy-preserving2-hop labeling. Sec. 4.1 presents
a heuristic, to replacemaxDensCover, that minimizesthe maximum cardinalities of the
intersection resultsImax of 2-hop labels. In Sec 4.2, we propose a greedy algorithm that
introduces a minimal number of surrogate nodes toLins andLouts of the2-hop labels
derived from Sec. 4.1. In Sec. 4.3, we encrypt the2-hop labels. In Sec. 4.4, we present
their private query processing.

4.1 Imax-aware 2hop construction

In practice,Imax constructed by usingmaxDensCover (outlined in Sec. 3) are very often
large. In our experiments, the averageImax of the2-hop labels usingmaxDensCover of
our real datasets is 378 (Table 7). Furthermore, largeImaxs lead to large surrogate labels
and thus high query costs.

In this section, we propose a heuristic to minimizeImax as2-hop labels are con-
structed. The idea is that the heuristic includes the intersection information in2-hop
construction. Specifically, the objectives are to minimizethe following two quantities:

1. the center nodew that covers the most uncovered elements inT ′: As in previous
work, such a heuristic leads to few center nodes and small2-hop labels; and

2. the maximum cardinality of the intersection betweenLout(u) and Lin(v), i.e.,
max(|Lout(u) ∩ Lin(v)|).

To achieve the objectives, we propose the heuristic ratiomaxISCover as follows:

maxISCover =
|Ew ∩ T

′|

max(|Lout(u) ∩ Lin(v)|)
, (2)

whereu ∈ Lw, v ∈ Rw, T ′ is the uncovered elements inT (G). Eqn. 2 contains two
main parts. The details are as follows:

1. Ew ∩ T ′ is the uncovered elements inT (G) covered by selectingw; and
2. max(|Lout(u) ∩ Lin(v)|) is the largest|Lout(u) ∩ Lin(v)| of all u, v ∈ V (G).

Putting these together, we use the2-hop construction presented at the end of Sec. 3,
replacingmaxDensCover with maxISCover.

u1

v1

u2 u3 u4

v2 v3 v4

w1 w2

|Ew1
∩ T

′| = |Ew2
∩ T

′|

max(|Lout(u) ∩ Lin(v)|) = 4

max(|Lout(u) ∩ Lin(v)|) = 5

∀u ∈ Lw1
, v ∈ Rw1

∀u ∈ Lw2
, v ∈ Rw2

Fig. 3. Illustration of selection of center node bymaxISCover

Example 2.We comparemaxDensCover andmaxISCover with a schematic shown in
Fig. 3. The graph data is on the LHS. Suppose there are only twocenter nodes (w1

andw2) checked in an iteration respectively.Lw1
= {u1, u2, u3}, Rw1

= {v1, v2, v3},
andLw2

= {u2, u3, u4}, Rw2
= {v2, v3, v4}. We assume|Ew1

∩ T ′| = |Ew2
∩ T ′|.

maxDensCover may select eitherw1 or w2. Further assume that∀u ∈ Lw1
, v ∈ Rw1

,
max(|Lout(u) ∩ Lin(v)|) = 4 and∀u ∈ Lw2

, v ∈ Rw2
,max(|Lout(u) ∩ Lin(v)|) =

5. maxISCover selectsw1 as it results in smaller intersections.

4.2 Addition of Surrogate Nodes

Next, we add surrogate nodes to2-hop labeling to unify the sizes of intersection results
and theLins andLouts.

Unification of Intersection Results. The main idea of adding surrogate nodes into
2-hop labels (Lins andLouts) is to achieve that for eachu and v, the intersection
between surrogate labelsLouts(u) andLins(v) always equals toImax.2 Our objective
is thus to introduce the smallest number of surrogate nodes (i.e., the2-hop label size
is minimized). As the cardinality for each intersection is the same, theSP gains no
connectivity knowledge about specific information of each pair of nodes.3 We call the
problem theminimum addition of surrogate nodes(MASN), defined below.

Definition 1. The problem of minimum addition of surrogate nodes (MASN) is that given
the2-hop labels of a graph G, introduce surrogate nodes in bothLins andLouts to
obtainLinss andLoutss, such that

– ∀u, v ∈ V (G), |Louts(u) ∩ Lins(v)| = Imax;
– the largestLins and the largestLouts are minimized; and
–

∑
u∈V (G)(|Lin

s(u)|+ |Louts(u)|) is minimized.

Algorithm 1 Unify Intersection SizesunifyIS(Lout, Lin)
Input: 2-hop labelingLout andLin
Output: Louts andLins

1: Initialize surrogate node setDw = []

2: create a priority queueQv for V (G), where the rank ofv ∈ V (G) is defined by:
maxu∈V (Imax - |Lout(u) ∩ Lin(v)|)

3: while v 6= null, wherev← Qv.getNext() //scanLins
4: Dw.movetofront() //move to the front ofDw

5: while di ← Dw.getNext()
6: if di = null and∃u′, v′ |Lout(u′) ∩ Lin(v′)| < Imax

di← new node() andDw.push(di)
elsebreak

7: for eachu ∈ V (G), where|Lout(u) ∩ Lin(v)| < Imax //scanLouts

//if the intersection constraintis satisfied.
8: if ψ(2-hop, u, v, di) is true
9: Lout(u)←Lout(u)∪{di}; Lin(v)←Lin(v)∪{di}

10: return (Lout, Lin) as(Louts, Lins)

Proposition 1. The problem ofMASN is NP-hard.
It is not surprising that the problem ofMASN is NP-hard, as presented in Prop. 1.

Due to space constraints, we provide its proof in the Appendix. We propose a greedy
algorithm calledunifyIS (shown in Algo. 1) to solve the problem ofMASN.

The input ofunifyIS is 2-hop labels (i.e., Louts andLins). The output is the2-
hop labels with surrogate nodes,i.e., Louts andLins. The main idea is that for any
surrogate noded, we addd to as manyLins andLouts as possible, inO(|V |), and
hence more entries inT (G), inO(|V |2), can be covered. Specifically, we maintain a list
of surrogate nodesDw as we add them to the2-hop labels (Line 1).unifyIS processes
the Lins whose intersection with some otherLouts has the largest gap betweenImax
earlier (Lines 2-3).4 As unifyIS may use new surrogate nodes to reduce such a gap,
the surrogate nodes can be used to reduce the gaps between theLin and many other
Louts. In Lines 5-9,unifyIS processes theLouts iteratively. Line 6 checks if there is
aLout to be processed (i.e., |Lout(u)∩Lin(v)| < Imax). If so, and all existing surrogate
nodes have been used in previous iterations, then a new surrogate node is created (Line
6). Otherwise,unifyIS terminates. The surrogate node is added to bothLout(u) and
Lin(v) (Line 9), if theintersection constraintψ (defined below) in Line 8 is satisfied:

ψ(2−hop, u, v, di) : ∀v
′, |(Lout(u) ∪ {di}) ∩ Lin(v′)| ≤ Imax ∧

∀u′, |Lout(u′) ∩ (Lin(v) ∪ {di})| ≤ Imax,
(3)

whereu′, v′ ∈ V (G). In other words, there is no|Lout(u) ∩ Lin(v)| > Imax after
addingdi to bothLout(u) andLin(v). Thus, if ψ is true, we can adddi into both
Lout(u) andLin(v). The algorithm terminates when for all pairs of nodesu andv,
|Lout(u) ∩ Lin(v)| = Imax.

2 For brevity, we assume the data graph does not contain highly disconnected nodes where its
Imax equals 0 or 1. To cater for such special cases, we may further set a minimum Imax (e.g., 4)
so that theSP cannot infer whether the graph is highly disconnected or not.

3 In 2-hop labeling, the sizes of the intersection results of a query indicate the reachability of
nodes. Only unreachable query nodes have a value of 0.

4 GivenLins andLouts, the value ofImax can be easily computed.

v Lin
s(v) Lout

s(v)
0
1
2
3
4
5
6

0, 7, 8, 9 0,1,2,3,5,6, 7, 8
1,2,3,5,6, 7, 8, 9
2,3,5,6, 7, 8, 9, 10
3,4, 7, 8, 9, 10, 11
4, 7, 8, 9, 10, 11, 12

5,6, 7, 8, 9, 10, 11, 12, 13
6, 7, 8, 9, 10, 11, 12, 13, 14

1, 7, 8, 10
2, 7, 8, 11
3, 7, 8, 12

0,1,2,4, 9, 10, 13
4,5, 7, 8, 14
4,6, 7, 8

Fig. 4. The 2-hop labels of the network in Fig-
ure 2 after the addition of surrogate nodes

v Lin
s(v) Lout

s(v)

4
5
6

4, 7, 71, 73, , 8, 9, 10, 11, 12
5,6, 7, 72, 8, 9, 10, 11, 12, 13
6, 7, 72, 8, 9, 10, 11, 12, 13, 14

0,1,2,4, 9, 10, 13
4,5, 71, 72, 8, 14
4,6, 72, 73, 8

.

.

.
.
.
.

.

.

.

Lin
e(hs2

(6)) = {(hs1
(4), E(0)), · · · , (hs1

(8), E(1))}
Encryption of Lins(6):

Fig. 5. One iteration of split on2-hop labels
shown in Figure 4 and the encryptedLins(6)

Discussion.The number of distinct surrogate nodes used byunifyIS is Imax|V | in the
worst case andImax in the best case. Therefore, the total number of surrogate nodes
added byunifyIS is Imax|V |(1 + |V |) in the worst case and2Imax|V | in the best case,
where|V | is the number of nodes in the graph.

Example 3.Figure 4 shows the2-hop labeling after the addition of surrogate nodes to
that in Figure 2. The IDs of the real centers are highlighted in bold inLinss andLoutss.
Other IDs represent surrogate nodes. TheImax of the2-hop labels is 3.

Consider the first iteration ofunifyIS. SinceImax - |Lin(0)| ∩ |Lout(1)| = Imax,
Node 0 is one of the nodes with the highest rank inQu (Lines 2 and 3). There are
obviously some intersection results ofLin andLout smaller thanImax. Moreover,di
is null asDw is empty. A new surrogate (Node 7) is created (Line 6). Node 7 is
introduced to bothLin(0) andLout(1) as this does not violateψ (Lines 8-9). Next,
Node 7 is added toLouts of Nodes 0 and 2-6 as the addition does not violateψ (Lines
7-9). In the next few iterations (Lines 5-9),unifyIS adds new surrogate nodes 8 and 9
to Lin(0) and the correspondingLouts until all intersection results ofLin(0) and other
Louts are of the sizeImax.

Then, unifyIS processes the next node inQu (Line 3), for example, Node 1.
unifyIS uses Node 7 (Lines 4-5) and adds it toLin(1) as it does not violateψ (Lines
7-9). Similarly, Node 8 is added toLin(1). However, Node 9 cannot be added toLin(1)
as|Lin(1)∩ Lout(1)| = |{1, 7, 8}| = Imax.

Consider the surrogate node 7 from Figure 4. It has been added13 places. However,
it covers 6× 7 elements inT (G). For any queryu andv, the intersection size is the
same. Following the same queries of Example. 1,Louts(1) ∩ Lins(5) = {5, 7, 8} and
Louts(6) ∩ Lins(0) = {7, 8, 9}. The result size is always 3.

Unification of Labeling Sizes In order to unify the sizes of bothLinss andLoutss,
we introduce a (postprocessing)unifyLin operation of surrogate nodes. Since the task
of unifying Lins andLouts are symmetric, we only discussLins for a concise pre-
sentation. We first denote the size of the largestLins (respectively,Louts) asLinmax
(respectively,Loutmax). The intuitions of our approach can be described as follows: (1)
for each nodeu in the graph where|Lins(u)| < Linmax, we split its surrogate nodes
in Lins(u) such that the size ofLins(u) is closer toLinmax; and (2) we never increase
theImax during unification. We formally define the problem, namelyunification of the
labeling size(ULS) as follows.

Definition 2. The problem of the unification of the labeling size (ULS) is that given
Linss andLoutss, unify both of their sizes, s.t.,∀u, v,

||Lins(u)|−Linmax|
Linmax

≤ δ and
||Louts(u)|−Loutmax|

Loutmax
≤ δ,

whereδ is a user-specified parameter for the allowable difference in the label sizes.

Algorithm 2 Unify Lins unifyLin(Louts, Lins, δ)
Input: 2-hop labelingLouts andLins after addition of surrogate nodes, and the user-specified

allowable differencesδ in the sizes ofLins andLouts.
Output: Louts andLins

1: for eachu, |Lins(u)|+ δ ≤ Linmax

2: choose a surrogate nodew from Lins(u)
3: W = {w1, · · · , wn, wn+1}, n ≤ Linmax − |Lin

s(u)| − 1
4: Lins(u)← (Lins(u)/{w}) ∪ {w1, · · · , wn+1}

5: for eachu′, where|Lins(u′)| < Linmax ∧ w ∈ Lins(u′)
6: Lins(u′)← (Lins(u′)/{w}) ∪ {wn+1, wn+2}

7: for eachv, where|Louts(v)| = Loutmax ∧ w ∈ Louts(v)
8: Louts(v)← Louts(v) ∪ {wn+1}

9: for eachv, where|Louts(v)| < Loutmax ∧ w ∈ Louts(v)
10: Louts(v)← Louts(v) ∪ {wi, wn+2},

wherei ∈ [1,n] and eachi is added to someLouts at least once.

We proposeunifyLin algorithm presented in Algo. 2 to solve the problem ofULS.
Suppose that we have sorted theLinss by their sizes in descending order and we apply
unifyLin to eachLins accordingly. We first choose a surrogate nodew from Lins(u)
(Lines 1-2). We declare new surrogate nodes{w1, · · · , wn,wn+1}, wheren≤ Linmax -
|Lins(u)| - 1 (Line 3). We replacew by {w1, · · · , wn+1} in Lins(u) (Line 4). For each
u′ wherew ∈ Lins(u′) and|Lins(u′)| < Linmax, we replacew with wn+1 andwn+2 in
Lins(u′) (Lines 5-6). For eachv where|Louts(v)| = Loutmax andw ∈ Louts(v), we
addwn+1 (Lines 7-8). For eachv where|Louts(v)| < Loutmax andw ∈ Louts(v), we
add{wi, wn+2}, wherei ∈ [1,n] (Lines 9-10).

Example 4.We illustrate Algo. 2 with reference to the2-hop labels shown in Figure 4.
The result after oneunifyLin operation is shown in Figure 5. Suppose we choose Node
7 from Lins(5) (Line 2).Linmax = 7 and|Lins(5)| = 5. Therefore,n+1 can be 2. We
replace Node 7 with{71, 72} in Lins(5) (Line 4). Since Node 7 appears in some other
Lins, we add{72, 73} to Lins(i), i ∈ {0,1,2,3,6} (Lines 5-6).Loutmax = |Louts(5)| =
|Louts(6)|. We add Node 72 into Louts(5) andLouts(6) (Lines 7-8). We add Node 73
into Louts(j) (Lines 9-10), wherej = {0,1,2,3,4}.

One may verify that the sizes of intersection results do not change with a simple case
analysis. In the meantime, all the surrogate nodes due tounifyLin appear in some
intersection results. The increase in the sizes ofLins andLouts due to aunifyLin
operation can be listed as follows: (i) the size ofLins(u) is increased byn+1 (Line 4);
(ii) the size ofLins that containsw is increase by two (Lines 5-6); (iii) the sizes of
Louts with w whose sizes areLoutmax are increased by one (Lines 7-8); and (iv) the
Loutss that containsw whose sizes are smaller thanLoutmax increase by two (Lines 9-
10). We then alternately applyunifyLin operations onLins andLouts until the sizes
do not differ from the largest labels byδ (as stated in Def. 2).

4.3 Index Encryption

After adding the surrogate nodes, the remaining task is to encrypt the labels . In order to
distinguish the real nodes and surrogate nodes, we implement the nodes with flag values
(see Def. 3). The flag values of real nodes are 0, and 1 otherwise. We will present how

to use the flags to encode the query result in Sec. 4.4. Below isthe new definition of
centers forLoutss orLinss.

Definition 3. Eachcenterof Louts(u) or Lins(v) is a binary tuple (w,f), wheref =
0 if w is a real center, and1 otherwise.

Based on Def. 3, we encrypt the surrogate labels in order to protect both the reach-
ability of the query nodes and the graph structure. (i) To hide any association between
the nodes and the center nodes, we hash thew in (w, f) and theu in Louts(u) and
Lins(u) with a one-way collision-resistant hash functionwith different salts, denoted
ashs1(w) andhs2(u), to hash them respectively. Recall that thatw = u does not imply
hs1(w) = hs2(u), wheres1 6= s2. (ii) Regarding the encryption of the flag value, we
use ElgamalE(·) [11], which is amultiplicative homomorphic encryptionmethod. The
benefits of Elgamal are twofold: (1) since the flag has binary values, Elgamal ensures
randomness in the encrypted flags; (2) Elgamal allows one decryption at the client side.
To sum up, the definition of the privacy-preserving2-hop labeling is given as follows.

Definition 4. Eachencrypted centeris a binary tuple(we, fe), wherewe = hs1(w)
and fe = E(f). Theprivacy-preserving2-hop (pp-2-hop) is a 2-hop labeling where
each encrypted nodeue, whereue = hs2(u), is associated with two sets of encrypted
Louts(u) andLins(u), denoted asLoute(u) andLine(u).

Example 5.Fig. 5 illustrates an example of the encryption ofLins(6) for node6. The
encryption ofLins(6) is denoted asLine(hs2(6)), wherehs2(6) is the encryption of
node6. For example, the first center ofLins(4), (4, 0), is encrypted as(hs1(4), E(0)).

4.4 Private Query Processing

Based on the encryption of thepp-2-hop labeling in Def. 4, we present its query pro-
cessing without decryption. There are three main steps: (1)The client encrypts the
query — the queryu v is hashed toue ve; (2) TheSP intersectsLoute(ue)
andLine(ve) and returns the encrypted resultRe to the client; and (3) The client uses
the secret keyK and an Elgamal decryption to decrypt the result decryption.

Näıve solution. The näıve solution for processing a queryu v is to perform an
intersection on the centers inLoute(ue) andLine(ve) and transmit the encrypted flag of
the centers in the intersection results to clients. The client decrypts each of the encrypted
flag and checks if there is at least one flag that signifies a realcenter. However, this
solution requiresImax decryptions.

Multiplicative homomorphic query processing. It is known that decryption is costly,
especially when the client is not equipped with powerful hardware. Therefore, we pro-
pose a query processing that requiresonedecryption at the client side. We define the
intersection result ofue andve asR(ue,ve), or simplyR, where

R = {(we, fe) | (we, fe) ∈ Loute(ue) and (we, f
′
e) ∈ Line(ve)}.

The encrypted resultRe, defined as
∏

(we,fe)∈R fe,
5 is transmitted to the client.

At the client side, the client decryptsRe by using the secret keyK. If the decrypted
message is 0, thenu can reachv. Otherwise,u cannot reachv. Note thatRe is a product
of flag values. The product is 0iff there is a real node (whose flag is 0) in the intersection
result. That is, if all centers in the results are surrogates, the productRe is 1.

5 We use
∏

and× to denote the modular multiplications in the Elgamal encryption scheme.

Example 6.Consider the private query processing of the query1 5, following Ex-
ample 1 for clarity. The query processing onpp-2-hop in Example 3 is similar: (1) the
client hashes the query nodes ashs2(1) andhs2(5) by using the salts2 from the data
owner, and issues to theSP; (2) theSP performsLoute(hs2(1)) ∩ Line(hs2(5)) and
obtains{(hs1(5), E(0)), (hs1(7), E(1)), (hs1(8), E(1))}. Based on the result, theSP
computes the resultRe = E(0) × E(1) × E(1) = E(0) and returns it to the client; and
(3) the client decrypts theRe, which is0, and obtains that Node1 can reach Node5.

5 Analysis of Privacy
In this section, we provide an analysis of the privacy under the assumptions of our attack
model,i.e., the size based attack and ciphertext only attack (stated inSec. 3).

Privacy against Ciphertext Only Attack. We prove that the reachability of the query
nodes and the topology of the graph have been protected from theSP under thecipher-
text only attack.

Proposition 2. TheSP breaks the reachability of query nodes only if theSP breaks
either the one-way collision-resistant hash function or the Elgamal encryption.

Proof. (Sketch)Case 1: (i) Suppose theSP can break the Elgamal encryption. The
SP can determine whether the flag of a center signifies a real center or not. During
query processing, theSP can analyze the intersection resultR. TheSP identifies the
reachability of a pair of query nodes by checking if there is areal centerR.

(ii) If the SP can break the hash function (e.g., SHA-1), it can determine the center
identities,i.e., the center IDs inLins or Louts. Then, theSP can check if a center is
real by checking if it has correspondingLins andLouts in pp-2-hop.

Case 2: Suppose theSP cannot break the one-way collision-resistant hash function
(e.g., SHA-1) and the Elgamal encryption. We analyze step by step the information
the SP obtains during query processing. Given a queryue andve, theSP retrieves
Louts(ue) andLins(v). TheSP computesRe under the Elgamal encryption.

Since theSP cannot break the one-way collision-resistant hash function, it can-
not determine either the nodes of the query (ue andve) or the centers inLouts(ue) and
Lins(ve). Moreover, since we assume that theSP cannot break the Elgamal encryption,
it cannot determine the flags of the centers inLouts(ue) andLins(ve). Due the homo-
morphic multiplication supported by the Elgamal encryption, theSP cannot determine
the plaintext ofRe. Thus, theSP does not know the reachability of query nodes.

By exploiting the preservation of the reachability of any two nodes, we prove that
pp-2-hop protects the graph structure from theSP. It is straightforward to argue that it
is not possible to determine theexistence of an edgein a graph underpp-2-hop. Hence,
it is not possible to infer the topology of the graph structure.
Proposition 3. TheSP can determine the existence of an edge only if it breaks either
the one-way collision-resistant hash function or the Elgamal encryption.

Proof. We establish the proposition via proof by contradiction. Suppose theSP can
determine the existence of one edge (u,v). TheSP has broken the reachability of at
least one queryu v. By Prop. 2, this is possible only if theSP breaks either the
one-way collision-resistant hash function or the Elgamal encryption.

Privacy against Size-Based Attack.In addition to the analysis of privacy against ci-
phertext only attack, we prove privacy undersize-based attack.

Proposition 4. Whenδ is set to 0, the reachability of the query nodes is perfectly pro-
tected against size-based attack.

Proof. We prove the proposition via proof of contradiction. Suppose theSP can deter-
mine the reachability of the query nodes,ue ve, under size-based attack. TheSP
can thus infer the reachability from (1) the size ofLoute(ue) ∩ Line(ve); and (2) the
size of bothLoute(u) andLine(ve). However, the size ofLoute(ue)∩Line(ve) always
exactly equalsImax, and|Loute(ue)| = Loutmax, |Line(ve)| = Linmax. Therefore, the
SP gains zero information content from the sizes.

Proposition 5. Whenδ is set to 0, the graph structure is perfectly protected against size
based attack.
Proof. The proof is similar to that of Prop. 4.

In practice,δ may not necessarily be set to 0 as the sizes ofLins andLouts do
not directly represent the connectivity of a node after surrogates are added toLins and
Lout. However, a non-zero value ofδ requires non-trivial privacy analysis to quantify
the information leakage. Hence, we omit its analysis.

6 Experimental Evaluation
In this section, we present the experimental evaluation that verifies the performance of
our proposed techniques and the effectiveness of our optimization.

6.1 Experimental Setup

Running platform. We conducted all experiments using a machine with Intel Core
i3-2310 2.10GHz CPU and 4G RAM running Windows 7 OS. All algorithms were
implemented using C++ based on the implementation of2-hop labelings provided by
R.Bramandia et al. [3]. The hash function (hs1 andhs2) was 160-bit SHA-1 using two
different salts. The encryptionE was 1024-bit Elgamal [11].

Datasets.We used three synthetic datasets (denoted asSYN) and four real-world
datasets. Some of their characteristics are shown in Tables1 and 2. The synthetic
datasets were all scale-free graphs, which are popular in experimentation. The gen-
erator used was provided by Choi et al. [32]. We controlled the sizes and densities of
the graphs by settingα = 0.27 andβ = 10. The real-world datasets are all publicly
available.6

Table 1.Synthetic datasets

Synthetic graphG |V (G)| |E(G)| |E(G)|/|V (G)|
SYN-1 3073 37615 12.24
SYN-2 5651 15968 2.83
SYN-3 4880 27946 5.73

Table 2.Real-world datasets
Real graphG |V (G)| |E(G)| |E(G)|/|V (G)|

YEAST 2361 7182 3.04
ODLIS 2909 18419 6.33
ERDOS 6927 11850 1.71
ROGET 1022 5075 4.97

6 YEAST: http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm
ODLTS: http://vlado.fmf.uni-lj.si/pub/networks/data/dic/odlis/Odlis.htm
ERDOS: http://vlado.fmf.uni-lj.si/pub/networks/data/Erdos/Erdos02.net
ROGET: http://vlado.fmf.uni-lj.si/pub/networks/data/dic/roget/Roget.htm

Query sets. For each of the synthetic and real-world datasets, we generated 1000 ran-
dom queries, 50% of which were positive queries, generated from the transitive closure,
and 50% were negative queries.

Heuristics. We have implemented the classical2-hop heuristicmaxDensCover [10],
the heuristicmaxSetCover = |Ew ∩ T ′|, also proposed by Cheng et al. [8], and our
heuristicmaxISCover. These heuristics are plugged into2-hop construction (Sec. 3).δ
is set to 0 by default.

6.2 Experiments on Synthetic Datasets

Effectiveness ofmaxISCover. Table 3 reports the comparison onImax of the above
three heuristics. We can see thatmaxISCover alwaysproduced the smallestImax when
compared tomaxDensCover andmaxSetCover, asmaxISCover considers the inter-
section size for each iteration of the2-hop construction. For instance,Imax with maxISCover

heuristic was 88 and 2.5 times smaller than that withmaxDensCover andmaxSetCover
heuristics on average, respectively. We note that whilemaxSetCover was not proposed
to minimizeImax, maxSetCover greedily determines centers that most cover the uncov-
eredT (G). Our experiment showed that this sometimes led to smallImaxs.
Effectiveness ofunifyIS. Next, we tested the algorithms for unification of the inter-
section results. In particular, Table 4 reports the comparison of the number of distinct
surrogate nodes introduced byunifyIS (Algo. 1) and a baseline algorithmNaive.
Naive chooses to add unused surrogate nodes into the index rather than checking if the
surrogate nodes from previous iterations can be reused. Thenumber of added surrogate
nodes inMASN was almost always at least three times fewer than that ofNaive under all
other heuristics. Moreover, as theImax was the smallest undermaxISCover (Table 3),
such anImax leads to the smallest distinct number of surrogate nodes, except in SYN-1.

Table 3.The maximum intersection sizeImax

Graph
Imax

maxDensCover maxSetCover maxISCover

SYN-1 2558 22 15
SYN-2 17 7 3
SYN-3 1169 48 13

Table 4.# of distinct added surrogate nodes

Graph
Naive vs.MASN

maxDensCover maxSetCover maxISCover

SYN-1 7.86M vs. 12.11k67.61k vs. 17.30k46.10k vs. 13.73k
SYN-2 96.07k vs. 8.75k 39.56k vs. 6.24k 16.95k vs. 6.08k
SYN-3 5.70M vs. 23.03k0.23M vs. 18.92k63.44k vs. 11.11k

Table 5.Query time atSP and client

Graph
SP (ms) vs. Client (ms)

maxDensCover maxSetCover maxISCover

SYN-1 106.54 vs. 0.522.55 vs. 0.43 2.02 vs. 0.46
SYN-2 2.01 vs. 0.56 1.37 vs. 0.67 1.79 vs. 0.47
SYN-3 52.35 vs. 0.54 4.44 vs. 0.52 2.15 vs. 0.52

Table 6.Throughput atSP

Graph
SP (query per second)

maxDensCover maxSetCover maxISCover

SYN-1 9 392 495
SYN-2 495 730 559
SYN-3 19 225 465

Query performance and throughput of pp-2-hop. Table 5 presents the query time at
both theSP and the client side. Each of the reported times is the averageof 1000
queries. For the query time at theSP side, as theImaxs due tomaxISCover were
small, the times of multiplications on the flags were small. Therefore, the query times
of maxISCover were the best in all cases. ForSYN-1 and SYN-3, maxISCover is
more than an order of magnitude faster thanmaxDensCover; for SYN-3, maxISCover
is more than twice as fast asmaxDensCover. At the client side, the client only needs to

performonedecryption ofRe for every query and the decryption algorithm essentially
did the same amount of computation. Thus, the times at the client side were roughly the
same and very small.

Based on the query performances, we calculate the corresponding throughput of
the SP in Table 6. The results showed that with a commodity machine,the SP us-
ing maxISCover consistently offers a throughput around 500 queries per second. In
comparison,maxDensCover is the least efficient. WhilemaxSetCover sometimes has
comparable throughputs, it is more sensitive to the datasets used.

Table 7.The maximum intersection sizeImax

Graph
Imax

maxDensCover maxSetCover maxISCover

YEAST 237 6 4
ODLIS 274 3 3
ERDOS 250 5 3
ROGET 752 6 4

Table 8.# of distinct added surrogate nodes

Graph
Naive vs.MASN

maxDensCover maxSetCover maxISCover

YEAST 0.56M vs. 7.72K14.17K vs. 2.81K 9.44K vs. 2.72K
ODLIS 0.80M vs. 8.39K 8.73K vs. 2.98K 8.73K vs. 2.98K
ERDOS1.73M vs. 8.86K34.64K vs. 7.03K20.78K vs. 7.01K
ROGET 0.77M vs. 3.75K 6.13K vs. 1.40 4.09K vs. 1.28K

Table 9.Query time atSP and client

Graph
SP (ms) vs. Client (ms)

maxDensCover maxSetCover maxISCover

YEAST 12.38 vs. 0.58 0.89 vs. 0.50 0.73 vs. 0.47
ODLIS 13.33 vs. 0.68 0.59 vs. 0.50 0.65 vs. 0.53
ERDOS 11.98 vs. 0.55 1.34 vs. 0.59 0.97 vs. 0.52
ROGET 31.91 vs. 0.64 0.57 vs. 0.59 0.29 vs. 0.64

6.3 Experiments on Real-World Datasets

Finally, we conducted a similar evaluation on four publiclyavailable real-world datasets.
Since the results were similar to those obtained from synthetic datasets, we only high-
light some major results here.

Table 7 shows the performances ofmaxISCover. Our proposedmaxISCover heuris-
tic consistently produced the smallestImax when compared to the other two heuristics.
Since theImaxs due tomaxISCover were the smallest, the number of distinct added
surrogate nodes byunifyIS were also the smallest as shown in Table 8. The query
time at both theSP side and the client side are shown in Table 9. The query time of
maxISCover at theSP side was almost always at least an order of magnitude faster
than that ofmaxDensCover.

7 Conclusion

In this paper, we investigated privacy-preserving reachability query services. We pro-
posed heuristic algorithms to determine a2-hop labeling calledpp-2-hop. We proposed
and analyzed its private query processing overpp-2-hop. We conducted experiments to
show the performance of our techniques. In the future, we plan to (i) integrate the large
body of optimizations for2-hop labeling intopp-2-hop (e.g., [30]) and (ii) implement
the shortest distance queries which are supported by the original2-hop labeling [10].
Acknowledgement.Zhe Fan, Peipei Yi and Byron Choi were partially supported by
GRF 210510. Shuxiang Yin and Shuigeng Zhou were supported bythe Research Inno-
vation Program of Shanghai Municipal Education Commissionunder grant No.13ZZ003.

References

1. R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of transitive relationships
in large data and knowledge bases. SIGMOD, 1989.

2. G. D. Bader, M. P. Cary, and C. Sander. Pathguide: a pathway resource list. Nucleic Acids
Research, 34(suppl 1):D504–D506, 2006.

3. R. Bramandia, B. Choi, and W. K. Ng. Incremental maintenance of 2-hop labeling of large
graphs.TKDE, 22(5):682–698, 2010.

4. J. Cai and C. K. Poon. Path-hop: efficiently indexing large graphs for reachability queries.
CIKM, pages 119–128, 2010.

5. N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou. Privacy-preserving query over encrypted
graph-structured data in cloud computing. InICDCS, pages 393–402, 2011.

6. J. Cheng, S. Huang, H. Wu, and A. Fu. Tf-label: a topological-folding labeling scheme for
reachability querying in a large graph. SIGMOD, pages 193–204, 2013.

7. J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast computationof reachability labeling
for large graphs. EDBT, pages 961–979, 2006.

8. J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast computing reachability labelings for
large graphs with high compression rate. EDBT, pages 193–204, 2008.

9. B. Chor et al. Private information retrieval.J. ACM, 45:965–981, 1998.
10. E. Cohen et al. Reachability and distance queries via 2-hop labels. SODA, 2002.
11. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.

In CRYPTO, pages 10–18, 1985.
12. Z. Fan, Y. Peng, B. Choi, J. Xu, and S. S. Bhowmick. Towards efficient authenticated sub-

graph query service in outsourced graph databases.IEEE Transactions on Services Comput-
ing, 99, 2013.

13. J. Gao, J. X. Yu, R. Jin, J. Zhou, T. Wang, and D. Yang. Neighborhood-privacy protected
shortest distance computing in cloud. SIGMOD, pages 409–420, 2011.

14. X. He, J. Vaidya, B. Shafiq, N. Adam, and X. Lin. Reachability analysis in privacy-preserving
perturbed graphs. WI-IAT, pages 691–694, 2010.

15. Informatics Outsourcing. Outsourcing Solution Service.http://www.informaticsoutsourcing.com/.
16. R. Jin, N. Ruan, S. Dey, and J. Y. Xu. Scarab: scaling reachabilitycomputation on large

graphs. SIGMOD, pages 169–180, 2012.
17. R. Jin, N. Ruan, Y. Xiang, and H. Wang. Path-tree: An efficient reachability indexing scheme

for large directed graphs.TODS, pages 7:1–7:44, 2011.
18. R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a high-compression indexing scheme for

reachability query. SIGMOD, pages 813–826, 2009.
19. V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev. Private analysis of graph struc-

ture. InVLDB, pages 1146–1157, 2011.
20. J. Katz and Y. Lindell.Introduction to Modern Cryptography. Chapman & Hall/CRC, 2007.
21. A. Kundu et al. How to authenticate graphs without leaking. InEDBT, pages 609–620, 2010.
22. A. Kundu et al. Efficient leakage-free authentication of trees, graphs and forests.IACR

Cryptology ePrint Archive, page 36, 2012.
23. D. A. Menasće. Qos issues in web services.Internet Computing, 6(6):72–75, Nov. 2002.
24. K. Mouratidis et al. Shortest path computation with no information leakage. PVLDB, 2012.
25. R. Schenkel, A. Theobald, and G. Weikum. HOPI: An efficient connection index for complex

XML document collections. InEDBT, pages 237–255, 2004.
26. S. Seufert, A. Anand, S. Bedathur, and G. Weikum. Ferrari: Flexible and efficient reachability

range assignment for graph indexing. ICDE, pages 1009–1020, 2013.
27. S. Trissl and U. Leser. Fast and practical indexing and queryingof very large graphs. SIG-

MOD, pages 845–856, 2007.
28. S. J. van Schaik and O. de Moor. A memory efficient reachability data structure through bit

vector compression. SIGMOD, pages 913–924, 2011.
29. K. Xu, L. Zou, J. X. Yu, L. Chen, Y. Xiao, and D. Zhao. Answering label-constraint reacha-

bility in large graphs. CIKM, pages 1595–1600, 2011.
30. P. Yi, Z. Fan, and S. Yin. Privacy-preserving reachability queryservices for sparse graphs.

GDM, 2014.
31. H. Yildirim, V. Chaoji, and M. J. Zaki. Grail: scalable reachability index for large graphs.

PVLDB, 3(1-2):276–284, 2010.
32. L. Zhu, B. Choi, B. He, J. X. Yu, and W. K. Ng. A uniform framework for ad-hoc indexes to

answer reachability queries on large graphs. DASFAA, pages 138–152, 2009.

A Appendix: Proof of Proposition 1

PROPOSITION1. The problem ofMASN is NP-hard.

Proof. (Sketch)The hardness is established by a simple reduction from the classical
MINIMUM VERTEX COVER problem (MVC): “Given a graphG = (V,E), determine the
smallest subsetV ′ of V such that for each edge (u, v) in E, eitheru or v is a member
of V ′.”

Reduction. Consider an instance of theMVC problem isG = (V,E). We construct an
instance of theMASN problem (i.e.,2-hop labels) described as follows: Eachvi in V

corresponds to a surrogate nodedi, which can be added toLins orLouts. Each edge
(vi, vj) in E denotes an intersectionLin(ai) ∩ Lout(bj). We constructLins andLouts
in a special way such that the following rules are true:

1. Adding eitherdi or dj to bothLin(ai) andLout(bj) makes|Lin(ai) ∩ Lout(bj)|
exactlyImax.

2. Addingdi or dj to eitherLin(al) or Lout(bm) denoted by an edge (vl, vm) makes
|Lin(al) ∩ Lout(bj)| > Imax or |Lin(ai) ∩ Lout(bm)| > Imax, wherevi 6= vl and
vj 6= vm.

The above two rules state thatdi or dj can only be addedLin(ai) andLout(bj) and
nothing else. Finally, we add real center nodes toLin andLout such that the sizes of
Lins andLouts are respectively identical. Therefore, the constraint ofMASNthat mini-
mizesLinmax andLoutmax has no effect when determining a solution of thisMASNinstance.
The size of the2-hop labels constructed in this way is at most|V |Imax × 2|V |, where
Imax are needed to encode the second condition for eachvi in V and 2|V | are the total
number ofLins andLout.

Analysis of the solution ofMASN. Suppose that we have determined the solution of
MASN Dw where all intersection results areImax Dw, which is a set of surrogate nodes
used. First, eitherdi or dj has been added toLin(ai) ∩ Lout(bj) for all intersections.
Each intersection is an edge. DenoteC = {vi — di ∈Dw}.C is a vertex cover. We can
have “Dw is minimizedif and only ifC is minimized” by a simple proof by contradic-
tion. Thus, we obtain a solution forMVC by solvingMASN. SinceMVC is NP-hard,MASN
is NP-hard.

