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Abstract. Due to the massive volume of graph data from a wide range of recent
applications and resources required to process numerous queldegeascale,

it is becoming economically appealing to outsource graph data to a thitgl-par
service provider §P), to provide query services. HowevetP cannot always
be trusted. Hence, data owners and query clients may prefer not asexpeir
data graphs and queries. This paper studies privacy-preservery garvices
for a fundamental query for graphs namely the reachability queryevbeth
clients’ queries and the structural information of the owner’s data artegqted.
We proposerivacy-preserving 2-hop labelingp-2-hop) where the queries are
computed in an encrypted domain and the input and output sizes of angsgju
are indistinguishable. We analyze the securitpw®-hop with respect to cipher-
text only and size based attacks. We verify the performange-@fhop with an
experimental study on both synthetic and real-world datasets.

1 Introduction

There is a wide range of emerging applications of grapheirad datae.g, bioinfor-
matics, communication networks, social networks, web lmpoand semi-structured
data. Many graph queries have been proposed to retrievegsaph data. However,
as the volume of graph data is increasing at an unprecedeatiedhosting efficient
query services has become a technically challenging tds&oWnersof graph data
may not always be equipped with the expertise required taigeosuch services and
therefore may emploguery service provider&SPs) to hostquery serviceswhich are
often supported by high performance computing. Securitgl{sas the confidentiality
of messages exchanged) has been stated as one of the estobQuality of Services
(Qo0S) [23], asSP s cannot always be trusted. This attribute may influence thiegy
ness of both data owners and query clients to&/B& services.

Take the reachability query — one of the méshdamental and populagraph
queries [3,4,7,8,10,16-18, 25-29, 31] — as an exangpileen two nodes andv of
a graph, the reachability query is used to test ifs reachable from. or not A query
client may prefer not to expose his/her reachability quergitSP. On the other hand,
the data owner may prefer that ti§¢° not be able to infer the structure of their graph
data. Therefore, the query results must be protected asimaiSPs can exploit the
results from multiple queries to infer the graphs’ struetur

Motivating example. Consider a pharmaceutical company whose revenue depends
mostly on the invention of Health Care Products, illustlateFig. 1. The company may
have discovered new compounds for a new product. To savesl@ing experiments, it
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Fig. 2. A (partial) schematic of a biological net-
work (LHS) and its2-hop labeling (RHS)

may often query the compounds from web-accessible bicbgiathway networks of
massive size (such as [2]) to understand the compoundsiciesistics, such as whether
it is possible for the compounds to form other compounds miachemical reactions
(reachability in the network). However, on the one hand,dbmpany does not want
the SP to know about the queries (the compounds), as it may applydtents for the
synthesis. On the other hand, the owner of the pathway nk$woay not only lack the
experience to host query services (which is best suppoxstéd bompaniese.g.,[15])
but also be reluctant to release the networks to the publierratively, the owner is
willing to release a license only to paid users. Therefdaris,drucial to protecboththe
queries and the network from tkssP.

This paper studies the problem @faluating the reachability query at a$P without
compromising the privacy of the reachability of the quergemand the graph structure
under cipertext-only and size-based attacks, in the pgraddf query service@o be
detailed with Fig. 1 in Sec. 3). To our knowledge, this hashesn addressed before.

There have been many recent studies on efficient reaclyadiléry €.g, [3,4,6-8,
17,18,25-28,31]). Jin et al. [16] show that these studiaseaoughly categorized into
transitive closure compression®fined online searclandhop labeling The first two
categories suffer from high storage costs and require e@arches, respectively (to
be discussed in Sec. 2). In this paper, we propose our tastsigased on hop labeling
[10], in particular2-hop labeling. The benefits of adoptidghop labeling are threefold.
Firstly, the structures df-hop labels are simple, where each node is associated with two
sets of nodes calledin andLout. Secondly, the query evaluation withhop labeling
is an intersection between ain and anLout. Such simple structure and algorithm
make privacy preservation plausible. Thirdlyhop labeling is an active research topic.
The recent works on large graph partitionireyg, [8]), compressiond.g, [7]) and
maintenanced.g, [3, 25]) of 2-hop labeling can be readily adopted.

This paper proposasp-2-hop (privacy-preservin@-hop), which adopt®-hop la-
beling. Firstly, the evaluation of each query ®hop labeling only involves an inter-
section between two sets of center nodes. Hence, we minthezgze of the maximum
cardinality of the intersection results and adahimalartificial nodes (called surrogate
nodes) taLins andLouts such that the intersection results for all possible qaeaaie
of the samesize. We unify each of thein andLout labels such that the difference of
the label set sizes are within a user-defined parametern8cave encrypt the-hop
labels, after adding surrogate nodes and evaluate quartes iencrypted domain. We
analyze the privacy qgfp-2-hop.

The contributions of this paper are summarized as follows.

Fig. 1. Overview of the system model

— We propose algorithms to unify the sizeefiop labels and the query result sizes;
— We propose private query processing over the encrypiesb labels;



— We propose a new heuristiehop construction that yield8-hop labeling that min-
imizes the intermediate results in private query processind
— We conduct an empirical study to confirm that our techniqueséicient.

The rest of this paper is organized as follows. We introdueesrelated work in
Sec. 2. We then present the background, the problem and #mei@w of our solution
in Sec. 3. We proposgp-2-hop, the index construction, optimization and query pro-
cessing in Sec. 4. We conduct a privacy analysis in Sec. 5.réfept an experimental
evaluation in Sec. 6. We end this paper with the conclusid@eia 7.

2 Related Work
In this section, we present some related works on securiyagh queries.

Authentication of graph queries.Query authentication is a security problem where the
SP cannot be trusted. It requires the client to verify the odmress of the data graphs
returned. Kundu et al. [21, 22] focus on the verification a #luthenticityof a given
portion of data(subtree/subgraph that users’ have the right to accessttmwleakage

of extraneous information of the data (tree/graph/foréidtey optimize the signature
needed [22]. Zhe et al. [12] propose an efficient authemitatibgraph query services
framework under the outsourced graph databases systerampagison, the input of
our problem is a reachability query not a subgraph for veion. Our problem focuses
on protecting both the query and its answer frsifs.

Privacy-preserving graph query. He et al. [14] analyze the node reachability of the
graph data, with the preservation of edge privacy. Unfately, the method reveals the
reachability of the query nodes and partial structure ofgftegoh data to th&P. Gao
et al. [13] propose neighborhood-privacy protected slsbidéstance in the paradigm
of cloud computing. This aims to preserve all the neighbochoonnections and the
shortest distances between each pair of nodes in outsogirael data. When this work
is directly applied to reachability queries, some inforimatabout the graph structure
and the reachability of the query nodes are still exposeldasP.

Mouratidis et al. [24] determine the shortest path of thergmedes with no infor-
mation leakage by using the PIR [9] protocol. Firstly, thgthtomputational cost of
PIR has been well known. Secondly, the PIR approach recdthiestsansfer of the same
amount of data for every query, which can be large. Readhatjileries are simple (yet
fundamental) queries and do not require the use of the cdedRynethod. Cao et al. [5]
propose to support subgraph query over an encrypted datalbasnall graphs. Their
work protects the query privacy, index privacy and featumeagy. However, reacha-
bility queries cannot be expressed as subgraph queriesiaketr al. [19] present an
efficient algorithm for outsourcing useful statistics odgh data by protecting the edge
differential privacyand they support counting queries but not reachabilityigaer

Approaches for reachability query. Numerous approaches for reachability query have
been proposed recently in the literature. Jin et al. [16¢nély discuss the approaches
based on three main categori&sinsitive closure compressiongfined online search
and hop labeling (i) Transitive closure compressions.g, [1, 17, 28]) offer the best
query performance. It is known that their storage coststardtghest. (ii) Refined on-
line search€.g, [26,27,31]) relies on online searchesy, DFS and BFS) by definition
leaks graph structure information and it is not clear howy tten be adopted here. (jii)



The seminab-hop labeling is proposed by Cohen et al. [10] and further optadiz
by many studies [7, 8, 25]. Due to the simple structure of2hwep labeling approach

and the simple query evaluation (as motivated in Sec. 1jhigngaper, we propose our
technigues based on thehop labeling approach.

3 Problem Formulation and Overview

This section formulates the problem studied and gives arviewe of our solution.

Data model We considedirected node-labeled graphé graph is denoted as, and
V(G) andE(G) are the node and edge setghfrespectively. Since the reachability in-
formation of nodes in a strongly connected component istid@nwe assume directed
acyclic graphsI{AG), for presentation brevity. A reachability query takes mamesu
andv as input, denoted as~- v, and returns trudf v is reachable from.

System model We follow the system model that is commonly used in theditigre of
database outsourcing, presented in Fig. 1. The model ¢omdithree parties:

— Data owner An owner owns the graph data and computes the privacy4piage
2-hop labeling offlineonce It outsources them to the service provider and delivers
query clients a sakt; to encrypt queries and the secret K€yto decrypt results;

— Service provide(SP): TheSP has high computational utility such as cloud com-
puting. TheSP handles massive query requests over the encrypted datahalf be
of the data owner and returns the encrypted results to sliand

— Client A client encrypts a query using, sends the encrypted query to tfi® and
decrypts the result witlk'. We assume that the clients aS@ do not collude.

Privacy target. Our privacy target is required to keep the following twoqgs of in-
formation private fromattackersusing the two attacks defined in the attack model:

— Reachability of the query nodesk.a the query result. In particular, given a reach-
ability queryu ~~ v, attackers cannot infer whetheican reach te; and
— Graph structurea.k.a. the topology of the data grajghg, the existence of an edge.

Attack model. As other outsourcing work, we assume &f@s arehonest-but-curioug20].
The attackers may be ti#&P or another adversary hacking t§&. For simplicity, we
term the attackers as th&P. TheSP can adopt the following popular attacks.

— Ciphertext only attackwhere theSP can access only the ciphertext (encrypted
graph data) and does not know what their original graph id; an

— Size based attackvhere theSP attempts to infer the two pieces of private infor-
mation from the sizes of the data and the query results.

2-hop labeling.As motivated in Sec 1, we undertake th@op approach to address the
problem. In2-hop labeling, each node € V(G) is associated with two sets of nodes,
denoted agout(u) andLin(u), called2-hop labels Nodes inLout(u) (respectively,
Lin(u)) can be reachable from (respectively, can reach), which are also called
center nodesGiven two nodes andv, u ~~ v iff Lout(u) N Lin(v) # 0.
! There are admittedly many other attacks in the literature. We do not claim theis ipaper
since their theoretical privacy guarantees have yet to be established.



Example 1.Consider the simplified biological pathway network shownha LHS of
Fig. 2. The node ID represents the chemical ID and the edgetelea chemical reac-
tion. The nodes’ labels of the graph data are omitted for baity of presentation. The
original 2-hop labeling (RHS) of the graph is shown in the RHS of Fig. 2. Cdesi
two nodesl and5. Nodel can reach Nods, i.e, 1 ~» 5. Lout(1) N Lin(5) = {5}.
However, Nodd) is not reachable from NodgasLout(6) N Lin(0) = 0.

2-hop construction. To ensure that the-hop labels of V(&) contain all the reacha-
bility (a.k.a connectivity) information of7, the labels must cover all the elements in
the transitive closurd'(G) of G. 2-hop labels (covers) are known to be costly to con-
struct. In practice, they are constructed offline. In additthere are various works that
significantly optimize the construction time.g, [8]).

The majority of previoug-hop constructions focus on minimizing the sizexhop
labeling, defingd azuey(c)ﬂLout(un + [Lin(u)]). As we shall present our heuristic in
Sec 4.1, we briefly outline the heuristic construction applo[10] for2-hop construc-
tion. Initially, a variableT” is defined to represent the uncovered elemeniy 6f), i.e.,

T" = T(G). Elements ofl'(G) are iteratively covered and removed frd@h For each
nodew € @G, an undirected bipartite graph.k.acenter graph\z,, (L., Rw, Ew) iS
built, whereL,, are nodes that can reachand R, are thosev can reach(u,v) € E,,

iff (u,v) isinT’. The heuristic algorithnselectghe centerw whose induced subgraph
G;(L;, R;, E;) of G,, has the largest rativaxDensCover defined below.

|E;NT'|
|L¢URi|

maxDensCover = 1)

In each iteration, the node with the largesthaxDensCover is selected as a center. For
all w € L; andv € R;, the algorithm adds into Lout(u) andLin(v), and removes
(u,w), (w,v) and(u,v) from 7’. The iterations terminate whef{ is empty.

4 Privacy-preserving 2-hop Labeling

This section presents the details of privacy-preser2iagp labeling. Sec. 4.1 presents

a heuristic, to replaceaxDensCover, that minimizeghe maximum cardinalities of the
intersection results,., of 2-hop labels. In Sec 4.2, we propose a greedy algorithm that
introduces a minimal number of surrogate nodekitos andLouts of the2-hop labels
derived from Sec. 4.1. In Sec. 4.3, we encrypt2heop labels. In Sec. 4.4, we present
their private query processing.

4.1 Imax-aware 2hop construction

In practice, /., constructed by usingaxDensCover (outlined in Sec. 3) are very often
large. In our experiments, the averalgg, of the2-hop labels usingnaxDensCover of
our real datasets is 378 (Table 7). Furthermore, ldrges lead to large surrogate labels
and thus high query costs.

In this section, we propose a heuristic to minimigzg, as2-hop labels are con-
structed. The idea is that the heuristic includes the iat#ign information in2-hop
construction. Specifically, the objectives are to minintlze following two quantities:

1. the center node that covers the most uncovered element&'inAs in previous
work, such a heuristic leads to few center nodes and si¥tadb labels; and



2. the maximum cardinality of the intersection betwéemt(u) andLin(v), i.e,
max(|Lout(u) N Lin(v)]).
To achieve the objectives, we propose the heuristic tatid SCover as follows:

|Ew NT'|
maz(|Lout(u) N Lin(v)|)’

)

maxISCover =

whereu € L., v € R,, T" is the uncovered elements T G). Eqn. 2 contains two
main parts. The details are as follows:

1. E, NT"is the uncovered elementsTG) covered by selecting; and
2. maz(|Lout(u) NLin(v)|) is the largesiLout(u) N Lin(v)| of all u,v € V(G).
Putting these together, we use thvaop construction presented at the end of Sec. 3,
replacingmaxDensCover with maxISCover.
@) B G BT =B 0T

Yu € Luw,,v € Ry, max(|Lout(u) NLin(v)|) =4

@ Vu € Luw,y,v € Rw, max(|Lout(u) NLin(v)|) =
Fig. 3. lllustration of selection of center node hyxISCover

Example 2.We comparenaxDensCover andmaxISCover with a schematic shown in
Fig. 3. The graph data is on the LHS. Suppose there are onlycénter nodesu;
andw,) checked in an iteration respectively,,, = {u1, us,us}, Ry, = {v1,v2,v3},
andL,,, = {u2,us,us}, Ry, = {va,v3,04}. We assumeFE,,, N T'| = |E,, N T"|.
maxDensCover may select eithew, or ws. Further assume thatu € L,,,,v € R,
max(|Lout(u) NLin(v)|) = 4andVu € Ly,,v € Ry,, maz(|JLout(u) NLin(v)|) =
5. maxISCover selectsw; as it results in smaller intersections.

4.2 Addition of Surrogate Nodes

Next, we add surrogate nodes2aop labeling to unify the sizes of intersection results
and theLins andLouts.

Unification of Intersection Results. The main idea of adding surrogate nodes into
2-hop labels {ins andLouts) is to achieve that for each and v, the intersection
between surrogate labelsut® (u) andLin®(v) always equals td,.,.> Our objective

is thus to introduce the smallest number of surrogate nddestfie 2-hop label size

is minimized). As the cardinality for each intersectionlig tsame, th&P gains no
connectivity knowledge about specific information of eaalr pf nodes’® We call the
problem theminimum addition of surrogate nod@#ASN), defined below.

Definition 1. The problem of minimum addition of surrogate nod&ss{l) is that given
the 2-hop labels of a graph G, introduce surrogate nodes in bbilas andLouts to
obtainLin®s andLout?®s, such that

- Yu,v € V(G), *(u) NLin®*(v)| = Inax;
— the largestLin® and the largesLout® are minimized; and
= Yuev(e)(|Lin®(u)] + |Lout®(w)]) is minimized.




Algorithm 1 Unify Intersection SizegnifyIS(Lout, Lin)
Input: 2-hop labeling.out andLin
Output: Lout® andLin®

1: Initialize surrogate node sét,, = ||

2: create a priority queu@, for V(G), where the rank of € V(G) is defined by:
Mazyev (Inax - [Lout(u) N Lin(v)|)

3: while v # null, wherev < Q,.getNext() /IscanLins

4:  Dy.movetofront() //move to the front oD,

5

6

while d; « D,,.getNext()
if d; =null and3u’, v’ |Lout(u') NLin(v')| < Inax
d; + new node() andD,,.push(d;)

elsebreak
7: for eachu € V(G), where|Lout(u) NLin(v)| < Inax lIscanLouts
/lif the intersection constrainis satisfied.
8: if ¢(2-hop, u, v, d;) is true
9: Lout(u)<Lout(u)U{d; }; Lin(v)+Lin(v)U{d;}

10: return (Lout, Lin) as(Lout®, Lin®)

Proposition 1. The problem offASN is NP-hard.

It is not surprising that the problem d@fASN is NP-hard, as presented in Prop. 1.
Due to space constraints, we provide its proof in the Appendle propose a greedy
algorithm calledinifyIS (shown in Algo. 1) to solve the problem BASN.

The input ofunifyIS is 2-hop labels (.e., Louts andLins). The output is the-
hop labels with surrogate nodeise., Lout® andLin®. The main idea is that for any
surrogate node, we addd to as manyLins andLouts as possible, i0(|V]), and
hence more entries ifi(G), in O(|V|?), can be covered. Specifically, we maintain a list
of surrogate nodeB,, as we add them to thehop labels (Line 1)unifyIS processes
the Lins whose intersection with some otHaruts has the largest gap betwegp,
earlier (Lines 2-3f. As unifyIS may use new surrogate nodes to reduce such a gap,
the surrogate nodes can be used to reduce the gaps betwdemthad many other
Louts. In Lines 5-9unifyIS processes thkouts iteratively. Line 6 checks if there is
aLout to be processed.€., |Lout(u)NLin(v)| < Inay). If SO, and all existing surrogate
nodes have been used in previous iterations, then a newgsiternode is created (Line
6). OtherwiseunifyIS terminates. The surrogate node is added to bettt (u) and
Lin(v) (Line 9), if theintersection constraing (defined below) in Line 8 is satisfied:

(2—hop, u,v,d;) : Vo', |(Lout(u) U {d;}) NLin(v")| < Inax A

V', |Lout(u") N (Lin(v) U {d;})| < Inax, ®

whereu/,;v" € V(G). In other words, there is nflout(u) N Lin(v)| > Iy after
addingd; to bothLout(u) andLin(v). Thus, if+ is true, we can add; into both
Lout(uw) andLin(v). The algorithm terminates when for all pairs of nodeandv,
|Lout(u) NLin(v)| = Inay.

2 For brevity, we assume the data graph does not contain highly disdedneades where its
I.x €quals 0 or 1. To cater for such special cases, we may further satraum 7.« (€.9, 4)
so that theSP cannot infer whether the graph is highly disconnected or not.

% In 2-hop labeling, the sizes of the intersection results of a query indicate the rekityhatb
nodes. Only unreachable query nodes have a value of 0.

4 GivenLins andLouts, the value of., can be easily computed.



v Lin®(v) Lout®(v

0 0,7,8,9 0,1,2,3,5,6,7,8 v Lin®(v) Lout* (v)

1 1,7,8,10 1,2,3,5,6,7,8,9 :

2 2,7,8,11 2,3,5,6,7,8,9,10 4 0124910 13 4,7,71,73,,8,9,10,11,12

3 3,7.8,12 3,4,7,8,9,10, 1T 5| 4,5,71,72,8,14 5,6,7,72,8,9,10,11,12,13
4| 0,1,2,4,9,10,13 4,7,8,9,10,11,12 6 4,6,72,73,8 6,7,72,8,9,10,17, 12 13,14
5 4,5,7,8,14 5,6,7,8,9,10,11, 12,13 Encryption of Lin®(6):

6 4,6,7.8 6,7.8,9,10, 11,12, 13,14 | Lin®(hs, (6)) = { (s, (4), E(0)), - - (s, (8), E(1))}

Fig. 4. The 2-hop labels of the network in Figrig.5. One iteration of spllt om2-hop labels
ure 2 after the addition of surrogate nodes shown in Figure 4 and the encryptetn®(6)

Discussion.The number of distinct surrogate nodes useabyfyIS is I,..|V| in the
worst case and,., in the best case. Therefore, the total number of surrogadesno
added byunifyIS is I.x|V|(1 + |V]) in the worst case an2l,..|V| in the best case,
where|V| is the number of nodes in the graph.

Example 3.Figure 4 shows the-hop labeling after the addition of surrogate nodes to
that in Figure 2. The IDs of the real centers are highlightdobld inLin®s andLout®s.
Other IDs represent surrogate nodes. The of the 2-hop labels is 3.

Consider the first iteration afnifyIS. Sincel,.y - [Lin(0)| N |Lout(1l)| = Lyax,
Node 0 is one of the nodes with the highest ranlQin (Lines 2 and 3). There are
obviously some intersection resultslofn andLout smaller thanl,.,. Moreover,d;
is null as D,, is empty. A new surrogate (Node 7) is created (Line 6). Nods 7 i
introduced to bottL.in(0) andLout(1) as this does not violat¢ (Lines 8-9). Next,
Node 7 is added thouts of Nodes 0 and 2-6 as the addition does not violafeines
7-9). In the next few iterations (Lines 5-nifyIS adds new surrogate nodes 8 and 9
to Lin(0) and the correspondiriguts until all intersection results @fin(0) and other
Louts are of the sizé, ...

Then,unifyIS processes the next node @, (Line 3), for example, Node 1.
unifyIS uses Node 7 (Lines 4-5) and adds iftim(1) as it does not violaté (Lines
7-9). Similarly, Node 8 is added toin(l). However, Node 9 cannot be added.ia(1)
as|Lin(1) N Lout(1) = |{1, 7, 8}| = Inax-

Consider the surrogate node 7 from Figure 4. It has been afiplhces. However,
it covers 6x 7 elements irl'(G). For any queryu andv, the intersection size is the
same. Following the same queries of Examplé.alit®(1) N Lin®(5) = {5, 7,8} and
Lout®(6) NLin®*(0) = {7,8,9}. The result size is always 3.

Unification of Labeling Sizes In order to unify the sizes of bothin®s andLout®s,

we introduce a (postprocessing)ifyLin operation of surrogate nodes. Since the task
of unifying Lin® andLout® are symmetric, we only discugsin® for a concise pre-
sentation. We first denote the size of the largest® (respectivelyLout®) asLing.y
(respectivelyLout,.y). The intuitions of our approach can be described as foll¢)s

for each node: in the graph wheréLin®(u)| < Ling.y, We split its surrogate nodes
in Lin®(u) such that the size dfin®(u) is closer toLin,.,; and (2) we never increase
the .y during unification. We formally define the problem, namehjfication of the
labeling sizgULS) as follows.

Definition 2. The problem of the unification of the labeling siz&.g) is that given
Lin®s andLout®s, unify both of their sizes, s.Y/y, v

||Lin®(uw)|—Linpax| < ésand ||Lout®(u)|—Loutpax| <
Linpayx Loutpax

where is a user-specified parameter for the allowable differemcthe label sizes.



Algorithm 2 Unify Lin® unifyLin(Lout®, Lin®, ¢)
Input: 2-hop labelingLout® andLin® after addition of surrogate nodes, and the user-specified
allowable differences in the sizes of.in® andLout®.
Output: Lout® andLin®
1: for eachu, |Lin®(u)| + § < Lingax

choose a surrogate nodefrom Lin®(u)
W ={wi, -+ ,Wn,Wnt1}, 7 < Lingay — |Lin®(u)| — 1
Lin®(u) + (Lin®(u)/{w}) U{wi, -+ ,wni1}

for eachu’, where|Lin®(u')| < Lingax A w € Lin®(u’)
Lin®(u') < (Lin®(u') /{w}) U {wni1, wna}
for eachwv, where|Lout®(v)| = Loutnax A w € Lout®(v)
Lout®(v) < Lout®(v) U {wn41}
for eachwv, where|Lout®(v)| < Loutmax A w € Lout®(v)
Lout®(v) < Lout®(v) U {w;, wn42},
wherei € [1,n] and eachi is added to someout® at least once.

SO XN DU AWN

We proposemnifyLin algorithm presented in Algo. 2 to solve the problenub$.
Suppose that we have sorted thie®s by their sizes in descending order and we apply
unifyLin to eachLin® accordingly. We first choose a surrogate nadfgom Lin®(u)
(Lines 1-2). We declare new surrogate nodles, - - - , w,,, w,11}, wheren < Ling, -
|Lin®(uw)| - 1 (Line 3). We replacev by {wy, - - - ,wy 41} in Lin®(u) (Line 4). For each
u' wherew € Lin®*(u') and|Lin®(u')| < Ling.y, we replaceo with w,, .1 andw,,15 in
Lin®(u’) (Lines 5-6). For eaclr where|Lout®(v)| = Louty.y andw € Lout®(v), we
addw,, 1 (Lines 7-8). For each where|Lout®(v)| < Louty.y andw € Lout®(v), we
add{w;, w,42}, wherei € [1,n] (Lines 9-10).

Example 4.We illustrate Algo. 2 with reference to tleehop labels shown in Figure 4.
The result after onenifyLin operation is shown in Figure 5. Suppose we choose Node
7 from Lin®(5) (Line 2).Ling., = 7 and|Lin®(5)| = 5. Thereforep+1 can be 2. We
replace Node 7 witf7,, 75} in Lin®(5) (Line 4). Since Node 7 appears in some other
Lin®, we add{7;, 73} toLin®(), ¢ € {0,1,2,3,§ (Lines 5-6).Louty.y = [Lout®(5)| =
|Lout®(6)|. We add Node 7into Lout®*(5) andLout®(6) (Lines 7-8). We add Node;7
into Lout®(j) (Lines 9-10), wherg = {0,1,2,3,4.

One may verify that the sizes of intersection results do hahge with a simple case
analysis. In the meantime, all the surrogate nodes dustdyLin appear in some
intersection results. The increase in the size&iaf® andLout® due to aunifyLin
operation can be listed as follows: (i) the sizeLah®(u) is increased by.+1 (Line 4);

(ii) the size ofLin® that containw is increase by two (Lines 5-6); (iii) the sizes of
Lout® with w whose sizes arkout,., are increased by one (Lines 7-8); and (iv) the
Lout?®s that contains whose sizes are smaller thaout,,, increase by two (Lines 9-
10). We then alternately apphaifyLin operations om.in® andLout® until the sizes
do not differ from the largest labels by(as stated in Def. 2).

4.3 Index Encryption

After adding the surrogate nodes, the remaining task is¢oyphthe labels . In order to
distinguish the real nodes and surrogate nodes, we implahenodes with flag values
(see Def. 3). The flag values of real nodes are 0, and 1 other\Mds will present how



to use the flags to encode the query result in Sec. 4.4. Beltweigew definition of
centes forLout®s orLin®s.

Definition 3. Eachcenterof Lout®(u) or Lin®(v) is a binary tuple @, f), wheref =
0 if w is a real center, and otherwise.

Based on Def. 3, we encrypt the surrogate labels in orderdigtrboth the reach-
ability of the query nodes and the graph structure. (i) Telady association between
the nodes and the center nodes, we hashuthe (w, f) and theu in Lout®(u) and
Lin®(u) with a one-way collision-resistant hash functierith different salts, denoted
ashs, (w) andhs, (u), to hash them respectively. Recall that thet « does not imply
hs, (w) = hg,(u), wheres; # so. (ii) Regarding the encryption of the flag value, we
use Elgamak(-) [11], which is amultiplicative homomorphic encryptianethod. The
benefits of Elgamal are twofold: (1) since the flag has binalyes, Elgamal ensures
randomness in the encrypted flags; (2) Elgamal allows oneypiéan at the client side.
To sum up, the definition of the privacy-preservingop labeling is given as follows.

Definition 4. Eachencrypted centeis a binary tuple(w,, f.), wherew. = hs, (w)
and f. = E(f). Theprivacy-preservin®-hop (pp-2-hop) is a 2-hop labeling where
each encrypted node., whereu, = hs,(u), is associated with two sets of encrypted
Lout®(u) andLin®(u), denoted asout®(u) andLin®(u).

Example 5.Fig. 5 illustrates an example of the encryptiorLah®(6) for node6. The
encryption ofLin®(6) is denoted as&in®(hs,(6)), whereh,,(6) is the encryption of
node6. For example, the first center bin®(4), (4, 0), is encrypted &S, (4), E(0)).

4.4 Private Query Processing

Based on the encryption of the-2-hop labeling in Def. 4, we present its query pro-
cessing without decryption. There are three main stepsTIK#) client encrypts the
query — the query. ~» v is hashed ta:,. ~ v.; (2) The SP intersectd.out®(u.)
andLin®(v.) and returns the encrypted resdlt to the client; and (3) The client uses
the secret keys< and an Elgamal decryption to decrypt the result decryption.

Naive solution. The ndve solution for processing a query ~ v is to perform an
intersection on the centersliout®(u.) andLin®(v. ) and transmit the encrypted flag of
the centers in the intersection results to clients. Thattecrypts each of the encrypted
flag and checks if there is at least one flag that signifies acesgter. However, this
solution required,., decryptions.

Multiplicative homomorphic query processing. It is known that decryption is costly,
especially when the client is not equipped with powerfuldweare. Therefore, we pro-
pose a query processing that requiog® decryption at the client side. We define the
intersection result ofi. andv. asR(u.,v.), or simply R, where
R ={(we, fe) | (we, fe) € Lout®(u.) and (., f.) € Lin®(ve)}.

The encrypted resuli., defined ag[[,, ; cr fe.® is transmitted to the client.
At the client side, the client decrypf3. by using the secret kex . If the decrypted
message is 0, thancan reach. Otherwisey cannot reach. Note thatR, is a product
of flag values. The product isiff there is a real node (whose flag is 0) in the intersection
result. That is, if all centers in the results are surrogatesproduct?, is 1.

® We use[ | and x to denote the modular multiplications in the Elgamal encryption scheme.



Example 6.Consider the private query processing of the query 5, following Ex-
ample 1 for clarity. The query processing ppr2-hop in Example 3 is similar: (1) the
client hashes the query nodes/as(1) andh,,(5) by using the salt, from the data
owner, and issues to th&P; (2) theSP performsLout®(hs,(1)) N Lin®(hs,(5)) and
obtains{(hs, (5), E(0)), (hs, (7), E(1)), (hs, (8), E(1))}. Based on the result, th&P
computes the resulk. = E(0) x E(1) x E(1) = E(0) and returns it to the client; and
(3) the client decrypts th&,, which is0, and obtains that Nodecan reach Nods.

5 Analysis of Privacy
In this section, we provide an analysis of the privacy unkderssumptions of our attack
model,i.e, the size based attack and ciphertext only attack (stat8ddn3).

Privacy against Ciphertext Only Attack. We prove that the reachability of the query
nodes and the topology of the graph have been protected fr@§? under thecipher-
text only attack

Proposition 2. TheSP breaks the reachability of query nodes only if thi@ breaks
either the one-way collision-resistant hash function @& Eigamal encryption.

Proof. (Sketch)Case 1 (i) Suppose theSP can break the Elgamal encryption. The
SP can determine whether the flag of a center signifies a reakcentnot. During
guery processing, th8P can analyze the intersection reskilt The SP identifies the
reachability of a pair of query nodes by checking if thereiisa centerr.

(ii) If the SP can break the hash functioa.§, SHA-1), it can determine the center
identities,i.e., the center IDs ilLin® or Lout®. Then, theSP can check if a center is
real by checking if it has correspondingn® andLout?® in pp-2-hop.

Case 2 Suppose th&P cannot break the one-way collision-resistant hash functio
(e.g, SHA-1) and the Elgamal encryption. We analyze step by steprtformation
the SP obtains during query processing. Given a queryandv., the SP retrieves
Lout®(u.) andLin®(v). TheSP computesk. under the Elgamal encryption.

Since theSP cannot break the one-way collision-resistant hash funciitocan-
not determine either the nodes of the query &ndwv,) or the centers ib.out®(u.) and
Lin®(v.). Moreover, since we assume that $18 cannot break the Elgamal encryption,
it cannot determine the flags of the centerg&.#ut®(u.) andLin®*(v.). Due the homo-
morphic multiplication supported by the Elgamal encryptitheSP cannot determine
the plaintext ofRR.. Thus, theSP does not know the reachability of query nodes.

By exploiting the preservation of the reachability of anytnodes, we prove that
pp-2-hop protects the graph structure from t6@. It is straightforward to argue that it
is not possible to determine tlegistence of an edde a graph undepp-2-hop. Hence,
it is not possible to infer the topology of the graph struetur
Proposition 3. TheSP can determine the existence of an edge only if it breaksreithe
the one-way collision-resistant hash function or the Elghencryption.

Proof. We establish the proposition via proof by contradictionp@se theSP can
determine the existence of one edgev]. The SP has broken the reachability of at
least one query, ~ v. By Prop. 2, this is possible only if th8P breaks either the
one-way collision-resistant hash function or the Elgannargption.



Privacy against Size-Based Attackln addition to the analysis of privacy against ci-
phertext only attack, we prove privacy undéze-based attack

Proposition 4. When is set to 0, the reachability of the query nodes is perfeatty p
tected against size-based attack.

Proof. We prove the proposition via proof of contradiction. SupptieSP can deter-
mine the reachability of the query nodes, ~+ v., under size-based attack. TS®
can thus infer the reachability from (1) the sizelofut®(u.) N Lin®(v.); and (2) the
size of bothLout®(u) andLin®(v. ). However, the size dfout®(u.)NLin®(v.) always
exactly equald .y, and|Lout®(u.)| = Loutyay, |Lin®(v.)| = Lingy. Therefore, the
SP gains zero information content from the sizes.

Proposition 5. Whery is set to 0, the graph structure is perfectly protected aggdive
based attack.
Proof. The proof is similar to that of Prop. 4.

In practice,d may not necessarily be set to 0 as the sizesiaf andLout® do
not directly represent the connectivity of a node aftersyates are added tdn® and
Lout. However, a non-zero value éfrequires non-trivial privacy analysis to quantify
the information leakage. Hence, we omit its analysis.

6 Experimental Evaluation

In this section, we present the experimental evaluationvibidfies the performance of
our proposed techniques and the effectiveness of our ogatian.

6.1 Experimental Setup

Running platform. We conducted all experiments using a machine with Intel Core
i3-2310 2.10GHz CPU and 4G RAM running Windows 7 OS. All aldons were
implemented using C++ based on the implementatio2-bép labelings provided by
R.Bramandia et al. [3]. The hash functidn( andh,,) was 160-bit SHA-1 using two
different salts. The encryptiahwas 1024-bit Elgamal [11].

Datasets.We used three synthetic datasets (denotedS¥N) and four real-world
datasets. Some of their characteristics are shown in Tdblasd 2. The synthetic
datasets were all scale-free graphs, which are popularperarentation. The gen-
erator used was provided by Choi et al. [32]. We controllezidizes and densities of
the graphs by setting = 0.27 and3 = 10. The real-world datasets are all publicly
available®

Table 1. Synthetic datasets Table 2. Real-world datasets
. Real graptG [V (G [[[E(G[[TE(G)[/IV(G)]
Synthetic grapt | [V (G) ||| E(G) || E(G)]/IV(G)] YEAST 2361 | 7182 3.04
SYN1 3073 | 37615 12.24
ODLIS | 2909 | 18419 6.33
SYN-2 5651 | 15968 2.83 ERDOS | 6927 | 11850 171
SYN3 4880 | 27946 5.73 ROGET 1022 T 5075 157

5 YEAST: http://vlado.fmf.uni-lj.si/pub/networks/data/bio/ Ye&gast.htm
ODLTS: http://vlado.fmf.uni-lj.si/pub/networks/data/dic/odbsllis.htm
ERDOS: http://vlado.fmf.uni-lj.si/pub/networks/data/Erdos/E@&net
ROGET: http://vlado.fmf.uni-lj.si/pub/networks/data/dic/rogetdet. htm



Query sets For each of the synthetic and real-world datasets, we gewd 000 ran-
dom queries, 50% of which were positive queries, generated the transitive closure,
and 50% were negative queries.

Heuristics. We have implemented the classi@ahop heuristicmaxDensCover [10],
the heuristianaxSetCover = |E,, N 1’|, also proposed by Cheng et al. [8], and our
heuristicmaxISCover. These heuristics are plugged ir2top construction (Sec. 3).

is set to 0 by default.

6.2 Experiments on Synthetic Datasets

Effectiveness ofmaxISCover. Table 3 reports the comparison ég, of the above
three heuristics. We can see thakISCover alwaysproduced the smallegt., when
compared tanaxDensCover andmaxSetCover, asmaxISCover considers the inter-
section size for each iteration of thehop construction. For instancé,,, withmaxISCover
heuristic was 88 and 2.5 times smaller than that witkDensCover andmaxSetCover
heuristics on average, respectively. We note that whileSetCover was not proposed
to minimize ., maxSetCover greedily determines centers that most cover the uncov-
eredT'(G). Our experiment showed that this sometimes led to sipals.

Effectiveness ofunifyIS. Next, we tested the algorithms for unification of the inter-
section results. In particular, Table 4 reports the consparof the number of distinct
surrogate nodes introduced hyiifyIS (Algo. 1) and a baseline algorithdive.
Naive chooses to add unused surrogate nodes into the index ratrectiecking if the
surrogate nodes from previous iterations can be reusedhdinber of added surrogate
nodes iNMASN was almost always at least three times fewer than thigd bfe under all
other heuristics. Moreover, as tlig,, was the smallest undenxISCover (Table 3),
such an/,,,, leads to the smallest distinct number of surrogate nodegpein SYN-1.

Table 3. The maximum intersection siZg.. ~ Table 4.# of distinct added surrogate nodes

Gra Toax Grap Naive VS.MASN

p maxDensCover|maxSetCover|maxISCover maxDensCover | maxSetCover maxISCover

SYN1 2558 22 15 SYN-1|7.86M vs. 12.11k67.61k vs. 17.30j16.10k vs. 13.73k

SYN-2 17 7 3 SYN-2| 96.07k vs. 8.75k 39.56k vs. 6.24K 16.95k vs. 6.08K

SYN-3 1169 48 13 SYN-3|5.70M vs. 23.03k0.23M vs. 18.92k63.44k vs. 11.11k
Table 5.Query time atSP and client Table 6. Throughput atSP

Grap SP (ms) vs. Client (ms) Grap SP (query per second)

maxDensCover|maxSetCover|jmaxISCover maxDensCover|maxSetCover maxISCover

SYN-1/106.54 vs. 0.5P2.55 vs. 0.432.02 vs. 0.4 SYN-1 9 392 495

SYN-2| 2.01vs.0.56| 1.37 vs. 0.67/1.79 vs. 0.47 SYN-2 495 730 559

SYN-3| 52.35vs. 0.54 4.44vs. 0.522.15 vs. 0.52 SYN-3 19 225 465

Query performance and throughput of pp-2-hop. Table 5 presents the query time at
both theSP and the client side. Each of the reported times is the avesdd®00
queries. For the query time at ti&P side, as thel,.,S due tomaxISCover were
small, the times of multiplications on the flags were smatlefiefore, the query times
of maxISCover were the best in all cases. F@BYN-1 and SYN-3, maxISCover iS
more than an order of magnitude faster tharDensCover; for SYN-3, maxISCover

is more than twice as fast asxDensCover. At the client side, the client only needs to



performonedecryption ofR, for every query and the decryption algorithm essentially
did the same amount of computation. Thus, the times at thatdide were roughly the
same and very small.

Based on the query performances, we calculate the corrdsmpthroughput of
the SP in Table 6. The results showed that with a commodity machimeSP us-
ing maxISCover consistently offers a throughput around 500 queries pesrgbdn
comparisonmaxDensCover is the least efficient. WhileaxSetCover sometimes has
comparable throughputs, it is more sensitive to the degasetd.

Table 7. The maximum intersection SizZg.x

Imax
maxSetCover

6

Graph

YEAST
ODLIS

ERDOS
ROGET|

maxISCover
2

maxDensCover
237
274
250
752

3 3
5 3
6 4

Table 8.# of distinct added surrogate nodes
Naive vs.MASN
Graph

Table 9.Query time atS’P and client
SP (ms) vs. Client (ms)

maxDensCover

maxSetCover

maxISCover

Graph

maxDensCover

maxSetCover

maxISCover

YEAST

0.56M vs. 7.72K

14.17K vs. 2.81K

9.44K vs. 2.72K|

YEAST]

12.38vs. 0.58

0.89vs. 0.50

0.73vs. 0.47

ODLIS

0.80M vs. 8.39H

8.73K vs. 2.98K

8.73K vs. 2.98K|

ODLIS

13.33 vs. 0.68

0.59vs. 0.50

0.65vs. 0.5

ERDOS

1.73M vs. 8.86K

34.64K vs. 7.03K

{20.78K vs. 7.01K

ERDOS

11.98 vs. 0.55

1.34 vs. 0.59

0.97 vs. 0.52

ROGET|

0.77M vs. 3.75H

6.13K vs. 1.40

4.09K vs. 1.28K|

ROGET|

31.91vs. 0.64

0.57 vs. 0.59

0.29vs. 0.64

6.3 Experiments on Real-World Datasets

Finally, we conducted a similar evaluation on four publialgilable real-world datasets.
Since the results were similar to those obtained from syittdatasets, we only high-
light some major results here.

Table 7 shows the performancesnakISCover. Our propose@daxISCover heuris-
tic consistently produced the smalldst, when compared to the other two heuristics.
Since thel,..S due tomaxISCover were the smallest, the number of distinct added
surrogate nodes bynifyIS were also the smallest as shown in Table 8. The query
time at both theSP side and the client side are shown in Table 9. The query time of
maxISCover at theSP side was almost always at least an order of magnitude faster
than that omaxDensCover.

7 Conclusion

In this paper, we investigated privacy-preserving reatitalguery services. We pro-
posed heuristic algorithms to determing-aop labeling callecbp-2-hop. We proposed
and analyzed its private query processing @el-hop. We conducted experiments to
show the performance of our techniques. In the future, we tadi) integrate the large
body of optimizations foe-hop labeling intopp-2-hop (e.g, [30]) and (ii) implement
the shortest distance queries which are supported by thmal-hop labeling [10].
Acknowledgement.Zhe Fan, Peipei Yi and Byron Choi were partially supported by
GRF 210510. Shuxiang Yin and Shuigeng Zhou were supporteldebResearch Inno-
vation Program of Shanghai Municipal Education Commissiather grant No.1327003.
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A Appendix: Proof of Proposition 1

PrROPOSITIONL. The problem ofASN is NP-hard.

Proof. (Sketch)The hardness is established by a simple reduction from #esiclal
MINIMUM VERTEX COVER problem {vC): “Given a graphG = (V, E), determine the
smallest subsét”’ of V' such that for each edge.(v) in E, eitheru or v is a member
of V'.”

Reduction. Consider an instance of th&C problem isG = (V, E'). We construct an
instance of theMASN problem (.e.,2-hop labels) described as follows: Each in V/
corresponds to a surrogate nafle which can be added toins orLouts. Each edge
(v, v;) in E denotes an intersectidrin(a;) N Lout(b;). We construct.ins andLouts
in a special way such that the following rules are true:

1. Adding eitherd; or d; to bothLin(a;) andLout(b;) makes|Lin(a;) N Lout(b,)
exactly [ ax.

2. Addingd; or d; to eitherLin(a;) or Lout(b,,) denoted by an edge( v,,) makes
|Lin(a;) N Lout(b;)| > Inax OF |Lin(a;) N Lout(by,)| > Inax, Wherev; # v; and
Vj # U

The above two rules state thgtor d; can only be addellin(a;) andLout(b;) and
nothing else. Finally, we add real center nodesia andLout such that the sizes of
Lins andLouts are respectively identical. Therefore, the constraimasiithat mini-
mizesLing., andLout,., has no effect when determining a solution of thiSNinstance.
The size of the-hop labels constructed in this way is at mogl| I,.x x 2|V|, where
I..x are needed to encode the second condition for eaghV and 2V| are the total
number ofLins andLout.

Analysis of the solution of MASN. Suppose that we have determined the solution of
MASN D,, where all intersection results afg,, D,,, which is a set of surrogate nodes
used. First, eithetl; or d; has been added tain(a;) N Lout(b;) for all intersections.
Each intersection is an edge. Den6te {v; — d; € D,, }. C'is a vertex cover. We can
have “D,, is minimizedif and only ifC' is minimized” by a simple proof by contradic-
tion. Thus, we obtain a solution fofiVC by solvingMASN. SinceMVC is NP-hard MASN

is NP-hard.



