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~ Abstract—One fundamental type of query for graph databases survey of 1,221 federal, state and local law enforcement
is subgraph isomorphism queries (a.k.asubgraph queries). Due who use social media, four out of five officials used social
to the computational hardness of subgraph queries coupled media to solve crimes. Suppose a law enforcement agency

with the cost of managing massive graph data, outsourcing the . . tiqati t of . individual bl
query computation to a third-party service provider has been IS Investigating a set or suspicious Individuals over a

an economical and scalable approach. However, confidentiality is Social network €.g, Cloob, which is a Persian-language social
known to be an important attribute of Quality of Service (QoS) networking website, mainly popular in Iran) held in a third

in Query as a Service (QaaS). In this paper, we propose the first party SP. In order to monitor the online activities of these
practical private approach for subgraph query services,asym-  ingividuals with one another, the agency wishes to glean in-

metric structure-preserving subgraph query processing, where the . . .
data graph is publicly known and the query structure/topology is formation related to interactions between them on the nétwo

kept secret. Unlike other previous methods for subgraph queries DY issuing a subgraph query representing the relationships
this paper proposes a series of novel optimizations that only between the individuals. Unfortunately, it is possiblet ttiee

exploit graph structures, not the queries. Further, we propose a SP may have been infiltrated by friends or sympathisers of
robust query encoding and adopt the novel cyclic group based hage individuals. Hence, in order to protect the privacshef

encryption so that query processing is transformed into a series .
of private matrix operations. Our experiments confirm that our  INtent of the agency from th&P, the agency cannot expose

techniques are efficient and the optimizations are effective. the subgraph query directly, especially the query streciLe.,
specific relationship pattern between the individuals)wtan
the agency glean relevant information using a subgraphyquer

|. INTRODUCTION while preserving its topological privacy?

Subgraph queries (via subgraph isomorphism) are a fun-Unfortunately, previous work on privacy-preserving graph
damental and powerful query in various real graph applicgueries [3], [4], [12], [15], [19], [21], [24] (except [9])annot
tions [25]. In particular, it is fundamental to various modsupport subgraph queries while preserving their structsa
ern graph queries, such as graph pattern queries [2] atdal. [9] keepboth query and data graphs private. In contrast,
ontology-based matching [29]. While it is well known thags query clients may often have data access privileges, the
subgraph queries are NP-hard, there has been significarivacy requirement of this work is on queries only. As a
research progress on enhancing their performaaag, [8], result, querying significantarger graphs becomes possible.
[14], [26], [30]. A recent attempt has been to outsourc@ther work has studied privacy-preserving graph publicati
costly computation to ajuery service provide(SP), who [5], [6], [22], [32], [33]. Since the published data are d&neid
is often equipped with powerful machines, to provigigery (i.e., modified), it is not clear how subgraph queries can
as a service(QaaS). Thereby, users not only obtain highe supported. Recent studies [10], [11] have addressed the
performance, scalability, and elasticity [13] but also freee authenticity of the query answers, but not their confiddibtia
from the burdens of managing IT infrastructure. It is worth highlighting that thentrinsic technical challenge

BecauseSPs may not always be trusted, users’ privacy ma§f this research direction is that although the data graph is
be threatened. In fact, (data or query) confidentiality heenb available to theSP, the SP cannot optimize the queries
recognized as one of the public’s most crucial conceeng, ( Py directly exploiting the structure of the query graphs. In
[23]). A stream of research on private query processing h&@mparison, recent subgraph isomorphism algorithes, (
bloomed in the past decade.g, in the context of relational VF2 [8], Turbas, [14] and QuickSI [26]) intensivelywtilize
databases [16], spatial databases [17] and graph datddhsesghe query graphs for optimization, which by definition, Isak
However, to date, subgraph queries that preserve the qu@f@ir structural information. More recently, the work rejgal
structure (a.k.a topology) over large networks has not genb in [31] supports “structureless” graph queries . Howeveg, t

studied. We motivate this problem with the following scéaar Structure is automatically generated by a ranking model and

. . . the SP is aware of the queries.
Example 1.1: Law enforcement agencies are increasingly

using social media to solve crimes. According to a recenthuwwiessnexis comien-usiabout-usimedialpress selpmge?id=1342623085481181



Client (s, b, Q, ¢, 1) Service provider (SP)

One may also attempt to solve the problem with a naive & public keys

solution in which theSP exhaustively traverses all of the —

data graph to enumerate akndidate mappingé.e., possible -~ L

mappings) between the query and the graph and return them to

the client for verification. The intuition is that since theeqy Fig. 1. Overview of the system model.

structure is not exploited, its privacy is preserved. Hasvev

this is infeasible because the number of candidate mappings ) ] )
is exponential to the graph size in the worst case. This section formulates the technical problem. More specif

The first challenge of this research is thémow to reduce ically, it presents the system model, attack model, privacy

a large data graph and subsequently the number of candiddfg9et and problem statement.
mappings for verification, without exposing the query stru®ystem model. The system model resembles the classical
ture?”. Our first idea is to determine the minimizedndidate server-client model, which contains two parties (illuttch
subgraphghat contain at least a candidate mapping. Then cdf- Fig. 1): (1) A Service Provider(SP) and (2) thequery
didate mappings are enumerated from those subgraphsdnst@ent (or simply client). The SP is equipped with powerful
of the original graph. In particular, we propose optimiaa computing utilities such as a cloud and hosts a subgraph
that use noveheighborhood containmentif data vertices to query service for publicly known graph da@ The client
minimize the subgraphs. Second, we determine subgragferypts his/her query) using a secret key (generated by
(called candidate matchingsfrom a candidate subgraph,himself/herself)Q; and submits), to theSP. The SP then
where candidate mappings are enumerated. In comparisonpliicesses the client's encrypted query over the datand
previous work [8], [14], [26] where privacy is not a concernfeturns an encrypted result to the client. The client desryp
the matching i(e., the query graph) is known. We propose &e result to obtain the query answer.
subgraph cachend useneighborhood equivalent classés Attack model. We assume theemi-honest (adversary) model
further minimize the number of matchings and mappings. which is widely used in the database literature [3], [4],][17
The second challenge ish6w to verify if a candidate [20], where the attackers atenest-but-curiougthat is, the
mapping is a subgraph isomorphism mapping without leakiP performs computations according to the system model but
the query structuré?We propose a query encoding scheméhe SP may be interested in inferring secrets). Furthermore,
and adopt an encryption scheme for query graphs. With thede SP may be the attacker. For presentation simplicity
we derive a basistructure-preserving verification methéisht often call the attacker th&P. We assume that the attackers
consists of a series of private matrix operations. Moreovean be botreavesdroppingnd adopting thehosen plaintext
to minimize communication overheads, we propose to ua#ack (CPA) [20].

the complement of the encoding for anhanced verification priyacy target. To facilitate technical discussions, we assume
methodfor queries of t.)ourjded SIZ€s. that the privacy target is to protect theructures of the
In summary, the contributions of this paper are as follows: query graphQ from the SP under the attack model defined

« At query time, we first propose a new candidate subgragRove. Thestructural informationof ) that we consider is the
exploration in theabsence of query structyréo reduce adjacency matrices @ (i.e, the edge information af). It is
a large data graph for query processing. We propoggvious that the complete structure of a query can be derived
further reducing the size of candidate subgraphs by usiff§m the edge information.
neighborhood containment. To sum up, theroblem statementf this paper can be stated

« Since candidate matchings are determined from candidatefollows:Given the above system and attack model, we seek
subgraphs, we propose a subgraph cache to prune #imeefficient approach to complete the subgraph query service
candidate matchings that are enumerated. while preserving the privacy target.

« We propose a robust encoding scheme and its verification
method. We propose a model for the client to determine 1. PRELIMINARIES AND OVERVIEW
a proper encoding for his/her query. In this section, we first provide preliminary concepts redat

« We conduct extensive experiments with real datasets to subgraph queries. Then, we present an overview of our
investigate the effectiveness and efficiency of our prgroposed solution.
posed methods. A. Subgraph Queries

Organization. Sec. Il introduces the problem. We provide the The graphG = (V, E, X, L) considered in this paper is
preliminaries in Sec. Ill. Sec. IV presents query prepretgs an undirected labeled connected graplthereV(G), E(G),

at clients. Sec. V details the structure-preserving ottidons >(G) and L are the set of vertices, edges, vertex labels and
that minimize the candidate subgraphs and matchings. Sec.thve function that maps a vertex to its label, respectivelg. W
presents the verification of subgraph isomorphism mappinge nb(v, G) to denote the set of neighborsofn G. We use

in an encrypted domain. We analyze privacy in Sec. Vlbcc(¢, G) to represent the number of occurrences of the label
Sec. VIl shows the experimental results and Sec. IX congparéin V(G). We useMg to represent the adjacency matrix of
the related work in the literature. We conclude in Sec. X. G. Mg(v;,v;) is abinary value, whereMg (v;,v;) = 1 if

II. PROBLEM FORMULATION



Pre-process: Client Qi ls, hyc, T SPsublso(Qy, G): Service Provider
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Trwior False  privatekeys | ST _ NC (See. V-A)  Cache (See. V.B) | NEC (See. V.O) | query structure

Fig. 2. Overview of our approach.

(vi,v;) € E(G), and otherwise 0. The adjacency mathkgz of candidate matchings to be enumerated by e (2) In
represents the edge information. For the clarity of teddniceachC'S,, the SP enumerates all candidate matching&\(,)
details, we present our technique with graphs having vertard candidate mappings. We proposeaamonical labeling-
labels only. The techniques we propose can be extendedbssed subgraph cachand apply neighborhood equivalent
support graphs with edge labels with minor modifications. class (NEC) to further avoid redundant’M and candidate

Subgraph queries.Def. 3.1 recalls the definition of subgraphMapPpings, respectively. (3) We derivaructure-preserving
isomorphism. We say a grapfi is a subgraph of anothervermcatmnS_PVenfy.fr.om [9], where.njulupleencrypted mes-
graph G’ iff there exists a subgraph isomorphism mappi .gest (with nggl|g|ble false positivgsare returned to the
(or mappingfor short) from G to G’, denoted agz C G’ client for decryption of the result. _ _
or sublso(G, G’) = true. In this paper, we studgubgraph SPVerify is derived from the seminal subgraph isomorphism
queriesstated as: given a query graghand a data grapty, algorithm: the U_Ilman_n’s algqrithm [28]. The major_ben_eﬂit 0
the subgraph querys to determine ifsublso(Q, G) = true. Ullimann’s algorithm is that its computation flow is simple;

It is well known that deciding whethe is the subgraph of hence, we can cast the algorithm into a series of matrix
G is NP-hard. operations (additions and multiplications). Since thergmc
o _ tion of SPVerify supports such matrix operations, privacy is
Definition 3.1: Given two graphsy = (V, E, X, L) andG’ = preserved.
(‘{/7 E', %, L"), asubgraph isomorphism rr/1app|rig)m G110 \we also note thaSPVerify may send multiple messages
G'is an injective functionf : V(G) — V(G') such that to the client for decryption, which may result in high de-
e Yu e V(G), f(u) € V(G'), L(u) = L'(f(u)); and cryption and network communication costs. Thus we pro-
o Y(u,v) € E(G), (f(u), f(v)) € B(G"). poseSPVerify*. The major difference betweePVerify* and
SPVerify is that SPVerify* uses different query encodings
according to different query sizes and significantly fewer

An overview of our solution is sketched in Fig. 2. Oukencrypted messages are returned for decryption, and thrg que
solution essentially consists of the algorithms at thentléde sjze is smaller than a system-related constant.

and those at th&P side.

Client-side algorithms. For the algorithms at the client side,

we propose performing lightweight optimization and eneryp In this section, we introduce a preprocessin_g methqd_of the
tion on the query grapl). (1) We first analyze the queryquery graph. It comprises three steps: (1) retrieving ogim

to determine thestarting label/, and theminimum height: tir?” para(;n(zlters; (2)T(re1ncoding th(zI query; and (3) encrypting
of @, which are useful for minimizing the number and thdhe encoded query. The encrypted query Is sent taSthe

sizes of candidate subgraphs®@f A candidate subgrapis a A. Retrieving Parameters for Optimization

subgraph inz that may contain a candidate matching, whereas | grder to minimize (1) the size of each candidate subgraph
a candidate matchings a subgraph of the candidate subgrap@ss and (2) the total number of'S,s, theSP requires the
that may generate eandidate mappingetweenc and G minimum heighth of @ and, in the meantime, the starting
(2) We then propose a robust encoding schemeXdof any |apel ¢, of C'S,s that isinfrequentin G. These parameters, (
size). (3) We adopt therivate-key encryption schent&GBE 59 ¢,) are efficiently retrieved by the client.

[9] to encrypt the encode@ to encrypted query),, which is Given a starting label,, the SP generatesC'S,s by a
issued to the5P> for query processing. (4) The client decrypt$yreadth first search bounded by the deptstarting at each
the encrypted answer returned by &@. vertex of G having the labe¥, (to be detailed in Sec. V-A).
Server-side algorithms.The main ideas of the algorithms atOn the one hand, to minimize the size of eacth, we simply
the SP side are to localize and minimize the enumeration dind the spanning treeof ) with a minimum height: rooted
candidate mappings betweéhandG in candidate subgraphs.from a vertexu, whereu € V(Q) and{; = L(u). Intuitively,
(1) TheSP first efficiently determines the candidate subgraphibe smaller the valug, the smaller the size of eachS;. Note
CS,s (subgraphs) starting from each starting vertesf the that we cannot choose the vertexvith h = 1 since it trivially
label ¢, with the traversal depth. We proposeneighborhood leaks the structure of) (to be analyzed in Sec. VII). When
containment(NC) to minimize eachC'S; in the absence of there is a tiei(e., when vertices, andv of ) have the same
the structure of(). Subsequently, it minimizes the numbef) the client selects the vertex of the label thaleiss frequent

B. Overview of Our Approach

IV. QUERY PREPROCESSING AT THECLIENT



Client lo=0,h=2

@ “ Encoding of Mq_
uw2(D—2) 111 ¢
11 1 1
s (2) Mgq = { 11 1 ¢ }
Q g 1 qg 1

(a) Encoding of query graph (b) Construction of candidate subgraphs (c) Minimization of C'Ss by NC
Fig. 3. (a) lllustration of the preprocessing at the cligb); Construction of candidate subgraphs; and (c) Minimaof C'Ss by NC.

in G, simply because the number 6fS,s is bounded by the « Enc is an encryption function which takes as input a
occurrence of the label i. messagen and the secret kefy, g). It chooses a random

i . valuer, and outputs the ciphertext
Example 4.1: Fig. 3 (a) shows an example of the selection ¢ = mrg®  (mod p)

of the starting label of query). The heights of the spanning . Dec is a decryption function which takes as input a

trees rooted fromu,, ug, andu, are 2.u; is finally chosen as ciphertexte, and the secret keyr, g). It outputs

the starting label ascc(0, G) < occ(2, G), whereL(u;) = 0, mr =eg~* (mod p)

and L(us) = L(us) = 2. uy is not considered because the Note that the decryption functiobec in CGBE only de-

height of its spanning tree is 1. crypts the ciphertext as a product of the messageand the

random valuer.

Query encryption. With CGBE, we define the encryption of
For presentation brevity, we presenteamrcodingscheme for Mq as follows.

the query@ (in Definition 4.1) to facilitate the discussion ofDefinition 4.3: The encryptionof @ is denoted a€);,, Qi =

the subsequent encryption scheme. This encoding is extend®’ Mgq, .3, L}, whereVu;, u; € V(Q),

B. Query Encoding

for further optimization (to be proposed in SubSec. VI-B). Maq, (i, u;) = Enc(Mq(ui, u;), z, g)
Definition 4.1: The encodingof the entries oM g are: )
Vug, u; € V(Q), Example 4.3: For exampleYu;, u;, if MQ(yi,uj) =1, then
Mgq, (ui,u;) = Enc(1) = rg” (modp); and if Mq (u;, u;) =
{ Mq(ui,u;) =q  if Mq(us,u;) = 0;and q, thenMq, (u;,u;) = Enc(q) = rqg” (mod p).
Maq(ui,u;) = 1 otherwise Discussion.We remark that the client holds the secret keys

wheregq is a large prime number. (x,g) for decryption and moreover, determines the constant
¢ and an encrypted valug for encrypting verification results

Example 4.2: Fig. 3 (a) also shows an example of thgto be discussed in Sec. VI). At lagt,, &, Qy, ¢, I andp are

encoding ofQ by Def. 4.1. The entries iMq with values0  sent to theSP for structure-preserving query processing.

are replaced by the large pri
P y ge prime V. MINIMIZED SP MAPPING GENERATION

The query preprocessing at the client side (in Sec. V)
Based on the encoding ¢f, we adopt our recent private-keygenerates 4, h, Qs, c, I, p) for the SP. Upon receiving
encryption scheme [9kfclic graph based encryption schemehese, theSP performs structure-preservingublso (termed
CGBE) to encrypt the encoding af (Mq). CGBE not only SPsublso), presented in Algo. 1.
allows for efficient encryption and decryption but also sope As outlined in Sec. |, the&P first minimizes the number of
both partial additions and multiplications, which is theeof candidate mappings to-be-verified. For brevity, we focus on
efficient structure-preserving computation. the most crucial procedures: candidate subgraph generatio
Background on cyclic group. Prior to the presentation of the(Sec. V-A), candidate matching generation (Sec. V-B), and
definition of CGBE, we first recall the preliminaries of cyclic candidate mapping enumeration (Sec. V-C).
group [20]. LetG be a groupp = |G| is denoted as therder
of G. In particular,Vg € G, the order ofG is the smallest
positive integerp s.t, g? = 1. Let (9) = {g' : i € Zp,g" €
Zn) =1{9° g%, .-+ ,gP~ 1} denote the set of elements generat
by ¢g. The groupG is calledcyclic if there exists an element
g € G such that(g) = G. g¢ is called ageneratorof G.
CGBE scheme.The cyclic group based encryption scheme iBefinition 5.1: A candidate subgrapbtarted froms € V(G),
defined as follows. denoted a¥’'S,, is an induced subgraph ©f, s.t.
Definition 4.2: [9] The cyclic group based encryptisstheme 1) L(s) = /,;
is aprivate-keyencryption scheme, denoted @BE = (Gen, 2) Yv € V(CSs), v is reachable frons within 2 hops;
Enc, Dec), where 3) VL, L € X(CSs) & L € %(Q); and
« Gen is akey generation functigwhich generates a secret 4) V¢ € X(CS;), occ(¢, CSs) > occ(¢, Q).

key x uniformly at random, a cyclic groufy) = {¢’ : Example 5.1: SupposeL(s) = ¢, = 0 and h = 2. Fig. 3(b)

i € Zp,g' € Zy}. It outputs the private keys &g, g) sketches an example of a candidate subgi@ph (the grey-

and the valuer which is known to the public. colored shadow) rooted from of GG. For each vertex in

C. Query Encryption

A. Candidate Subgraph Generation

To avoid enumerating mappings on a possibly large graph,
e@e SP first generates candidate subgraphs (Fig. 3(b)), where
possible mappings can only be embedded in those subgraphs.
A candidate subgraph is formally described in Def. 5.1.



CS,, v is reachable froms within 2 hops. The set of labelsvertex v, € N\ N/ such thatnb(v,,CS,) C nb(v,,CS;),
of @ is the same as that @fS; (i.e, X(CSs) = X(Q)). For by Def. 5.2. This implies that'S* C C'S*. Therefore,C'S”
each label in C'S;, occ(¢,CSs) > occ(4, Q). preserves all the structures @iS, by only keepN. [ |

Initial generation. GenCandSubGraph (Procedure 1.1, Example 5.2: Reconsider Example 5.Xv;,vo} is an NC
Lines 8-17) shows the generation of candidate subgrapBs.L(vi) = L(vs), nb(vi,CSs) C nb(va, CSs) and {vy, v}
Algo. 1 first initializes theC'S; as () (Line 1). Then, for forms an independent set 6fS; in Fig. 3(c). Sinceocc(1, Q)
each vertexs € V(G), where L(s) = /{,, it invokes =1, by Lemma 5.1, we keep the top-1 vertex. It can be seen
GenCandSubGraph (Line 1). GenCandSubGraph simply gen- that the answer of) remains the same after removing either
eratesC'S; by a simple breadth first search method started or v, from C'S,. For another example, let's consider 1€
from s on G within h hops (Lines 10-15)Vc 5, is to record the {v,, vs,vg} in Fig. 3(c), as the neighborhood of is contained
vertices ofC'S; determined so far. For each vertexc Vs, by that ofvs. Hencewy C vs. Similarly, vs C vg. {v4,vs5,v6}

v must be reachable fromwithin 2 hops (Lines 13-15), and forms an independent set. Again, by Lemma 5.1, we keep only
L(v) € 3(Q) (Line 13). If V/ € 3(CSy), occ(¢,CSs) >  the top-1 vertexj.e, vg. The answer of) remains the same
occ(4,Q) (Line 16), C'S; is set to the induced subgraph ofafter removingus andws. All in all, Fig. 4(a) showsC'S,, the
Ves, in G (Line 17). candidate subgraph after the minimization.

Minimization by neighborhood information. Since the sizes The minimization procedure MinCandSubGraph. Proce-

of candidate subgraphs have a significant impact on perfgfyre 1.2 shows the minimization @S, by NC. For each
mance, we propos&linCandSubGraph (Procedure 1.2) to y $(CS,), a set A of NC is first initialized as{}
minimize the size of eact’S,. MinCandSubGraph is derived (Line 18). For each vertex of C'S, with the label¢, sorted
based on our notion afeighborhood containment clagiC) i ascending order ofnb(v, C'S,)| (Line 19) for efficiency,

of C'S;, defined as follows. MinCandSubGraph checks if there is anV in A/, such that
Definition 5.2: Given N = {vy,va,--- ,v,} of V(CS,), N N U{v} forms anNC by Def. 5.2 (Line 20). If sop is then

is a neighborhood containment claghlC), denoted ag;, C inserted intoN (Line 21). Otherwise, the algorithm creates

vy E - C vy, iff Vo, 05 € N, i < j, a new N = {v} and unionsN to A (Line 22). After

1) L(v;) = L(v;); the generation oNC of C’SS_ for the_ label ¢, CS; can pe

2) a) nb(v;,CSs) C nb(v;,CSy), if N is an indepen- minimized by Lemma 5.1 via keeping the tapvertices in
dent set inC'S.; or eachN, N € N, k = occ(?, Q) (Lines 23-24).

b) nb(v;, CS,) U {v:} C nb(v;,CSs)U{v;}, if N is Complexity. The complexity of the generation dﬂC in

a clique of C'S.. Procedure 1.2 iSO(dpmaz|V(CSs)[?), where d,,.. is the

maximum degree of the vertices@S;. In practice |V (CS)|

Based on Def. 5.2, the vertices of a candidate subgeaph is often in the order of hundreds, which is small.

exhibit a total ordering with respect to the relationships.
We have the following lemma for minimizing the size ofy ~5ndidate Matching Generation

a candidate subgraph by keeping the "top” vertices in the o ynique challenge in structure-preserving query processi
subgraph. The intuition is that the reduce®, preserves all g that, in the absence of query structure, $® matches
the structures of the origindl'S,. The proof is established via Oy to multiple possible subgraph structures dhs,. We call

a simple contradiction. such subgraph structuresandidate matchingsin contrast,

Lemma 5.1: Denote anNC N as {v1,vs, -~ ,vn}, Where it yhe query structures were not kept secret, the candidate
N C V(CS;) of a graphG. Denote theeducedV (C'S;) (de-  matching was known to be). Fig. 4(a) shows four candi-

noted as_C’S:) is theinduced subgraplof V(C’SS)\_(N\Nk.) date matchingsCM,,, CM,s, CM,s, and CM,,. For each
of OS;, i.6. Nk = {Un—p41,Vn—p+2---,0n} CONMAINS 10Dk natching, candidate mappings are enumerated. It is evident
vertices of V that are kept, wheré = occ(L(v1), Q). Then, a¢ 5 naive enumeration of all candidate matchings can be

the answer of) on 'S, is the same as that ofiS;. inefficient. In this subsection, we propo&enCandMatch to

in Cgrogf;e(sr;cg\)/e\évei rg?rvev\tlgagr:re Cfr?;%v(;?vsigu;;ureesﬁiciently generate candidate matchings. The main idea is t
N P 5" y avoid generating redundant matchings frams.

independent set for simplicity as the argument whiéris a o ) ] _

clique is similar. Definition 5.3: A candidate matching, denoted as\/,, is a
We denoteN; = N\ N, which represents the removed verconnected induced subgrafi 'S, s.t.

tices in N. Any possible structure i@'S, must be formed by 1) [V(CM;)| = [V(Q)]; and

some vertices fronlV; and N,.. The former can be formulated 2) vte E(C_S,S)' oce(f, QMS) = occ(l, Q). df
asN? C Ny, for somex (z > 1), whereas the latter can Example 5.3:Fig. 4 (a) lists all theC' M s enumerated from

be Né} C Ny, wherey (y = k — 7). DenoteN,; _ N]f UN;:. CSs. YC My, i € {1,...,4}, [V(CMg| = |V(Q)|, and V¢ €
Denote C'S* as the induced subgraph &f(C'S,)\(N\Ny) B(C8s), oce(l, CMsi) = oce((, Q).

and C'S* and that of V(CS,)\(N\N}), respectively. For Elimination of redundant C'M,. We make two observations
any substructures in the induced subgrapfﬁ:ﬁ‘f' and for from Example 5.3 and Fig. 4. () M, is graph-isomorphic
each vertexv, € N, we can always find a distinguishedio C'M,;. If candidate mappings are generated froti/, it



§ = 3 cache = {can(C'M,1),can(CMs2),can(CMs4)}
S L)

prune by cache
L B

o™ S s © Mapping for C' My, | Mapping for C' M,z | Mapping for C My
mapl map2 map3 map4 map5b
uz v V2 v U3 Y3 U S UL S Uy s U s uy s
uz2 @ O 0 @ Up > V] U > V1 | U > V3 U > U3 U > V3
o1 U3z YUy U3 Vg | Uz Uy Uz U Uz > U5
uq (2) @ @ Ug > Vg Ug > Vg | Ug > Vs Ug > Vo Uy — Vg
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Algorithm 1 SPsublso (Qx, G, £, h)

Input: The encrypted query grap®;, data graph, starting label¢; and hoph
Output: The encrypted resulRy
1: initialize CSs = CM, = 0, Cache = 0, and Ry, = 1

. for each vertexs € V(G) with the starting label

3: GenCandSubGraph(Qy, G, s, h, CS5) /* By Def. 5.1 */

4. MinCandSubGraph(Qy, C'Ss) /* Minimize C S, */
5! Initialize set Vo, = {s}

6: GenCandMatch(Venr,, Qr, CSs, Ri, Cache) [* By Def. 5.3 */

7. Return Ry,

Procedure 1.1GenCandSubGraph (Qg, G, s, h, C'S,)

8: Initialize aqueue Visit and aset Vo g, as empty

9: Visit.push(s), Vos, -insert(s), s.hop() = 0
O: while Visit is not empty /* BFS method */
. v = Visit.pop()
12:  if (v.hop() = h) continue
/* By 3. in Def. 5.1 */
13:  foreachv’ = nb(v,G), v' & Vos, A L(v') € S(Qy)
14: Visit.push(v'), Ves,.insert(v')
15: v’ .hop() = v.hop() + 1
/* By 4. in Def. 5.1 */
16: while 3¢ € %(Ves, ), st.oce(t, Vas,) < occ(f, Qx)
remove allv from X(Ves, ), wherev € X(Ves, ) andX(v) = £
17: ¢S, = GenlnducedSub(G, Ves,)

Procedure 1.2MinCandSubGraph (Q, C'S)
18: for each ¢ € (CS,), N = {} [* N is a set ofNC */
[* Ascending ordered bynb(v, C'S;)| */
19:  foreachv € V(CS.), L(v) = ¢,
20: if IN € N, sit, /* By Def. 5.2 */
(1) {v} U N forms an independent set (or a clique); and
(2) nb(v, C'Ss) (or nb(v, C'Ss) U {v}) contains those of vertices ilV.

/* By 2. in Def. 5.1 */

21: N.insert) /* Ordered by */

22: elsecreate a newV, N = {v}, N = N U{N}

23: foreach N € N, N, = {vp—g41, -+ ,0n}, k = occ(,Qy)
24: RemoveN\ Ny, from C'S, /* By Lemma. 5.1 */

Algorithm 2 GenCandMatch (Voar,, Qr, CSs, Rk, Cache)

1:if Vo, are enumerated before
2: return

it (Ve | = [V(Qr)|

. CM, = GenlnducedSub(C'Ss, Vo)
/* C' M, is checked before */

Mo, is checked */

3
4
5. if Cache.isHit(can(CM.))
6: return
7. Cache.insert(can(C'M,)) I* Insert can(C M) into Cache */
8 if V(Q)<é /* Insert subgraphs o M into Cache */
9 Cache.insert(can(CM")),
whereCM’' C CM,, [V(CM')| = |V(CM,)|
10: GenAllMap(Qx, CMs. Ri)  [* Generate candidate mappings */
11: for eachw € Vo,
12: for each v’ € nb(v, C'S,) in descending order,’ & Ve,

13: if occ(4, Vonr,) < occ(4,Qy), £ = L(v')  I* By Def. 5.3 %
14: Ve, nsert(v”)

15: GenCandMatch (Vonr,, Qk, CSs, Ry)

16' Vc]us .removs{v’)

(a) Construction of candidate matchings; and (b) Emative of possible mappings.

has been extensively studied befoeeg( [26], [30], [34]).
Existing solutions involve an index computed offline. In our
context, candidate matchings are enumeratsline Hence,
the existing solutions cannot be directly applied.

Canonical labeling-based subgraph cachelet’s recall a
crucial property of canonical labeling. In the context o&pjn
qguery processing, the canonical labeling of a graghis
denoted agan(G), andcan(G) = can(G’) if and only ifG is
isomorphic toG’. While the cost for computing the canonical
labeling of a graph is not yet known (P or NP), the cost
for comparing whether two graphs are isomorphic using the
canonical labeling i$)(1), once computed. This work adopts
the state-of-the-art labeling call@inimum dfs codf80] from

the literature.

For each query, we propos€ache to store can(CMy),
where eachC'M; is the checked candidate matching. Once
a new CM! is generated, we first check dfan(CM]) is
already inCache. If so, CM/ is discarded. Otherwise, we
insert can(C'M!) into Cache. Further, we continue to enu-
merate subgraph€'M’s from C M/, where for eachC'M’,
[V(CM")| = |[V(CMD|, CM' C CM!, and can(CM’)
is stored in Cache. Putting subgraphs of®M! increases
the chance of pruning by'ache. However, thetrade-off is
that as the query size increases, the computational cost for
enumerating all subgraphs of(a\/! increases exponentially.
Thereby, for practical purposes, we enumerate all of the
subgraphsCM’s of CM! only if |[V(Q)| < 0, whered is
a user-defined threshold.

Example 5.4: The top of Fig. 4 (a) shows the idea of the
canonical labeling-based cache. We assumedtisas, and the
sequence of the generation ©fM/, is from C M, to CMy.
CM,s is eliminated ascan(C'Msgs) is in Cache. If we set

6 to 5, thenCM,, and CM,3 are both eliminated, because
CM,, is a subgraph of” M, and whenC'M,; is processed,
can(CMys) is inserted intoCache.

The ordering in C'M, generation. From Example 5.4, it can
be observed that the ordering @M, generation affects the
performance of the cache, whévi(Q)| < 6. Suppose = 5.
Assume C' My, is generated befor€' M. Then, CM,, is
not eliminated. In general, the earlier the largen/,s are
generated, the better the performance is. Therefore, we find

is obvious that generating mappings fr@id/,; is redundant @ simple ordering forC'M; generation, by greedily adding
(2) CM,; is a supergraph of'M,,. One can simply generateVertices to theC'M, by the degree of each vertex.

mappings fromC My, and skipC M, and C' M,3.

CM, generation. In Algo. 1, Cache is initialized to ()

To remove the redundancies mentioned above, it is exactlyne 1), and the vertex set of each generatétl,, denoted
to solve the following problem: diven a graphG and a asVgyy,, is initialized to{s} (Line 5). In Line 6, the algorithm
graph databaseG : {Gi,...}, how to efficiently determine for the generation ofC'M,s, denoted asGenCandMatch,
if G is a subgraph ofG’, G’ € G?" Such a problem presented in Algo. 2.



Algorithm 3 GenAllMap (Qx, CM,, Ry)

Input: The encrypted querg®), candidate matching’ M and encrypted resulRy,
1: GenerateM from Qr andC Mg
2: Initialize vectorused as@
3: Initialize vectormap as0
. ConstructNEC of C' M,
. EnumMap(uo, used, map, M, Qr, CM;, Rx) [* Enumeration */

Procedure 3.1EnumMap(u;, used, map, M, Q, CMs, Ry)
6:if i =V (Qn)
7. it |V(Qur)| < ¢, SPVerify*(map, Qx, CMs, R)  I* Sec. VI-B */
8:  elseSPVerify(map, Q, CM,, Ry) /* Sec. VI-A */
9: for each j < |V (CM,)|, M(us,v;) = 1 A used[v;] =0

/* Eliminate redundant mappings by Lemma 5.2 */

10: if Fvjr, v vy, i< 3, used[vj/] =0 /* Lexi. order */
11: continue

12: used[v;] = 1, map[u;] = v;

13: EnumMap(u; 41, used, map, Qk, C M, Ry)

14: used[v;] = map[u;] =0

In GenCandMatch (Algo. 2), CM; is generated frond'S,

mapl: Fi=g"(rg+--+rq) (modp) | Ri=g"(rx.--xr) (mod p)
map2 : Rz:gm(rq+@...+Tq) Rzzgx(rx@xmxr)
Ry = Ry x R, Vviolationby (2)| R, =R, + R, - violation by (6)

— g2w(rq + - A)(rq +®+ .. ) — g”(('r X - ) + (7« ><>< .. ))
(a). SPVerify between Qx and C M, (b). SPVerify* between Qr and C' Mg
Fig. 5. SPVerify (and SPVerify*) between@; and C' M.

us ONtovg andws, respectively. This can be formalized as the
following lemma. Foremost, we often use; (— v;) to denote
map[u;] = v; for ease of exposition.
Lemma 5.2: Suppose the following are true:

1) Uiy Uy € V(Q), Vir, Vjr € V(CMS), L(ul) = L(uj) =

L(vir) = L(vy);

2) vy >,

3) (Uz — ’L)q;/) and (uj — U]'/).
Let map’ be the mappingnap except that ¢; — v;) and

(Lines 11-16) until the size of the matching is the same %, — viv). Then, map is a candidate mapping betwe€h

the query (Lines 1-10). For each vertexc Vioyy, (Line 12),
it attempts to addv’'s neighboring vertexo’ € nb(v, C'Sy),
wherev’ ¢ Ve, and it adds thes’ with a large degree
first (deg(v’, CSs)). If occ(f, Vans,) < occ(f, Q) (Line 13),
where ¢ L(v'), v/ is then added toViy,, (Line 14).
GenCandMatch is called recursively (Line 15) untiVeay, | =
[V (Qr)] (Lines 1-10).C'M; is an induced subgraph &,
(Line 4).

For each generated”M,, can(CM,) is checked if
can(C'My) is already inCache (Line 5). If yes, there exists
a CM' in Cache such thatCM’ is isomorphic toCM,.
By the property of canonical labeling,;M, can be elimi-
nated (Lines 5-6). Otherwise, we adah(CM;) into Cache
(Line 7). If [V(Q)| < 6, we enumerate the subgrapfid/’ of
CM,, where|V(CM')| = |V(CM,)|, and insertcan(C M)
into Cache (Lines 8-9). At last,GenAllMap (see Algo. 3)

is invoked (Line 10) to generate all possible mappings (s

SubSec. V-C) betweeq;, and C' M.

C. Candidate Mapping Generation
When a new candidate matchiagV/, is generated, Algo. 3

and C' M, if and only if map’ is also a candidate mapping.
The proof is omitted since it can be established by a simple

proof by contradiction. Next, we present the data strusture

and the mapping generation, that exploit the lemma.

Data structures. (i) A vertex label mappingM is am x n

binary matrix,m = |V (Qy)| andn = |V (CMy)|. Specifically,

Vu,v, M(u,v) = 1 if L(u) = L(v), whereu € V(Q) and

v € V(CM,); and otherwise 0. (ii) A vectomap of the size

|V (Qr)] is to record a mapping fro®;, to C' M, maplu] = v

(i.e., u — v) represents that vertexin ), is mapped to vertex

v in C M. map[u] = 0 if u is not yet mapped. (i) A vector

used of the size|V(CMy)| is to denote whether the vertex

v in CM, has been mapped to a vertex @f. and recorded

in map. used[v] = 0 if v is not yet mapped. In other words,

used[v] = 1 if and only if map[u] = v for someu € Q..

Algorithm for mapping generation. The detailed algorithm
%.%nAIIMap is shown in Algo. 3. It first initializes the data
structures, includingM, used and map in Lines 1-3. Line 4
constructsNEC of C'M,, which is similar to that ofNC in
Procedure 1.2ZEnumMap (Lines 6-14) is then invoked to enu-

invokes GenAllMap to enumerate all possible mappings bemerate all possible mappings. A mappimgp is constructed

tween(Q, and CM,.
Elimination of redundant mappings by NEC. Recall that
the number of mappings is exponential to the sizeCG/.

vertex by vertex iteratively. Line 9 checksf is a possible
map ofu; by M andused. We then exploit the equivalence
class to further check if; can be possibly mapped g (Lines

However, in practice, many mappings are redundant. Hend®;12). The vertices in &EC are checked in a predefined

before generating the mappings, we utilineighborhood

order €.g lexicographical order). [Bv; S.t.vy ~v;, j' < j

equivalent classeNECs of C M, (Def. 5.4) to eliminate those and v;, is not used before, then; is skipped (Line 10). If
redundant mappings. We remark tiNEC is a special case of v; passes the checknumMap is called recursively (Line 13)
NC. While a similarNEC has been proposed in [14] for queryuntil a full mapping is constructed (Line 6).

and data graphs, olNEC is applied to data graphs only.

Definition 5.4: Given anNC N = {vy,vq,--- ,v,} of CSj,
where N is either an independent set or a clique(é$,, N
is a neighborhood equivalent clag®lEC), denoted as); ~
Vg - > vy, iff Yo, 05 € N, v; Cv; ando; & v,
Example 5.5: Let's consider the example oM, in
Fig. 4 (a), {vs,vs} Is an NEC as L(vs) = L(vg) and
nb(ve, CMs4) = nb(vs, CMgy) = {vs}.

Example 5.6: Fig. 4(b) illustrates the possible candidate
mapping generation for thosgM,s of Example 5.3. Since
vs =~ vg in C Mgy, by Lemma 5.2, we only enumeraieaps,
whereus — v5 anduy — vg, but the one withus — vg and
uy > v5 IS eliminated.

VI. SP MAPPING VERIFICATION

Section V presented a series of optimizations that redwee th
number of mappings to be generated. Then, for each mapping

Suppose thatis and uy (in Fig. 4 (a)) have been mappedmap, the SP verifies (in the encrypted domain) if there is

to vs andwvg, respectively. It is not necessary to map and

no violation in map. The encrypted verification results are



aggregated before they are transmitted to the client. Is tH\lgorithm 4 SPVerify(map, Qx, CM;, Ry)
section, we derive a basic verificatioBRVerify) from [9] 1! mitialize R; = 0 o

for our problem setting. Next, we propose an enhanced ofe™ fffhj;;‘;[f]v?f?)‘:’r;;[“_]

(SPVerify*) that aggregates many more messages but requirés ¥ Additions % ?

the query size to be smaller than a user-determined constagit it (vir, v0) & B(CM) . R
A SPVerify 6: | R; += Mq, (ui,u;) (modp) /* Aggregate violation */
. . eise

: ; ; 7 R; += I (mod p) /* No violation, I = Enc(q) */
. G|ven. a mappingnap petweeer andC_'J_\/[S, we deten_’mne /* Multiplications */
if C'M; is a valid mapping or not. Specifically, we define thé: r, x= R, (modp)  /* DecomposeR;, after aggregatingl R; */

violation w.r.t. the encoding of) as follows:3u;, u; € V(Q),

to C Mg, in Fig. 4(b). Inmapl, all the factors inR; contain
Mg (ui,uj) = LA (vir,vj) & E(CMy) (1) ¢ sincemapl is a valid mapping. However, imap2, since

wherev;, v, € V(CMj), u; — vy andu; — vj;. It states thereexistsa violation betweer{u,, u3) and (s, vs), there is

that there exists an edge between verticeandu; in @, but a factor inR» that has no primg. Ry = Ry x Ry (mod p).

there is no corresponding edge between the mapped vertibesryption at the client. After receiving all the encrypted

vy and vy in CM,. We term the case in Formula 1 as amessagesi, the client performs two main steps:

violation of subgraph isomorphisitor simply violation). A, For eachRy, the client computes thelaintextof Ry by

mapping without violation(s) is called ealid mapping. R}, = Dec(Ry, z,9)™; and

Example 6.1:Let's take the two mappingsapl andmap2 of e« The client computes the final result 8= R}, (modg).

CMj,; in Fig. 4 (b) as an example. First, no violation is foundz equals zero if and only if there is at least one valid mapping

in mapl. Second, fomap2, we find thatMq (u;,u3) = 1 and  from @ to G and thussublso(Q, G) = true.

(s,v4) € E(CMs1), wheremap2[u;] = s andmap2[is] = vy.

Therefore,map? is invalid. Example 6.3: We show the decryption at the client by using

_ _ o o the example in Fig. 5 (a). Assum&/ = 2. The encrypted
Algorithm for SPVerify. The intuitive idea ofSPVerify is to messageR;, only aggregates twdz;s. The client generates
transform the verification steps into mathematical openati e g~2*, computesR, = R x g~2* (mod p), and finally
on Mg, andC'M;, where (1) the violation (Formula 1) cancomputesk = R}, (modq). The result is zero, which indicates
be detected; (2) only matrix additions and multiplicationg) is a subgraph of.

are involved; anq (3) the result can be aggregated with OB%composition schemeWe recall that the decryptiorDec
message or multiple messages.

Algo. 4 shows the detailed algorithm. The inputs are 0 Def. 4.2) uses the arithmetic modyio The messagen «

candidate mappingnap, an encrypted query grapB, a must not exceegh. When there are too mani;s multiplied
candidate matching”)M, and an encrypted resulg,. We Into 7, the product (in the plaintext domain) may exceed

remark thatRy is to record the aggregated result G1\/;s, Subsequently, the (_:I|ent will not obtain the correct plest
A . under the arithmetic system. Therefore, we decompose the
where R, is initialized to1 in Line 1 Algo. 1.

We initialize an intermediate resulk with a value 0 product into smaller numbers and the client decrypts those
(Line 1). For each pair of verticesu:, u;) in V(Q) and numbers instead. Through Formula 2 below, we can determine

the mapped vertex paifv,/,v;/) in CM, (Lines 2-3), the the maximum number oft;s to be aggregated ift. (M):

following two steps are performed: Len(p) > M(Len(q) + Len(r))

1. Additions (Lines 4-7): if(v;,v;/) € E(CM,), R; is set - M L Lenn) @)
to (Mq, (us,u;) + R;) (mod p). This indicates that if (ten(@)FLen(r))
(u;,uj) is an edge inR, R; must not contain a factor of wherelLen(p) is the size ofp.
q, and the decryption value aR; is non-zero ite., the Let's say we sefl/ = 10. From experiments, the number of
current mappingnap contains a violation (by Formula 1), mappings (after our minimizations) for our queries is agbun
which is not a valid mapping). Otherwise, no violatiorb00 on average. Each message2(gl8 bits in size. Thus, the
is caused by(u;,u;). This setsR; to the valuel + R, communication cost is around.8KB, which is very small.
(mod p), where is an encrypted valuith a factorq False positives Due to CGBE [9], the two matrix operations
issued by the client] = Enc(q); and in SPVerify introduce negligible false positives: (1) additions

2. Multiplications (Line 8): it aggregate®; into Ry, by with computingR; (Lines 4-7); and (2) multiplications with
Ry = Ry x R; (mod p). If there is at least one valid computingR;. in each decomposed number (Line 8). However,
mapping from @ to G, i.e, at least oneR; whose the probabilities of the above two false positives are igdgjke.
decryption value is zero. The decryption valueibf must The probability of false positives from the aggregation-(ad
also be zero. Otherwise, it is non-zero. We remark thditions) while computingR; and the multiplication ofR;s in
CGBE leads toerrors if the number ofR;s aggregated in each decomposed number are respectively stated in Props 6.1
Ry, is larger than a predetermined valié. and 6.2, which can be established by simple arithmetics.

IN |

Example 6.2: Fig. 5(a) depicts an example dPVerify Proposition 6.1: The probability of false positives i®; is %
between@, and C'M,,. There are two mappings fro®; which is negligible.



Algorithm 5 SPVerify*(map, Qx, C M, Ry) 1 (Line 1). For each pair of vertexu;,u;) in V(Q) and

1: initialize R; = 1 o the mapped vertex paifv;/,v;/) in CM; (Lines 2-3), the
%; for each us, ;‘g[i]‘_ﬂf?)’:’é . following two steps are performed:
4 i/fmultigj'iciti;n;ig A 1. Multiplication_s (Lines 4-7): according to the violati¢iy
5 1%; ><J/: MQk(u,;,Suj) (mod p) /* Aggregate violation */ Formula. 5)’ If(vi" Uj') ¢ E(CMS>’ S.etRi as the value
6: else Mgq, (ui,u;) x R; (mod p). This indicates that as soon
£ o agaition = 1 medn) * No violation, I = Enc(1)/ as(ui, u;) is an edge inQ, R; must contain the factay,
8: Ry, += R; (modp) and the decryption value is zeriog(, the current mapping
- ] - map contains a violation). Otherwisé; is set to a value
Prqof: The case of false pp§|§|ves is that each individual . R; (mod p), whereT is an encrypted valuaithout
values in the addition are not divisible lgybut the sum equals factor ¢ issued by the client] = Enc(1); and
a multiple ofg. Such a probability is 2. Additions (Line 8): it aggregateR; to Ry, whereR), =
Prifalse positives ini) = Pr(ri + -+ rmn-1)/2 = 0(modq)) R, 4 R, (mod p). If there is at least one valid mapping
= 3 ©)) from Q to G (i.e., at least oneR; whose plain text is
wherem = V(Q), andq is a large prime numbee.g, 32bits. non-zero). The dgc_rypted value &% must also be non
Thus, the probability is negligible, in practice. ] zero. Otherwise, it is zero.

Proposition 6.2: The probability of false positives i, is Example 6.4:Fig. 5 (b) illustrates an example 6P Verify*.
1—e a, which is negligible, in each decomposed numberSimilarly, since there is no violation imap1, all the factors
in R; do not containg. Regardingmap2, since there is a

Proof: The probability of false positives in eadhy, is violation, R, contains a factoy. Ry = Ry + Ra (mod p).

Pr(false positives ink,) = 1 — Pr(true positive in allR;)
= 1-(1- %)M Decryption at the client. The decryption is modified as:
~ 1-e¢ 4 4) « The client computes the message encodelliras R;, =

Dec(Ry,, z, g)™"~1/2, wherem = |V (Q)|; and

whereM is the size of the decomposed number. SihE , . .
P &g « The client computes the final result By= R; (modgq).

the probability is negligible in practice. s _ ) )
. . . . R equals non-zero if and only if there is at least one valid
B. Optimized SPVerify for Queries of Bounded Sizes mapping fromQ to G. Thussublso(Q, G) = true

Each encrypted messag®, sent by SPVerify aggregates gyample 6.5: We show the decryption in Fig. 5 (b). For
at most M mgssage;@is. In this subsection, we PropoS&implicity, we assume thaR;, only aggregatesk?, and R.
SPVerify*, which significantly reduces the number of mestye client generateg 57, computesR), = R x g~ (mod
sages returned, which in turn reduces both the communtcat'@ and finally computes® = R/, (mod g). The result is non-
and computational costs at the client. The main idea behiggro which indicates tha® is a/subgraph o

SPVerify* is to use multiplications to detect violatiorsince o ) .
queries are often small angse additions to aggregat&;s. Determining the constantc to decide when to use&SPVerify
T

Hence, the value of, may not exceed even after many ©F SP\(erif){*. In SPVerify*,. multipli'cation's are used tp aggre-
aggregations. However, a tradeoff 8PVerify* is that the 92t€ violations by edges A/, (Line 4 in Algo. 5), instead
query size must be bounded by a pre-determined constant©f @9gregating numerous mapping resulfs (n Line 8 of
Similar to SPVerify, SPVerify* also detects the violation by Al90- 4). Similarly, whenR; (Lines 4-7) in Algo. 5 exceeds
multiplications and additions. In order to achieve that,fiigt »» the client cannot recover the plaintext. The number of

define acomplemenencoding of the query (see Def. 6.1). multiplications for eachR; is direct!y related to' the si;e of
the query [V (Q)]). We can determine the maximum size of

the query, denoted as using the following inequality.

Len(p) > 70((12_1) (Len(q) + Len(r)) ©)
2len
© 0 > &@—c— Gptiam

Definition 6.1: The encodingof the entries oM q are:
V’U,Z‘,’U,]’ S V(Q),
Mq(ui,uj) =1 if Mq(ui,uj)=0
Mq(ui,uj) =q otherwise
whereq is a large prime number. Putting these together, in Lines 7-8 of Algo. 3, ontEQ)| <
) ¢, the SP usesSPVerify*. Otherwise, it useSPVerify.
.In rela}tlon to Def. 6.1, we adopt Formula 1 to state th?alse positives. Since both SPVerify and SPVerify* use
violation: Vu;, u; € V/(Q), CGBE, we can obtain that the probabilities of false positives of

Mq(ui,uj) = q A (v, vj0) & E(G) (5)  SPVerify* are alsmegligible Their proofs are almost identical
wherev;, v € V(G), u; — vy andu; — vj. to those of Props. 6.1 and 6.2 and [9], and hence, omitted.
Algorithm for SPVerify*. For ease of comparison, we present VII. PRIVACY ANALYSIS

the pseudo-code &PVerify* (shown in Algo. 5) in the style  In this section, we prove the privacy of the encryption
of SPVerify. The inputs and the initialized data structures amaethod andSPsublso. The attack model is the one defined
the same a$PVerify, except thatR, must be initialized to in Sec. Il. The attackers afPs are eavesdroppers and can
0. We first initialize an intermediate resuR; with a value adopt chosen plaintext attack (CPA) [20].



Privacy of the encryption method. CGBE is adopted to Cache }; and
encrypt the query graph in this paper. The privacyC&BE o If @ is not a subgraph ofG, PrlA(Q) = 1] =
andMgq, can be recalled from [9]. 1/|P(m,h,%)|.

Lemma 7.1: [9] CGBE is secure against CPA]_\/[Qk is Proof: (Sketch) Since the algorithi®PVerify* is similar

preserved from th&P against the attack model undeGBE.  to that of SPVerify, due to the space constraint, we prove it
with SPVerify only. The proof involves two aspects:

Then, based on Lemma 7.1, we have the following. (1) SP can never determine any structural information from
Proposition 7.1: The structure of the query is preserved fronthe mathematical computations in each stepSR¥erify:
the SP against the attack model undéGBE. Recall thatSPVerify comprises a fixed number of mathe-

Proof: (Sketch) The proof can be derived frommatical operations in the encrypted domain in Algo. 4.
Lemma 7.1. After receivingly, the SP cannot break the o Lines 4-7 invoke a constant number of additions of

Mg, since they are secure against CRA.X and L do not Mgq, and R;, and only structure of’M; is considered.
contain structural information. Thus, the structure of rguis More specifically, Vi, j, m? additions are invoked for
preserved from th&P against the attack model. u Mgq,(i,j) and R;; and

Privacy of SPsublso. SPsublso mainly consists of five .« Line 8 requires one multiplication on eadt and Rj,.

steps: (1) GenCandSubGraph; (2) Minca”dS”bGraPh; (3)  Based on Lemma 7.1, all the intermediate computationstsesul
GenCandMatch; (4) GenAllMap; and (5) SPVerify (or are securely protected against the attack model. Moreover,
SPVerify®). We now analyze the privacy of each step agach step ofsPVerify has a constant number of operations
follows. However, first, the analysis requries some not&tio i, the encrypted domainS? cannot learn any information
We denote a functionP(m, h,¥) that returns all possible fom them.

graphs ofm vertices with a minimum heightt and the labels 2y s may only infer some structural information from the
3. |P(m,h,X)| is exponential to the value: and the size message communications:

of ¥. ? Lgt A(Q) is a function that returng if SP_is able Recall that onceM R;s are aggregated int®, Ry is

to determine the exact structure Qf and0 otherwise. The oy rned to the client, the client may decide to terminate

probability that theSP can determine the structure of theSPVerify after receivingR,,s. There are two cases:
query @ is denoted asPr[A(Q) = 1]. Given a queryQ

and (m, h, X)), the probability of determining its structure is

PriAQ) = 1] = 1/|P(m,h,%)|.

Proposition 7.2: Under GenCandSubGraph,

MinCandSubGraph, GenCandMatch and GenAllMap,

PrlA(Q) = 1] = 1/|P(m, h,%)|. .
Proof: (Sketch) The proof is established by one main fact:

SP does not utilize any structural information of the query,

o Suppose there is at least one vallt), such that@

is a subgraph ofG. In this case,(Q must be graph
(or subgraph) isomorphic to one @M, in Cache.

Therefore,Pr[A(Q) = 1] = 1/|S|, whereS = {G|G €

P(m,h,%), G C CM,, CM, € Cache}; and

If the client does not terminate the algorith&P does
not know if there is a validR; or not. Thus, the
probability of determining the structure a is still

except the valué in the glgorlthm. PrlA(Q) = 1] = 1/|P(m, h,3)|. i
o GenCandSubGraph utilizes ¢, h, @ andG to generate .
all the CS,s: Based on Prop. 7.3, we note that the client can make a

tradeoff between privacy and response times by terminating

o MinCandSubGraph minimizes the size of eacti'S; by -
the algorithm as late as acceptable.

using only the structure aof'S, itself;

o GenCandMatch utilizes Q; andC'S, to generateC' M,s; VIII. EXPERIMENTAL EVALUATION
« GenAllMap enumeratesill the possible mappingsaps |, this section, we present a detailed experimental evialuat
betweenQ), and C'M;. of our proposed techniques with popular real world datasets

The SP cannot learn the structure @ by invoking them, The results show that our techniques are efficient and our
and thus the probability of determining a structure remaigptimizations are effective.

PrlA(Q) =1] = 1/|P(m, h, X)|. u
In SPVerify and SPVerify*, SP sends messages to th _ )

clients. The clients may terminate the algorithm when Bh€ platform. We conducted all our experiments on a machine

Such a leak can be quantified in the following proposition. Windows 7 OS. All techniques were implemented on C++, and

Proposition 7.3: UnderSPVerify or SPVerify*, the following CGBE was implemented on the GMP library. We simulate the
hold for : bandwidth aslOMbits/s.

« If Q is a subgraph o, PrlA(Q) = 1] = 1/|S], where Data and query sets We benchmarked real-world datasets:
S = {G|G € Plm,h '2) ¢ C CM.. whereC'M. ¢ DBLP, Amazon, Youtube, and LiveJournal [1]. Since the
T = > ° vertices do not have labels, we adopt the approach that uses

eA. Experimental Setup

2We remark that ifh = 1, the SP is able to infer that the vertex with,
mustconnect to other vertices i@. To avoid this special case, as mentioned 3As discussed in Sec. |, previous studies are not applicabdet problem,
in Sec. IV, we choose the starting vertex whérequals or larger thag. since they heavily exploit query structures, which are efeicr this work.



TABLE |

STATISTICS OF THE REAL-WORLD DATASETS

GraphG [V(G)| |E(G)] Avg. Degree | |2(G)]
DBLP 317,080 | 1,049,866 6.62 199
Amazon 334,863 925,872 5.52 153
Youtube 1,134,890 | 2,987,624 5.26 978
LiveJournal | 3,997,962 | 34,681,189 17.34 1355

Q2 Q3 Q4 Q5 Q6 Q7 Q8

the degree of the vertex as its label [18]. Some statistics of,,

(a) DBLP

the datasets are shown in Table I. 10
For each dataset, we generated two types of queries [27%¢
(1) BFS queriesBFS) and (2) DFS queriesDFS) by random £
BFS and DFS methods, respectively. Bd&trS and DFS
contain query set§)2-Q8, wherein each)n contains 1,000
query graphs, and is the number of vertices of each query of <
the query seth of the query sets are aroul3é4 on average.
Default values of the parameters.In CGBE, the primep
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Fig. 7. Average received encrypted message size at the client.

and ¢ are 2048 bits and 32 bits, respectively. The randomthe current configuratiorGPVerify* can be used to produce
numberr is 32 bits. The largest value is 12 by Formula 6. much smaller messages (to be discussed with Fig. 14).

However, to study the performance of boBVerify* and

SPVerify, we first set: to 6, by default. That is, ifV(Q)| < 6, e
we usedSPVerify*. Otherwise, we use8PVerify. We finally
investigated the effectiveness &P Verify* with ¢ = 11. For
SPVerify*, we setM = 100 by default {.e., we aggregated
100 R;s into eachRy). For SPVerify, we setM = 10 only.
Unless specified otherwisé, = 5. Under these settings, no
false positives was detected from the entire experiments.
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10 — 10 e Fig. 8. Average decryption time at the client.

" DFS -5 | o PFS X~ | The decryption time at the client. After receiving the en-

crypted message3; s, the client decrypt®;s. The decryption
time is shown in Fig. 8. Since the sizes Bfs are small and

o
T

Avg. time (ms)

o= : LT L

s .1 the decryption method is simple, the average decryptioegim

N N at the client are correspondingly fast at moeins.
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() Youtube (d) LiveJournal C. Performance at the SP Side
Fig. 6. Average preprocessing time at the client. 2000 2000 .
. . BFS X
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Preprocessing time at the client.We report the average
preprocessing time of the query at the client side on all g
datasets in Fig. 6. Specifically, the preprocessin@ aficludes 400
(1) the computation fo¥, and h; and (2) the encryption of %
@ by CGBE. We observe that the average times for each
query on all datasets are around 4ms, which shows that thee,
preprocessing is in cognitively negligible.

The sizes of messages received by the clielfe report the
sizes of the encrypted messagess that the client received in
Fig. 7. Due to the optimizations Psublso, the largest sizes <o
of Ris (atQ6) are around 3KB on LiveJournal, which can be
efficiently transmitted via today’s networks. FQ7-Q8, as we (c) Youtube (d) LiveJournal

setc to 6 (by default),SPsublso usesSPVerify. The number Fig. 9. Average total running time at th&P.

of R;s aggregated in eacR;. is 10. Thus, the message sizeJhe total runtime at the SP. Fig. 9 shows the average total
for Q7-Q8 are larger. Since the maximum value©is 11 in  runtime at theSP on all datasets, which is exactly the runtime

93000
<
2000
1000 -

o
Q Q4 Q5 Q6 Q7 Q8 Q2

(a) DBLP

@ Q4 Q5 Q6 o7 Q8
(b) Amazon

12000

e 3
10000 [PFS === A
00 ;
8000 |-

2000 6000

Avg. time (ms)
w
8

Avg. time (ms)

IS
S
S
3

2000 - X

i}

0|
Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q2 Q3 Q4 Q5 Q6 Q7 Q8



100

of SPsublso. For the simplicity of performance analysis, we
terminatedSPsublso once the client found at least one valid
mapping. (The client may postpone the termination to aehiev £ *
higher privacy [9], although that introduces small but non- = *
trivial overhead toSPsublso.) It is not surprising that the 2L
runtimes increase exponentially with the query sizes.@®r -
the largest runtime is arounts on LiveJournal. However,
the running times for small querie€)2-Q6) are well below 100
600ms for all datasets. a0
We further report the breakdowns of the total runtimess «
of SPsublso: (1) GenCandSubGraph and MinCandSubGraph; L 1
and (2) GenCandMatch and SPVerify. For the DBLP and 20 1 20

BFS —— [ BFS ——

80

BFS

‘
Q2 Q2 Q Q5 Q Q7 Q8
(b) Amazon

Amazon datasets, the breakdown percentages of both query o ——— Qi’“ Qj A OQZ‘ S QE“ Qj A
sets are similar30% and 70%. For Youtube, they ar&1% (c) Youtube (d) LiveJournal
and19%, and for LiveJournal, they arg3% and47%. Fig. 11. Average % of the pruned redundafit\/; by Cache.

100 T

100

are stable at around0%. We note the graph structures of
LiveJournal are diverse and there are many distifidts.
The effectiveness of'ache then decreases fro80% to 50%

for Q5-Q8. This is also reflected by the fact that the sizes of
L L the encrypted messagés.s are the largest for LiveJournal
Q2 Q3 (c:‘) l)QISBLPQa Q7 Q8 Q2 Q3 (g; Aﬁ:azg; Q7 Q8 (Sef FIg" 7>' |
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Fig. 10. Average % of reduced vertices S, by NC. 25 e
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The effectiveness of minimization of C'S;. In Fig. 10, ,
we show the average percentage of the reduced vertices
of CSs; by NC in MinCandSubGraph. We observe that £wo

15000

size (KB)

510000

Avg

5000

MinCandSubGraph reduces around 40% of the vertices of °
CS,s on DBLP and Amazon, and at least 60% on Youtube. & & & o o o o B or o QG'— Q7 Qs
; ; (c) Youtube (d) LiveJournal
Howe\éeQrd(yfor LiveJournal, the percentage (on average) is Fig. 12. AverageCache size atSP.
arounazuo. The memory consumption ofCache. We report the memory

In our experiment, we note that a small fraction of queriggnsumption ofCache in Fig. 12. As we only store the hash
have C'Sss that contain numerous candidate mappings. TRgqe of the canonical labeling of each distin€t\,, the
reason is thaSPsublso cannot exploit query structures formemory consumption is very small (at mast\ B).

T T 100 T T

optimizations. In this case, for eachS,, we compute an upper  wo /= [ =

DFS --¢--

bound of the number of candidate mappings of a query by
simple calculations orC'S;. For those candidate subgraphs s «
that may exceed00, 000 mappings, we transmit the candidate < «

subgraphs to the client to dwblso (e.g, using [14] or [8]). 20

The percentage of such queries is very small, at mgst ) L
for Q2-Q7 on all datasets. Fog8, the percentage is only “ e (Q;) TR e (83 Amazon
10%. In other words, most subgraph queries are successfully,,, oo
outsourced to the&P. Wl BRERE ] " BFS %

The effectiveness of the elimination of redundantCM,.
Fig. 11 shows the average percentage of redundaht,s ¢
pruned byCache in GenCandMatch. We note that as the

40

query size increases, the effectivenessCbiche increases. o e E Ry
- imi 1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q2 Q@ Q4 Q5 Q6 Q Q8
For Q2-Q4 of all datasets, the percentage of the elimination (©) Youtube (d) LiveJournal

For Q5-Q8 on DBLP, Amazon and Youtube, the percentageghe effectiveness of pruning redundant mappings b\NEC.



We report the pruning of redundant mappings by uditilC  Subgraph isomorphism.Ullmann [28] proposed a seminal al-
in Fig. 13. We observe that, for most of the queries, we prungdrithm for subgraph isomorphism. The basic idea is a search
approximately20% of redundant mappings on average. Thiwith backtracking with respect to the matrix that represent
further saves on computations $Verify and SPVerify*. possible isomorphic relationships. In the last decadegraév
24 algorithms é.g, VF2 [8], QuickSI [26] and Turbg, [14])
50 have been proposed to enhance performance significantly.
Eg They all require totraversingthe query on graph data. For
10 instance, VF2 [8] relies on a set of state transitions and
traversals on the graph and query. QuickSl [26] optimizes th
ordering in traversals of graphs. Tutho[14] exploits neigh-
borhood information and local regions of vertices. Twbo
also involves determining an optimal traversal in query-pro
cessing. However, the traversals themselves carry topalog
information, which makes privacy preservation complidaite
it is possible at all. Wu et al. [31] supports structurelessph
queries, as the query structure is automatically formdlate
However, the queries are known to tiié.

X. CONCLUSION

This paper studies the first practical private approach for
subgraph query service: asymmetric structure-presersig
i graph query processing. Our techniques include deriving mi
where eachfi), is an aggregate af/ messages andl/ = 10. jnizeq candidate subgraphs to significant reduce the number
As discussed, the messages are small. To ssiiterify”, we o candidate mappings, generating candidate matchings and
then seic = 11. We used@s with DFS and varied the values yhen candidate mappings without redundancies and vegifyin
of M from 10 to 100. Fig. 14 shows the detailed performgnc%andidate mappings without leaking query structures. Our
of all datasets. We report that far = 10, the message Size gy neriments confirm that our techniques are efficient and
is the same as those values@$ DFS in Fig. 7. Importantly, egective. A future work is to support data values assodiate
as M increases, the message size decreases accordingly. \ith the graphs. We also plan to apply distributed computing

IX. RELATED WORK once candidate subgraphs are generated.
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