
Asymmetric Structure-Preserving Subgraph Queries
for Large Graphs

Zhe Fan1 Byron Choi1 Jianliang Xu1 Sourav S Bhowmick2
1Department of Computer Science, Hong Kong Baptist University, Hong Kong, China

{zfan, bchoi, xujl}@comp.hkbu.edu.hk
2School of Computer Engineering, Nanyang Technological University, Singapore

assourav@ntu.edu.sg

Abstract—One fundamental type of query for graph databases
is subgraph isomorphism queries (a.k.asubgraph queries). Due
to the computational hardness of subgraph queries coupled
with the cost of managing massive graph data, outsourcing the
query computation to a third-party service provider has been
an economical and scalable approach. However, confidentiality is
known to be an important attribute of Quality of Service (QoS)
in Query as a Service (QaaS). In this paper, we propose the first
practical private approach for subgraph query services,asym-
metric structure-preserving subgraph query processing, where the
data graph is publicly known and the query structure/topology is
kept secret. Unlike other previous methods for subgraph queries,
this paper proposes a series of novel optimizations that only
exploit graph structures, not the queries. Further, we propose a
robust query encoding and adopt the novel cyclic group based
encryption so that query processing is transformed into a series
of private matrix operations. Our experiments confirm that our
techniques are efficient and the optimizations are effective.

I. INTRODUCTION

Subgraph queries (via subgraph isomorphism) are a fun-
damental and powerful query in various real graph applica-
tions [25]. In particular, it is fundamental to various mod-
ern graph queries, such as graph pattern queries [2] and
ontology-based matching [29]. While it is well known that
subgraph queries are NP-hard, there has been significant
research progress on enhancing their performance,e.g., [8],
[14], [26], [30]. A recent attempt has been to outsource
costly computation to aquery service provider(SP), who
is often equipped with powerful machines, to providequery
as a service(QaaS). Thereby, users not only obtain high
performance, scalability, and elasticity [13] but also arefree
from the burdens of managing IT infrastructure.

BecauseSPs may not always be trusted, users’ privacy may
be threatened. In fact, (data or query) confidentiality has been
recognized as one of the public’s most crucial concerns (e.g.,
[23]). A stream of research on private query processing has
bloomed in the past decade,e.g., in the context of relational
databases [16], spatial databases [17] and graph databases[4].
However, to date, subgraph queries that preserve the query
structure (a.k.a topology) over large networks has not yet been
studied. We motivate this problem with the following scenario.

Example 1.1: Law enforcement agencies are increasingly
using social media to solve crimes. According to a recent

survey1 of 1,221 federal, state and local law enforcement
who use social media, four out of five officials used social
media to solve crimes. Suppose a law enforcement agency
is investigating a set of suspicious individuals over a public
social network (e.g., Cloob, which is a Persian-language social
networking website, mainly popular in Iran) held in a third
party SP . In order to monitor the online activities of these
individuals with one another, the agency wishes to glean in-
formation related to interactions between them on the network
by issuing a subgraph query representing the relationships
between the individuals. Unfortunately, it is possible that the
SP may have been infiltrated by friends or sympathisers of
these individuals. Hence, in order to protect the privacy ofthe
intent of the agency from theSP , the agency cannot expose
the subgraph query directly, especially the query structure (i.e.,
specific relationship pattern between the individuals). How can
the agency glean relevant information using a subgraph query
while preserving its topological privacy?

Unfortunately, previous work on privacy-preserving graph
queries [3], [4], [12], [15], [19], [21], [24] (except [9]) cannot
support subgraph queries while preserving their structure. Fan
et al. [9] keepboth query and data graphs private. In contrast,
as query clients may often have data access privileges, the
privacy requirement of this work is on queries only. As a
result, querying significantlylarger graphs becomes possible.
Other work has studied privacy-preserving graph publication
[5], [6], [22], [32], [33]. Since the published data are sanitized
(i.e., modified), it is not clear how subgraph queries can
be supported. Recent studies [10], [11] have addressed the
authenticity of the query answers, but not their confidentiality.

It is worth highlighting that theintrinsic technical challenge
of this research direction is that although the data graph is
available to theSP, the SP cannot optimize the queries
by directly exploiting the structure of the query graphs. In
comparison, recent subgraph isomorphism algorithms (e.g.,
VF2 [8], Turboiso [14] and QuickSI [26]) intensivelyutilize
the query graphs for optimization, which by definition, leaks
their structural information. More recently, the work reported
in [31] supports “structureless” graph queries . However, the
structure is automatically generated by a ranking model and
the SP is aware of the queries.

1
www.lexisnexis.com/en-us/about-us/media/press-release.page?id=1342623085481181.

One may also attempt to solve the problem with a naive
solution in which theSP exhaustively traverses all of the
data graph to enumerate allcandidate mappings(i.e., possible
mappings) between the query and the graph and return them to
the client for verification. The intuition is that since the query
structure is not exploited, its privacy is preserved. However,
this is infeasible because the number of candidate mappings
is exponential to the graph size in the worst case.

The first challenge of this research is then“how to reduce
a large data graph and subsequently the number of candidate
mappings for verification, without exposing the query struc-
ture?”. Our first idea is to determine the minimizedcandidate
subgraphsthat contain at least a candidate mapping. Then can-
didate mappings are enumerated from those subgraphs instead
of the original graph. In particular, we propose optimizations
that use novelneighborhood containmentof data vertices to
minimize the subgraphs. Second, we determine subgraphs
(called candidate matchings) from a candidate subgraph,
where candidate mappings are enumerated. In comparison, in
previous work [8], [14], [26] where privacy is not a concern,
the matching (i.e., the query graph) is known. We propose a
subgraph cacheand useneighborhood equivalent classesto
further minimize the number of matchings and mappings.

The second challenge is “how to verify if a candidate
mapping is a subgraph isomorphism mapping without leaking
the query structure?” We propose a query encoding scheme
and adopt an encryption scheme for query graphs. With these,
we derive a basicstructure-preserving verification methodthat
consists of a series of private matrix operations. Moreover,
to minimize communication overheads, we propose to use
the complement of the encoding for anenhanced verification
methodfor queries of bounded sizes.
In summary, the contributions of this paper are as follows:

• At query time, we first propose a new candidate subgraph
exploration in theabsence of query structure, to reduce
a large data graph for query processing. We propose
further reducing the size of candidate subgraphs by using
neighborhood containment.

• Since candidate matchings are determined from candidate
subgraphs, we propose a subgraph cache to prune the
candidate matchings that are enumerated.

• We propose a robust encoding scheme and its verification
method. We propose a model for the client to determine
a proper encoding for his/her query.

• We conduct extensive experiments with real datasets to
investigate the effectiveness and efficiency of our pro-
posed methods.

Organization. Sec. II introduces the problem. We provide the
preliminaries in Sec. III. Sec. IV presents query preprocessing
at clients. Sec. V details the structure-preserving optimizations
that minimize the candidate subgraphs and matchings. Sec. VI
presents the verification of subgraph isomorphism mapping
in an encrypted domain. We analyze privacy in Sec. VII.
Sec. VIII shows the experimental results and Sec. IX compares
the related work in the literature. We conclude in Sec. X.

Service provider (SP)Client

Rk

Attacker

(ℓs, h, Qk, c, I)
& public keys

Fig. 1. Overview of the system model.

II. PROBLEM FORMULATION

This section formulates the technical problem. More specif-
ically, it presents the system model, attack model, privacy
target, and problem statement.

System model.The system model resembles the classical
server-client model, which contains two parties (illustrated
in Fig. 1): (1) A Service Provider(SP) and (2) thequery
client (or simply client). The SP is equipped with powerful
computing utilities such as a cloud and hosts a subgraph
query service for publicly known graph dataG. The client
encrypts his/her queryQ using a secret key (generated by
himself/herself)Qk and submitsQk to theSP . TheSP then
processes the client’s encrypted query over the dataG, and
returns an encrypted result to the client. The client decrypts
the result to obtain the query answer.

Attack model. We assume thesemi-honest (adversary) model
which is widely used in the database literature [3], [4], [17],
[20], where the attackers arehonest-but-curious(that is, the
SP performs computations according to the system model but
the SP may be interested in inferring secrets). Furthermore,
the SP may be the attacker. For presentation simplicity,we
often call the attacker theSP . We assume that the attackers
can be botheavesdroppingand adopting thechosen plaintext
attack (CPA) [20].

Privacy target. To facilitate technical discussions, we assume
that the privacy target is to protect thestructures of the
query graphQ from theSP under the attack model defined
above. Thestructural informationof Q that we consider is the
adjacency matrices ofQ (i.e., the edge information ofQ). It is
obvious that the complete structure of a query can be derived
from the edge information.

To sum up, theproblem statementof this paper can be stated
as follows:Given the above system and attack model, we seek
an efficient approach to complete the subgraph query service
while preserving the privacy target.

III. PRELIMINARIES AND OVERVIEW

In this section, we first provide preliminary concepts related
to subgraph queries. Then, we present an overview of our
proposed solution.

A. Subgraph Queries

The graphG = (V,E,Σ, L) considered in this paper is
an undirected labeled connected graph, whereV (G), E(G),
Σ(G) andL are the set of vertices, edges, vertex labels and
the function that maps a vertex to its label, respectively. We
use nb(v,G) to denote the set of neighbors ofv in G. We use
occ(ℓ,G) to represent the number of occurrences of the label
ℓ in V (G). We useMG to represent the adjacency matrix of
G. MG(vi, vj) is a binary value, whereMG(vi, vj) = 1 if

Q
G

· · ·

Cand. subgraphs

Minimize by

SPsubIso(Qk, G):

5©3© 4©1© 2©
Qk, ℓs, h, c, I

public keys

Client

Cand. matchings Prune matchings

Service Provider

EncryptEncode
1

q
· · · · · ·

ℓs, h

Cand. mappings

map1

· · ·

map2

Else SPVerify

If |Q| ≤ c, SPVerify∗

Encrypted
Prune by

Adj. Matrix

Pre-process:

Decryption:
R = Dec(Rk)

True or False

Qk = Enc(Q)

Cache (Sec. V.B)
results Rk

map3

NC (Sec. V.A)
Minimize by
NEC (Sec. V.C)

encrypted
Verify in

· · ·

· · ·
· · ·

· · ·

· · ·

CSs1

CSs2

CSs3

CSs1

CSs2 domain

query structure
Optimizations w/o

private keys
With

(Sec. VI)
(Sec. IV)

Fig. 2. Overview of our approach.

(vi, vj) ∈ E(G), and otherwise 0. The adjacency matrixMG

represents the edge information. For the clarity of technical
details, we present our technique with graphs having vertex
labels only. The techniques we propose can be extended to
support graphs with edge labels with minor modifications.

Subgraph queries.Def. 3.1 recalls the definition of subgraph
isomorphism. We say a graphG is a subgraph of another
graph G′ iff there exists a subgraph isomorphism mapping
(or mapping for short) fromG to G′, denoted asG ⊆ G′

or subIso(G, G′) = true. In this paper, we studysubgraph
queriesstated as: given a query graphQ and a data graphG,
the subgraph queryis to determine ifsubIso(Q, G) = true.
It is well known that deciding whetherQ is the subgraph of
G is NP-hard.

Definition 3.1: Given two graphsG = (V,E,Σ, L) andG′ =
(V ′, E′,Σ′, L′), a subgraph isomorphism mappingfrom G to
G′ is an injective functionf : V (G) → V (G′) such that

• ∀u ∈ V (G), f(u) ∈ V (G′), L(u) = L′(f(u)); and
• ∀(u, v) ∈ E(G), (f(u), f(v)) ∈ E(G′).

B. Overview of Our Approach

An overview of our solution is sketched in Fig. 2. Our
solution essentially consists of the algorithms at the client side
and those at theSP side.

Client-side algorithms. For the algorithms at the client side,
we propose performing lightweight optimization and encryp-
tion on the query graphQ. (1) We first analyze the query
to determine thestarting labelℓs and theminimum heighth
of Q, which are useful for minimizing the number and the
sizes of candidate subgraphs ofG. A candidate subgraphis a
subgraph inG that may contain a candidate matching, whereas
a candidate matchingis a subgraph of the candidate subgraph
that may generate acandidate mappingbetweenQ and G.
(2) We then propose a robust encoding scheme forQ (of any
size). (3) We adopt theprivate-key encryption schemeCGBE
[9] to encrypt the encodedQ to encrypted queryQk, which is
issued to theSP for query processing. (4) The client decrypts
the encrypted answer returned by theSP.

Server-side algorithms.The main ideas of the algorithms at
the SP side are to localize and minimize the enumeration of
candidate mappings betweenQ andG in candidate subgraphs.
(1) TheSP first efficiently determines the candidate subgraphs
CSss (subgraphs) starting from each starting vertexs of the
label ℓs with the traversal depthh. We proposeneighborhood
containment(NC) to minimize eachCSs in the absence of
the structure ofQ. Subsequently, it minimizes the number

of candidate matchings to be enumerated by theSP. (2) In
eachCSs, theSP enumerates all candidate matchings (CMs)
and candidate mappings. We propose acanonical labeling-
based subgraph cacheand apply neighborhood equivalent
class (NEC) to further avoid redundantCMs and candidate
mappings, respectively. (3) We derivestructure-preserving
verificationSPVerify from [9], wheremultipleencrypted mes-
sagesRk (with negligible false positives) are returned to the
client for decryption of the result.
SPVerify is derived from the seminal subgraph isomorphism

algorithm: the Ullmann’s algorithm [28]. The major benefit of
Ullmann’s algorithm is that its computation flow is simple;
hence, we can cast the algorithm into a series of matrix
operations (additions and multiplications). Since the encryp-
tion of SPVerify supports such matrix operations, privacy is
preserved.

We also note thatSPVerify may send multiple messages
to the client for decryption, which may result in high de-
cryption and network communication costs. Thus we pro-
poseSPVerify∗. The major difference betweenSPVerify∗ and
SPVerify is that SPVerify∗ uses different query encodings
according to different query sizes and significantly fewer
encrypted messages are returned for decryption, and the query
size is smaller than a system-related constant.

IV. QUERY PREPROCESSING AT THECLIENT

In this section, we introduce a preprocessing method of the
query graph. It comprises three steps: (1) retrieving optimiza-
tion parameters; (2) encoding the query; and (3) encrypting
the encoded query. The encrypted query is sent to theSP.

A. Retrieving Parameters for Optimization

In order to minimize (1) the size of each candidate subgraph
CSs and (2) the total number ofCSss, theSP requires the
minimum heighth of Q and, in the meantime, the starting
label ℓs of CSss that isinfrequentin G. These parameters (h
and ℓs) are efficiently retrieved by the client.

Given a starting labelℓs, the SP generatesCSss by a
breadth first search bounded by the depthh starting at each
vertex ofG having the labelℓs (to be detailed in Sec. V-A).
On the one hand, to minimize the size of eachCSs, we simply
find the spanning treeof Q with a minimum heighth rooted
from a vertexu, whereu ∈ V (Q) andℓs = L(u). Intuitively,
the smaller the valueh, the smaller the size of eachCSs. Note
that we cannot choose the vertexu with h = 1 since it trivially
leaks the structure ofQ (to be analyzed in Sec. VII). When
there is a tie (i.e., when verticesu andv of Q have the same
h) the client selects the vertex of the label that isless frequent

1 2

0

2
G

u1

u2

u3

u4

Q

0

1 1 1 12

2 2 24

1

CSs

s
Client SPℓs = 0, h = 2

MQ =

1 1 1 q

1 1 1 1

1 1 1 q

q 1 q 1

Encoding of MQ

(a) Encoding of query graph (c) Minimization of CSs by NC

0

1 1 1 12

2 2 2

s

1
v1 v2 v3 v4 v5 v6

v7 v8 v9

v1 ⊑ v2 v4 ⊑ v5 ⊑ v6

(b) Construction of candidate subgraphs

CSs

4 5 1

· · ·

· · · · · ·

· · ·

Fig. 3. (a) Illustration of the preprocessing at the client;(b) Construction of candidate subgraphs; and (c) Minimization of CSs by NC.

in G, simply because the number ofCSss is bounded by the
occurrence of the label inG.

Example 4.1: Fig. 3 (a) shows an example of the selection
of the starting label of queryQ. The heights of the spanning
trees rooted fromu1, u3, andu4 are 2.u1 is finally chosen as
the starting label asocc(0, G) < occ(2, G), whereL(u1) = 0,
and L(u3) = L(u4) = 2. u2 is not considered because the
height of its spanning tree is 1.

B. Query Encoding

For presentation brevity, we present anencodingscheme for
the queryQ (in Definition 4.1) to facilitate the discussion of
the subsequent encryption scheme. This encoding is extended
for further optimization (to be proposed in SubSec. VI-B).
Definition 4.1: The encodingof the entries ofMQ are:
∀ui, uj ∈ V (Q),

{

MQ(ui, uj) = q if MQ(ui, uj) = 0; and
MQ(ui, uj) = 1 otherwise,

whereq is a large prime number.

Example 4.2: Fig. 3 (a) also shows an example of the
encoding ofQ by Def. 4.1. The entries inMQ with values0
are replaced by the large primeq.

C. Query Encryption

Based on the encoding ofQ, we adopt our recent private-key
encryption scheme [9] (cyclic graph based encryption scheme
CGBE) to encrypt the encoding ofQ (MQ). CGBE not only
allows for efficient encryption and decryption but also supports
both partial additions and multiplications, which is the core of
efficient structure-preserving computation.
Background on cyclic group.Prior to the presentation of the
definition ofCGBE, we first recall the preliminaries of cyclic
group [20]. LetG be a group.p = |G| is denoted as theorder
of G. In particular,∀g ∈ G, the order ofG is the smallest
positive integerp s.t., gp = 1. Let 〈g〉 = {gi : i ∈ Zp, g

i ∈
Zn} = {g0, g1, · · · , gp−1} denote the set of elements generated
by g. The groupG is calledcyclic if there exists an element
g ∈ G such that〈g〉 = G. g is called ageneratorof G.
CGBE scheme.The cyclic group based encryption scheme is
defined as follows.
Definition 4.2: [9] The cyclic group based encryptionscheme
is aprivate-keyencryption scheme, denoted asCGBE = (Gen,
Enc, Dec), where

• Gen is akey generation function, which generates a secret
key x uniformly at random, a cyclic group〈g〉 = {gi :
i ∈ Zp, g

i ∈ Zn}. It outputs the private keys as(x, g)
and the valuep which is known to the public.

• Enc is an encryption function, which takes as input a
messagem and the secret key(x, g). It chooses a random
valuer, and outputs the ciphertext

e = mrgx (mod p)
• Dec is a decryption function, which takes as input a

ciphertexte, and the secret key(x, g). It outputs
mr = eg−x (mod p)

Note that the decryption functionDec in CGBE only de-
crypts the ciphertexte as a product of the messagem and the
random valuer.
Query encryption. With CGBE, we define the encryption of
MQ as follows.
Definition 4.3: The encryptionof Q is denoted asQk, Qk =
{V,MQk,Σ, L}, where∀ui, uj ∈ V (Q),

MQk(ui, uj) = Enc(MQ(ui, uj), x, g)

Example 4.3:For example,∀ui, uj , if MQ(ui, uj) = 1, then
MQk(ui, uj) = Enc(1) = rgx (modp); and ifMQ(ui, uj) =
q, thenMQk(ui, uj) = Enc(q) = rqgx (mod p).

Discussion.We remark that the client holds the secret keys
(x, g) for decryption and moreover, determines the constant
c and an encrypted valueI for encrypting verification results
(to be discussed in Sec. VI). At last,ℓs, h, Qk, c, I andp are
sent to theSP for structure-preserving query processing.

V. M INIMIZED SP MAPPING GENERATION

The query preprocessing at the client side (in Sec. IV)
generates (ℓs, h, Qk, c, I, p) for the SP. Upon receiving
these, theSP performsstructure-preservingsubIso (termed
SPsubIso), presented in Algo. 1.

As outlined in Sec. I, theSP first minimizes the number of
candidate mappings to-be-verified. For brevity, we focus on
the most crucial procedures: candidate subgraph generation
(Sec. V-A), candidate matching generation (Sec. V-B), and
candidate mapping enumeration (Sec. V-C).

A. Candidate Subgraph Generation
To avoid enumerating mappings on a possibly large graph,

theSP first generates candidate subgraphs (Fig. 3(b)), where
possible mappings can only be embedded in those subgraphs.
A candidate subgraph is formally described in Def. 5.1.

Definition 5.1: A candidate subgraphstarted froms ∈ V (G),
denoted asCSs, is an induced subgraph ofG, s.t.

1) L(s) = ℓs;
2) ∀v ∈ V (CSs), v is reachable froms within h hops;
3) ∀ℓ, ℓ ∈ Σ(CSs) ⇔ ℓ ∈ Σ(Q); and
4) ∀ℓ ∈ Σ(CSs), occ(ℓ, CSs) ≥ occ(ℓ,Q).

Example 5.1: SupposeL(s) = ℓs = 0 andh = 2. Fig. 3(b)
sketches an example of a candidate subgraphCSs (the grey-
colored shadow) rooted froms of G. For each vertexv in

CSs, v is reachable froms within 2 hops. The set of labels
of Q is the same as that ofCSs (i.e., Σ(CSs) = Σ(Q)). For
each labelℓ in CSs, occ(ℓ, CSs) ≥ occ(ℓ,Q).

Initial generation. GenCandSubGraph (Procedure 1.1,
Lines 8-17) shows the generation of candidate subgraphs.
Algo. 1 first initializes theCSs as ∅ (Line 1). Then, for
each vertexs ∈ V (G), where L(s) = ℓs, it invokes
GenCandSubGraph (Line 1).GenCandSubGraph simply gen-
eratesCSs by a simple breadth first search method started
from s onG within h hops (Lines 10-15).VCSs

is to record the
vertices ofCSs determined so far. For each vertexv ∈ VCSs

,
v must be reachable froms within h hops (Lines 13-15), and
L(v) ∈ Σ(Q) (Line 13). If ∀ℓ ∈ Σ(CSs), occ(ℓ, CSs) ≥
occ(ℓ,Q) (Line 16), CSs is set to the induced subgraph of
VCSs

in G (Line 17).
Minimization by neighborhood information. Since the sizes
of candidate subgraphs have a significant impact on perfor-
mance, we proposeMinCandSubGraph (Procedure 1.2) to
minimize the size of eachCSs. MinCandSubGraph is derived
based on our notion ofneighborhood containment class(NC)
of CSs, defined as follows.

Definition 5.2: Given N = {v1, v2, · · · , vn} of V (CSs), N
is a neighborhood containment class(NC), denoted asv1 ⊑
v2 ⊑ · · · ⊑ vn, iff ∀vi, vj ∈ N , i < j,

1) L(vi) = L(vj);
2) a) nb(vi, CSs) ⊆ nb(vj , CSs), if N is an indepen-

dent set inCSs; or
b) nb(vi, CSs)∪ {vi} ⊆ nb(vj , CSs)∪ {vj}, if N is

a clique ofCSs.

Based on Def. 5.2, the vertices of a candidate subgraphCSs

exhibit a total ordering with respect to the⊑ relationships.
We have the following lemma for minimizing the size of
a candidate subgraph by keeping the “top” vertices in the
subgraph. The intuition is that the reducedCSs preserves all
the structures of the originalCSs. The proof is established via
a simple contradiction.
Lemma 5.1: Denote anNC N as {v1, v2, · · · , vn}, where
N ⊆ V (CSs) of a graphG. Denote thereducedV (CSs) (de-
noted asCSr

s) is the induced subgraphof V (CSs)\(N\Nk)
of CSs, i.e. Nk = {vn−k+1, vn−k+2 · · · , vn} contains top-k
vertices ofN that are kept, wherek = occ(L(v1), Q). Then,
the answer ofQ on CSs is the same as that onCSr

s .
Proof: (Sketch) We prove that the removed structures

in CSs are preserved inCSr
s . We only considerN is an

independent set for simplicity as the argument whenN is a
clique is similar.

We denoteNk̄ = N\Nk which represents the removed ver-
tices inN . Any possible structure inCSs must be formed by
some vertices fromNk̄ andNk. The former can be formulated
asNx

k̄
⊆ Nk̄, for somex (x ≥ 1), whereas the latter can

beNy
k ⊆ Nk, wherey (y = k − x). DenoteN ′

k = Nx
k̄
∪Ny

k .
DenoteCSk

s as the induced subgraph ofV (CSs)\(N\Nk)
and CSk′

s and that ofV (CSs)\(N\N ′
k), respectively. For

any substructures in the induced subgraph ofCSk′

s and for
each vertexvx ∈ Nx

k̄
, we can always find a distinguished

vertex vy ∈ Nk\N
y
k such thatnb(vx, CSs) ⊆ nb(vy, CSs),

by Def. 5.2. This implies thatCSk′

s ⊆ CSk
s . Therefore,CSr

s

preserves all the structures inCSs by only keepNk.

Example 5.2: Reconsider Example 5.1.{v1, v2} is an NC

asL(v1) = L(v2), nb(v1, CSs) ⊆ nb(v2, CSs) and {v1, v2}
forms an independent set ofCSs in Fig. 3(c). Sinceocc(1, Q)
= 1, by Lemma 5.1, we keep the top-1 vertex. It can be seen
that the answer ofQ remains the same after removing either
v1 or v2 from CSs. For another example, let’s consider theNC

{v4, v5, v6} in Fig. 3(c), as the neighborhood ofv4 is contained
by that ofv5. Hence,v4 ⊑ v5. Similarly, v5 ⊑ v6. {v4, v5, v6}
forms an independent set. Again, by Lemma 5.1, we keep only
the top-1 vertex,i.e., v6. The answer ofQ remains the same
after removingv4 andv5. All in all, Fig. 4(a) showsCSs, the
candidate subgraph after the minimization.

The minimization procedure MinCandSubGraph. Proce-
dure 1.2 shows the minimization ofCSs by NC. For each
ℓ ∈ Σ(CSs), a set N of NC is first initialized as {}
(Line 18). For each vertexv of CSs with the labelℓ, sorted
in ascending order of|nb(v, CSs)| (Line 19) for efficiency,
MinCandSubGraph checks if there is anN in N , such that
N ∪ {v} forms anNC by Def. 5.2 (Line 20). If so,v is then
inserted intoN (Line 21). Otherwise, the algorithm creates
a new N = {v} and unionsN to N (Line 22). After
the generation ofNC of CSs for the label ℓ, CSs can be
minimized by Lemma 5.1 via keeping the top-k vertices in
eachN , N ∈ N , k = occ(ℓ,Qk) (Lines 23-24).
Complexity. The complexity of the generation ofNC in
Procedure 1.2 isO(dmax|V (CSs)|2), where dmax is the
maximum degree of the vertices inCSs. In practice,|V (CSs)|
is often in the order of hundreds, which is small.

B. Candidate Matching Generation
A unique challenge in structure-preserving query processing

is that, in the absence of query structure, theSP matches
Qk to multiple possible subgraph structures inCSs. We call
such subgraph structurescandidate matchings. In contrast,
if the query structures were not kept secret, the candidate
matching was known to beQ. Fig. 4(a) shows four candi-
date matchings,CMs1, CMs2, CMs3, andCMs4. For each
matching, candidate mappings are enumerated. It is evident
that a naive enumeration of all candidate matchings can be
inefficient. In this subsection, we proposeGenCandMatch to
efficiently generate candidate matchings. The main idea is to
avoid generating redundant matchings fromCSs.

Definition 5.3: A candidate matching, denoted asCMs, is a
connected induced subgraphof CSs, s.t.

1) |V (CMs)| = |V (Q)|; and
2) ∀ℓ ∈ Σ(CSs), occ(ℓ, CMs) = occ(ℓ,Q).

Example 5.3: Fig. 4 (a) lists all theCMss enumerated from
CSs. ∀CMsi, i ∈ {1, ..., 4}, |V (CMsi| = |V (Q)|, and∀ℓ ∈
Σ(CSs), occ(ℓ, CMsi) = occ(ℓ,Q).

Elimination of redundant CMs. We make two observations
from Example 5.3 and Fig. 4. (1)CMs2 is graph-isomorphic
to CMs3. If candidate mappings are generated fromCMs2, it

(a) Construction of candidate matchings

0

1 12

2 2 2

s

v1 v2 v3

v4 v5 v6

1 2

2

v1 v2

v4

0
s

CMs1

0

12

2

s

v2 v3

v5

CMs2

0

1

2 2

s

v3

v5 v6

CMs4CSs

Mapping for CMs1

u1 7→ s
u2 7→ v1
u3 7→ v2
u4 7→ v4

u1 7→ s
u2 7→ v1
u3 7→ v4
u4 7→ v2

Mapping for CMs2

u1 7→ s
u2 7→ v3
u3 7→ v2
u4 7→ v5

u1 7→ s
u2 7→ v3
u3 7→ v5
u4 7→ v2

Mapping for CMs4

u1 7→ s
u2 7→ v3
u3 7→ v5
u4 7→ v6

map1 map2 map3 map4 map5

(b) Enumeration of possible mappings

v5 ≃ v6

0

12

2

s

v2 v3

v6

CMs3

prune by cacheδ = 3 cache = {can(CMs1), can(CMs2), can(CMs4)}

1 2

0

2

u1

u2

u3

u4

Q

Fig. 4. (a) Construction of candidate matchings; and (b) Enumeration of possible mappings.

Algorithm 1 SPsubIso (Qk, G, ℓs, h)
Input: The encrypted query graphQk, data graphG, starting labelℓs and hoph
Output: The encrypted resultRk

1: Initialize CSs = CMs = ∅, Cache = ∅, andRk = 1
2: for each vertexs ∈ V (G) with the starting labelℓs
3: GenCandSubGraph(Qk, G, s, h, CSs) /* By Def. 5.1 */
4: MinCandSubGraph(Qk, CSs) /* Minimize CSs */
5: Initialize setVCMs = {s}
6: GenCandMatch(VCMs , Qk, CSs, Rk, Cache) /* By Def. 5.3 */
7: Return Rk

Procedure 1.1GenCandSubGraph (Qk, G, s, h, CSs)
8: Initialize a queueV isit and asetVCSs as empty
9: V isit.push(s), VCSs .insert(s), s.hop() = 0

10: while V isit is not empty /* BFS method */
11: v = V isit.pop()
12: if (v.hop() = h) continue /* By 2. in Def. 5.1 */

/* By 3. in Def. 5.1 */
13: for each v′ = nb(v,G), v′ 6∈ VCSs ∧ L(v′) ∈ Σ(Qk)

14: V isit.push(v′), VCSs .insert(v′)
15: v′.hop() = v.hop() + 1

/* By 4. in Def. 5.1 */
16: while ∃ℓ ∈ Σ(VCSs), s.t. occ(ℓ, VCSs) < occ(ℓ,Qk)

remove allv from Σ(VCSs), wherev ∈ Σ(VCSs) andΣ(v) = ℓ

17: CSs = GenInducedSub(G, VCSs)

Procedure 1.2MinCandSubGraph (Qk, CSs)
18: for each ℓ ∈ Σ(CSs), N = {} /* N is a set ofNC */

/* Ascending ordered by|nb(v, CSs)| */
19: for each v ∈ V (CSs), L(v) = ℓ,
20: if ∃N ∈ N , s.t., /* By Def. 5.2 */

(1) {v} ∪ N forms an independent set (or a clique); and
(2) nb(v, CSs) (or nb(v, CSs)∪ {v}) contains those of vertices inN .

21: N .insert(v) /* Ordered by⊑ */
22: elsecreate a newN , N = {v}, N = N ∪ {N}
23: for each N ∈ N , Nk = {vn−k+1, · · · , vn}, k = occ(ℓ,Qk)
24: RemoveN\Nk from CSs /* By Lemma. 5.1 */

Algorithm 2 GenCandMatch (VCMs
, Qk, CSs, Rk, Cache)

1: if VCMs are enumerated before /*VCMs is checked */
2: return
3: if |VCMs | = |V (Qk)|
4: CMs = GenInducedSub(CSs, VCMs)
5: if Cache.isHit(can(CMs)) /* CMs is checked before */
6: return
7: Cache.insert(can(CMs)) /* Insert can(CMs) into Cache */
8: if V (Q) ≤ δ /* Insert subgraphs ofCMs into Cache */
9: Cache.insert(can(CM ′)),

whereCM ′ ⊆ CMs, |V (CM ′)| = |V (CMs)|
10: GenAllMap(Qk, CMs. Rk) /* Generate candidate mappings */
11: for each v ∈ VCMs

12: for each v′ ∈ nb(v, CSs) in descending order,v′ 6∈ VCMs

13: if occ(ℓ, VCMs) < occ(ℓ,Qk), ℓ = L(v′) /* By Def. 5.3 */
14: VCMs .insert(v′)

15: GenCandMatch (VCMs , Qk, CSs, Rk)
16: VCMs .remove(v′)

is obvious that generating mappings fromCMs3 is redundant.
(2) CMs1 is a supergraph ofCMs2. One can simply generate
mappings fromCMs1, and skipCMs2 andCMs3.

To remove the redundancies mentioned above, it is exactly
to solve the following problem: “given a graphG and a
graph databaseG : {G1, ...}, how to efficiently determine
if G is a subgraph ofG′, G′ ∈ G?” Such a problem

has been extensively studied before (e.g., [26], [30], [34]).
Existing solutions involve an index computed offline. In our
context, candidate matchings are enumeratedonline. Hence,
the existing solutions cannot be directly applied.
Canonical labeling-based subgraph cache.Let’s recall a
crucial property of canonical labeling. In the context of graph
query processing, the canonical labeling of a graphG is
denoted ascan(G), andcan(G) = can(G′) if and only ifG is
isomorphic toG′. While the cost for computing the canonical
labeling of a graph is not yet known (P or NP), the cost
for comparing whether two graphs are isomorphic using the
canonical labeling isO(1), once computed. This work adopts
the state-of-the-art labeling calledminimum dfs code[30] from
the literature.

For each query, we proposeCache to store can(CMs),
where eachCMs is the checked candidate matching. Once
a new CM ′

s is generated, we first check ifcan(CM ′
s) is

already inCache. If so, CM ′
s is discarded. Otherwise, we

insert can(CM ′
s) into Cache. Further, we continue to enu-

merate subgraphsCM ′s from CM ′
s, where for eachCM ′,

|V (CM ′)| = |V (CM ′
s)|, CM ′ ⊆ CM ′

s, and can(CM ′)
is stored inCache. Putting subgraphs ofCM ′

s increases
the chance of pruning byCache. However, thetrade-off is
that as the query size increases, the computational cost for
enumerating all subgraphs of aCM ′

s increases exponentially.
Thereby, for practical purposes, we enumerate all of the
subgraphsCM ′s of CM ′

s only if |V (Q)| ≤ δ, where δ is
a user-defined threshold.
Example 5.4: The top of Fig. 4 (a) shows the idea of the
canonical labeling-based cache. We assume thatδ is 3, and the
sequence of the generation ofCMs is from CMs1 to CMs4.
CMs3 is eliminated ascan(CMs2) is in Cache. If we set
δ to 5, thenCMs2 and CMs3 are both eliminated, because
CMs2 is a subgraph ofCMs1, and whenCMs1 is processed,
can(CMs2) is inserted intoCache.
The ordering in CMs generation.From Example 5.4, it can
be observed that the ordering inCMs generation affects the
performance of the cache, when|V (Q)| ≤ δ. Supposeδ = 5.
AssumeCMs2 is generated beforeCMs1. Then, CMs2 is
not eliminated. In general, the earlier the largerCMss are
generated, the better the performance is. Therefore, we find
a simple ordering forCMs generation, by greedily adding
vertices to theCMs by the degree of each vertex.

CMs generation. In Algo. 1, Cache is initialized to ∅
(Line 1), and the vertex set of each generatedCMs, denoted
asVCMs

, is initialized to{s} (Line 5). In Line 6, the algorithm
for the generation ofCMss, denoted asGenCandMatch,
presented in Algo. 2.

Algorithm 3 GenAllMap (Qk, CMs, Rk)
Input: The encrypted queryQk, candidate matchingCMs and encrypted resultRk

1: GenerateM from Qk andCMs

2: Initialize vectorused as~0
3: Initialize vectormap as~0
4: ConstructNEC of CMs

5: EnumMap(u0, used, map, M, Qk, CMs, Rk) /* Enumeration */

Procedure 3.1EnumMap(ui, used, map, M, Qk, CMs, Rk)
6: if i = |V (Qk)|
7: if |V (Qk)| ≤ c, SPVerify∗(map, Qk, CMs, Rk) /* Sec. VI-B */
8: elseSPVerify(map, Qk, CMs, Rk) /* Sec. VI-A */
9: for each j < |V (CMs)|, M(ui, vj) = 1 ∧ used[vj] = 0

/* Eliminate redundant mappings by Lemma 5.2 */
10: if ∃vj′ , vj′ ≃ vj , j′ < j, used[vj′] = 0 /* Lexi. order */
11: continue
12: used[vj] = 1, map[ui] = vj

13: EnumMap(ui+1, used, map, Qk, CMs, Rk)
14: used[vj] = map[ui] = 0

In GenCandMatch (Algo. 2), CMs is generated fromCSs

(Lines 11-16) until the size of the matching is the same as
the query (Lines 1-10). For each vertexv ∈ VCMs

(Line 12),
it attempts to addv’s neighboring vertexv′ ∈ nb(v, CSs),
where v′ 6∈ VCMs

, and it adds thev′ with a large degree
first (deg(v′, CSs)). If occ(ℓ, VCMs

) < occ(ℓ,Qk) (Line 13),
where ℓ = L(v′), v′ is then added toVCMs

(Line 14).
GenCandMatch is called recursively (Line 15) until|VCMs

| =
|V (Qk)| (Lines 1-10).CMs is an induced subgraph ofVCMs

(Line 4).
For each generatedCMs, can(CMs) is checked if

can(CMs) is already inCache (Line 5). If yes, there exists
a CM ′ in Cache such thatCM ′ is isomorphic toCMs.
By the property of canonical labeling,CMs can be elimi-
nated (Lines 5-6). Otherwise, we addcan(CMs) into Cache
(Line 7). If |V (Q)| ≤ δ, we enumerate the subgraphsCM ′ of
CMs, where |V (CM ′)| = |V (CMs)|, and insertcan(CM ′)
into Cache (Lines 8-9). At last,GenAllMap (see Algo. 3)
is invoked (Line 10) to generate all possible mappings (see
SubSec. V-C) betweenQk andCMs.

C. Candidate Mapping Generation
When a new candidate matchingCMs is generated, Algo. 3

invokesGenAllMap to enumerate all possible mappings be-
tweenQk andCMs.
Elimination of redundant mappings by NEC. Recall that
the number of mappings is exponential to the size ofCMs.
However, in practice, many mappings are redundant. Hence,
before generating the mappings, we utilizeneighborhood
equivalent classesNECs ofCMs (Def. 5.4) to eliminate those
redundant mappings. We remark thatNEC is a special case of
NC. While a similarNEC has been proposed in [14] for query
and data graphs, ourNEC is applied to data graphs only.

Definition 5.4: Given anNC N = {v1, v2, · · · , vn} of CSs,
whereN is either an independent set or a clique ofCSs, N
is a neighborhood equivalent class(NEC), denoted asv1 ≃
v2 ≃ · · · ≃ vn, iff ∀vi, vj ∈ N , vi ⊑ vj andvj ⊑ vi.

Example 5.5: Let’s consider the example ofCMs4 in
Fig. 4 (a), {v5, v6} is an NEC as L(v5) = L(v6) and
nb(v6, CMs4) = nb(v5, CMs4) = {v3}.

Suppose thatu3 andu4 (in Fig. 4 (a)) have been mapped
to v5 and v6, respectively. It is not necessary to mapu3 and

map1 :

map2 :

(a). SPVerify between Qk and CMs1

Rk = R1 ×R2

R1 = gx(rq + · · ·+ rq)

R2 = gx(rq + r+ · · ·+ rq)

= g2x(rq + · · ·)(rq + r+ · · ·)

(mod p)

violation by (2) Rk = R1 +R2

R1 = gx(r × · · · × r)

R2 = gx(r × rq× · · · × r)

= gx((r × · · ·) + (r × rq× · · ·))

(mod p)

violation by (6)

(b). SPVerify∗ between Qk and CMs1

Fig. 5. SPVerify (andSPVerify∗) betweenQk andCMs1.

u4 ontov6 andv5, respectively. This can be formalized as the
following lemma. Foremost, we often use (ui 7→ vi) to denote
map[ui] = vi for ease of exposition.

Lemma 5.2: Suppose the following are true:
1) ui, uj ∈ V (Q), vi′ , vj′ ∈ V (CMs), L(ui) = L(uj) =

L(vi′) = L(vj′);
2) vi′ ≃ vj′ ;
3) (ui 7→ vi′) and (uj 7→ vj′).

Let map′ be the mappingmap except that (ui 7→ vj′) and
(uj 7→ vi′). Then,map is a candidate mapping betweenQ
andCMs if and only ifmap′ is also a candidate mapping.

The proof is omitted since it can be established by a simple
proof by contradiction. Next, we present the data structures
and the mapping generation, that exploit the lemma.
Data structures. (i) A vertex label mappingM is a m × n
binary matrix,m = |V (Qk)| andn = |V (CMs)|. Specifically,
∀u, v, M(u, v) = 1 if L(u) = L(v), whereu ∈ V (Qk) and
v ∈ V (CMs); and otherwise 0. (ii) A vectormap of the size
|V (Qk)| is to record a mapping fromQk to CMs, map[u] = v
(i.e., u 7→ v) represents that vertexu in Qk is mapped to vertex
v in CMs. map[u] = 0 if u is not yet mapped. (iii) A vector
used of the size|V (CMs)| is to denote whether the vertex
v in CMs has been mapped to a vertex ofQk and recorded
in map. used[v] = 0 if v is not yet mapped. In other words,
used[v] = 1 if and only if map[u] = v for someu ∈ Qk.

Algorithm for mapping generation. The detailed algorithm
GenAllMap is shown in Algo. 3. It first initializes the data
structures, includingM, used andmap in Lines 1-3. Line 4
constructsNEC of CMs, which is similar to that ofNC in
Procedure 1.2.EnumMap (Lines 6-14) is then invoked to enu-
merate all possible mappings. A mappingmap is constructed
vertex by vertex iteratively. Line 9 checks ifvj is a possible
map of ui by M and used. We then exploit the equivalence
class to further check ifvj can be possibly mapped toui (Lines
10-12). The vertices in aNEC are checked in a predefined
order (e.g, lexicographical order). If∃vj′ s.t. vj′ ≃ vj , j′ < j
and vj′ is not used before, thenvj is skipped (Line 10). If
vj passes the check,EnumMap is called recursively (Line 13)
until a full mapping is constructed (Line 6).
Example 5.6: Fig. 4(b) illustrates the possible candidate
mapping generation for thoseCMss of Example 5.3. Since
v5 ≃ v6 in CMs4, by Lemma 5.2, we only enumeratemap5,
whereu3 7→ v5 andu4 7→ v6, but the one withu3 7→ v6 and
u4 7→ v5 is eliminated.

VI. SP MAPPING VERIFICATION

Section V presented a series of optimizations that reduce the
number of mappings to be generated. Then, for each mapping
map, the SP verifies (in the encrypted domain) if there is
no violation in map. The encrypted verification results are

aggregated before they are transmitted to the client. In this
section, we derive a basic verification (SPVerify) from [9]
for our problem setting. Next, we propose an enhanced one
(SPVerify∗) that aggregates many more messages but requires
the query size to be smaller than a user-determined constant.

A. SPVerify
Given a mappingmap betweenQk andCMs, we determine

if CMs is a valid mapping or not. Specifically, we define the
violation w.r.t. the encoding ofQ as follows:∃ui, uj ∈ V (Q),

MQ(ui, uj) = 1 ∧ (vi′ , vj′) 6∈ E(CMs) (1)
wherevi′ , vj′ ∈ V (CMs), ui 7→ vi′ and uj 7→ vj′ . It states
that there exists an edge between verticesui anduj in Q, but
there is no corresponding edge between the mapped vertices
vi′ and vj′ in CMs. We term the case in Formula 1 as a
violation of subgraph isomorphism(or simply violation). A
mapping without violation(s) is called avalid mapping.

Example 6.1:Let’s take the two mappingsmap1 andmap2 of
CMs1 in Fig. 4 (b) as an example. First, no violation is found
in map1. Second, formap2, we find thatMQ(u1, u3) = 1 and
(s, v4) 6∈ E(CMs1), wheremap2[u1] = s andmap2[i3] = v4.
Therefore,map2 is invalid.

Algorithm for SPVerify. The intuitive idea ofSPVerify is to
transform the verification steps into mathematical operations
on MQk andCMs, where (1) the violation (Formula 1) can
be detected; (2) only matrix additions and multiplications
are involved; and (3) the result can be aggregated with one
message or multiple messages.

Algo. 4 shows the detailed algorithm. The inputs are a
candidate mappingmap, an encrypted query graphQk, a
candidate matchingCMs and an encrypted resultRk. We
remark thatRk is to record the aggregated result forCMss,
whereRk is initialized to1 in Line 1 Algo. 1.

We initialize an intermediate resultRi with a value 0
(Line 1). For each pair of vertices(ui, uj) in V (Q) and
the mapped vertex pair(vi′ , vj′) in CMs (Lines 2-3), the
following two steps are performed:

1. Additions (Lines 4-7): if(vi′ , vj′) 6∈ E(CMs), Ri is set
to (MQk(ui, uj) + Ri) (mod p). This indicates that if
(ui, uj) is an edge inQ, Ri must not contain a factor of
q, and the decryption value ofRi is non-zero (i.e., the
current mappingmap contains a violation (by Formula 1),
which is not a valid mapping). Otherwise, no violation
is caused by(ui, uj). This setsRi to the valueI + Ri

(mod p), whereI is an encrypted valuewith a factorq
issued by the client,I = Enc(q); and

2. Multiplications (Line 8): it aggregatesRi into Rk, by
Rk = Rk × Ri (mod p). If there is at least one valid
mapping from Q to G, i.e., at least oneRi whose
decryption value is zero. The decryption value ofRk must
also be zero. Otherwise, it is non-zero. We remark that
CGBE leads toerrors if the number ofRis aggregated in
Rk is larger than a predetermined valueM .

Example 6.2: Fig. 5(a) depicts an example ofSPVerify
betweenQk and CMs1. There are two mappings fromQk

Algorithm 4 SPVerify(map, Qk, CMs, Rk)
1: Initialize Ri = 0
2: for each ui, uj ∈ V (Q), i < j

3: vi′ = map[ui], vj′ = map[uj]
/* Additions */

4: if (vi′ , vj′) 6∈ E(CMs)

5: Ri += MQk
(ui, uj) (mod p) /* Aggregate violation */

6: else
7: Ri += I (mod p) /* No violation, I = Enc(q) */

/* Multiplications */
8: Rk ×= Ri (mod p) /* DecomposeRk after aggregatingM Ri */

to CMs1 in Fig. 4(b). Inmap1, all the factors inR1 contain
q sincemap1 is a valid mapping. However, inmap2, since
thereexistsa violation between(u1, u3) and (s, v4), there is
a factor inR2 that has no primeq. Rk = R1 ×R2 (mod p).
Decryption at the client. After receiving all the encrypted
messagesRk, the client performs two main steps:

• For eachRk, the client computes theplaintextof Rk by
R′

k = Dec(Rk, x, g)
M ; and

• The client computes the final result byR = R′
k (mod q).

R equals zero if and only if there is at least one valid mapping
from Q to G and thus,subIso(Q,G) = true.

Example 6.3: We show the decryption at the client by using
the example in Fig. 5 (a). AssumeM = 2. The encrypted
messageRk only aggregates twoRis. The client generates
the g−2x, computesR′

k = Rk × g−2x (mod p), and finally
computesR = R′

k (modq). The result is zero, which indicates
Q is a subgraph ofG.

Decomposition scheme. We recall that the decryption (Dec
in Def. 4.2) uses the arithmetic modulop. The messagem ∗ r
must not exceedp. When there are too manyRis multiplied
into Rk, the product (in the plaintext domain) may exceedp.
Subsequently, the client will not obtain the correct plaintext
under the arithmetic system. Therefore, we decompose the
product into smaller numbers and the client decrypts those
numbers instead. Through Formula 2 below, we can determine
the maximum number ofRis to be aggregated inRk (M):

Len(p) ≥ M(Len(q) + Len(r))

⇔ M ≤ Len(p)
(Len(q)+Len(r)) ,

(2)

whereLen(p) is the size ofp.
Let’s say we setM = 10. From experiments, the number of

mappings (after our minimizations) for our queries is around
500 on average. Each message is2048 bits in size. Thus, the
communication cost is around12.8KB, which is very small.
False positives. Due toCGBE [9], the two matrix operations
in SPVerify introduce negligible false positives: (1) additions
with computingRi (Lines 4-7); and (2) multiplications with
computingRk in each decomposed number (Line 8). However,
the probabilities of the above two false positives are negligible.

The probability of false positives from the aggregation (ad-
ditions) while computingRi and the multiplication ofRks in
each decomposed number are respectively stated in Props 6.1
and 6.2, which can be established by simple arithmetics.

Proposition 6.1: The probability of false positives inRi is 1
q ,

which is negligible.

Algorithm 5 SPVerify∗(map, Qk, CMs, Rk)
1: Initialize Ri = 1
2: for each ui, uj ∈ V (Q), i < j

3: vi′ = map[ui], vj′ = map[uj]
/* Multiplications */

4: if (vi′ , vj′) 6∈ E(CMs)

5: Ri ×= MQk
(ui, uj) (mod p) /* Aggregate violation */

6: else
7: Ri ×= I (mod p) /* No violation, I = Enc(1)*/

/* Additions */
8: Rk += Ri (mod p)

Proof: The case of false positives is that each individual
values in the addition are not divisible byq but the sum equals
a multiple ofq. Such a probability is
Pr(false positives inRi) = Pr(r1 + · · ·+ rm(m−1)/2 = 0(mod q))

= 1
q (3)

wherem = V (Q), andq is a large prime number,e.g., 32bits.
Thus, the probability is negligible, in practice.
Proposition 6.2: The probability of false positives inRk is
1− e−

M
q , which is negligible, in each decomposed number.

Proof: The probability of false positives in eachRk is
Pr(false positives inRk) = 1− Pr(true positive in allRi)

= 1− (1− 1
q
)M

≈ 1− e
−

M
q (4)

whereM is the size of the decomposed number. SinceM ≪ q,
the probability is negligible in practice.

B. Optimized SPVerify for Queries of Bounded Sizes
Each encrypted messageRk sent bySPVerify aggregates

at most M messagesRis. In this subsection, we propose
SPVerify∗, which significantly reduces the number of mes-
sages returned, which in turn reduces both the communication
and computational costs at the client. The main idea behind
SPVerify∗ is to use multiplications to detect violationssince
queries are often small anduse additions to aggregateRis.
Hence, the value ofRk may not exceedp even after many
aggregations. However, a tradeoff ofSPVerify∗ is that the
query size must be bounded by a pre-determined constantc.

Similar toSPVerify, SPVerify∗ also detects the violation by
multiplications and additions. In order to achieve that, wefirst
define acomplementencoding of the query (see Def. 6.1).

Definition 6.1: The encodingof the entries ofMQ are:
∀ui, uj ∈ V (Q),

{

MQ(ui, uj) = 1 if MQ(ui, uj) = 0
MQ(ui, uj) = q otherwise

whereq is a large prime number.

In relation to Def. 6.1, we adopt Formula 1 to state the
violation: ∀ui, uj ∈ V (Q),

MQ(ui, uj) = q ∧ (vi′ , vj′) 6∈ E(G) (5)

wherevi′ , vj′ ∈ V (G), ui 7→ vi′ anduj 7→ vj′ .

Algorithm for SPVerify∗. For ease of comparison, we present
the pseudo-code ofSPVerify∗ (shown in Algo. 5) in the style
of SPVerify. The inputs and the initialized data structures are
the same asSPVerify, except thatRk must be initialized to
0. We first initialize an intermediate resultRi with a value

1 (Line 1). For each pair of vertex(ui, uj) in V (Q) and
the mapped vertex pair(vi′ , vj′) in CMs (Lines 2-3), the
following two steps are performed:

1. Multiplications (Lines 4-7): according to the violation(by
Formula. 5), if(vi′ , vj′) 6∈ E(CMs), setRi as the value
MQk(ui, uj) × Ri (mod p). This indicates that as soon
as(ui, uj) is an edge inQ, Ri must contain the factorq,
and the decryption value is zero (i.e., the current mapping
map contains a violation). Otherwise,Ri is set to a value
I × Ri (mod p), whereI is an encrypted valuewithout
factor q issued by the client,I = Enc(1); and

2. Additions (Line 8): it aggregatesRi to Rk, whereRk =
Rk + Ri (mod p). If there is at least one valid mapping
from Q to G (i.e., at least oneRi whose plain text is
non-zero). The decrypted value ofRk must also be non
zero. Otherwise, it is zero.

Example 6.4: Fig. 5 (b) illustrates an example ofSPVerify∗.
Similarly, since there is no violation inmap1, all the factors
in R1 do not containq. Regardingmap2, since there is a
violation, R2 contains a factorq. Rk = R1 +R2 (mod p).

Decryption at the client. The decryption is modified as:
• The client computes the message encoded inRk asR′

k =
Dec(Rk, x, g)

m(m−1)/2, wherem = |V (Q)|; and
• The client computes the final result byR = R′

k (mod q).
R equals non-zero if and only if there is at least one valid
mapping fromQ to G. ThussubIso(Q,G) = true.
Example 6.5: We show the decryption in Fig. 5 (b). For
simplicity, we assume thatRk only aggregatesR1 and R2.
The client generatesg−6x, computesR′

k = Rk × g−6x (mod
p), and finally computesR = R′

k (mod q). The result is non-
zero which indicates thatQ is a subgraph ofG.

Determining the constantc to decide when to useSPVerify
or SPVerify∗. In SPVerify∗, multiplications are used to aggre-
gate violations by edges inCMs (Line 4 in Algo. 5), instead
of aggregating numerous mapping results (Ri in Line 8 of
Algo. 4). Similarly, whenRi (Lines 4-7) in Algo. 5 exceeds
p, the client cannot recover the plaintext. The number of
multiplications for eachRi is directly related to the size of
the query (|V (Q)|). We can determine the maximum size of
the query, denoted asc, using the following inequality.

Len(p) ≥ c(c−1)
2 (Len(q) + Len(r))

⇔ 0 ≥ c2 − c− 2Len(p)
Len(q)+Len(r)

(6)

Putting these together, in Lines 7-8 of Algo. 3, once|V (Q)| ≤
c, theSP usesSPVerify∗. Otherwise, it usesSPVerify.
False positives. Since both SPVerify and SPVerify∗ use
CGBE, we can obtain that the probabilities of false positives of
SPVerify∗ are alsonegligible. Their proofs are almost identical
to those of Props. 6.1 and 6.2 and [9], and hence, omitted.

VII. PRIVACY ANALYSIS

In this section, we prove the privacy of the encryption
method andSPsubIso. The attack model is the one defined
in Sec. II. The attackers orSPs are eavesdroppers and can
adopt chosen plaintext attack (CPA) [20].

Privacy of the encryption method. CGBE is adopted to
encrypt the query graph in this paper. The privacy ofCGBE

andMQk can be recalled from [9].

Lemma 7.1: [9] CGBE is secure against CPA.MQk is
preserved from theSP against the attack model underCGBE.

Then, based on Lemma 7.1, we have the following.

Proposition 7.1: The structure of the query is preserved from
the SP against the attack model underCGBE.

Proof: (Sketch) The proof can be derived from
Lemma 7.1. After receivingQk, the SP cannot break the
MQk since they are secure against CPA.V , Σ andL do not
contain structural information. Thus, the structure of query is
preserved from theSP against the attack model.
Privacy of SPsubIso. SPsubIso mainly consists of five
steps: (1)GenCandSubGraph; (2) MinCandSubGraph; (3)
GenCandMatch; (4) GenAllMap; and (5) SPVerify (or
SPVerify∗). We now analyze the privacy of each step as
follows. However, first, the analysis requries some notations.
We denote a functionP (m,h,Σ) that returns all possible
graphs ofm vertices with a minimum heighth and the labels
Σ. |P (m,h,Σ)| is exponential to the valuem and the size
of Σ. 2 Let A(Q) is a function that returns1 if SP is able
to determine the exact structure ofQ, and 0 otherwise. The
probability that theSP can determine the structure of the
query Q is denoted asPr[A(Q) = 1]. Given a queryQ
and (m,h,Σ), the probability of determining its structure is
Pr[A(Q) = 1] = 1/|P (m,h,Σ)|.
Proposition 7.2: Under GenCandSubGraph,
MinCandSubGraph, GenCandMatch and GenAllMap,
Pr[A(Q) = 1] = 1/|P (m,h,Σ)|.

Proof: (Sketch) The proof is established by one main fact:
SP does not utilize any structural information of the query,
except the valueh in the algorithm.

• GenCandSubGraph utilizes ℓs, h, Qk andG to generate
all theCSss;

• MinCandSubGraph minimizes the size of eachCSs by
using only the structure ofCSs itself;

• GenCandMatch utilizesQk andCSs to generateCMss;
• GenAllMap enumeratesall the possible mappingsmaps

betweenQk andCMs.
The SP cannot learn the structure ofQ by invoking them,
and thus the probability of determining a structure remains
Pr[A(Q) = 1] = 1/|P (m,h,Σ)|.

In SPVerify and SPVerify∗, SP sends messages to the
clients. The clients may terminate the algorithm when a
mapping is found, which may leak information to theSP .
Such a leak can be quantified in the following proposition.
Proposition 7.3: UnderSPVerify or SPVerify∗, the following
hold for :

• If Q is a subgraph ofG, Pr[A(Q) = 1] = 1/|S|, where
S = {G|G ∈ P (m,h,Σ), G ⊆ CMs, whereCMs ∈

2We remark that ifh = 1, theSP is able to infer that the vertex withℓs
mustconnect to other vertices inQ. To avoid this special case, as mentioned
in Sec. IV, we choose the starting vertex whereh equals or larger than2.

Cache }; and
• If Q is not a subgraph ofG, Pr[A(Q) = 1] =

1/|P (m,h,Σ)|.

Proof: (Sketch) Since the algorithmSPVerify∗ is similar
to that of SPVerify, due to the space constraint, we prove it
with SPVerify only. The proof involves two aspects:
(1) SP can never determine any structural information from
the mathematical computations in each steps ofSPVerify:

Recall thatSPVerify comprises a fixed number of mathe-
matical operations in the encrypted domain in Algo. 4.

• Lines 4-7 invoke a constant number of additions of
MQk andRi, and only structure ofCMs is considered.
More specifically,∀i, j, m2 additions are invoked for
MQk(i, j) andRi; and

• Line 8 requires one multiplication on eachRi andRk.

Based on Lemma 7.1, all the intermediate computations results
are securely protected against the attack model. Moreover,
each step ofSPVerify has a constant number of operations
in the encrypted domain.SP cannot learn any information
from them.
(2) SP may only infer some structural information from the
message communications:

Recall that onceM Ris are aggregated intoRk, Rk is
returned to the client, the client may decide to terminate
SPVerify after receivingRks. There are two cases:

• Suppose there is at least one validRk such thatQ
is a subgraph ofG. In this case,Q must be graph
(or subgraph) isomorphic to one ofCMs in Cache.
Therefore,Pr[A(Q) = 1] = 1/|S|, whereS = {G|G ∈
P (m,h,Σ), G ⊆ CMs, CMs ∈ Cache}; and

• If the client does not terminate the algorithm,SP does
not know if there is a validRk or not. Thus, the
probability of determining the structure ofQ is still
Pr[A(Q) = 1] = 1/|P (m,h,Σ)|.

Based on Prop. 7.3, we note that the client can make a
tradeoff between privacy and response times by terminating
the algorithm as late as acceptable.

VIII. E XPERIMENTAL EVALUATION

In this section, we present a detailed experimental evaluation
of our proposed techniques with popular real world datasets.3

The results show that our techniques are efficient and our
optimizations are effective.

A. Experimental Setup

The platform. We conducted all our experiments on a machine
with an Intel Core i7 3.4GHz CPU and 16GB memory running
Windows 7 OS. All techniques were implemented on C++, and
CGBE was implemented on the GMP library. We simulate the
bandwidth as10Mbits/s.
Data and query sets. We benchmarked real-world datasets:
DBLP, Amazon, Youtube, and LiveJournal [1]. Since the
vertices do not have labels, we adopt the approach that uses

3As discussed in Sec. I, previous studies are not applicable to our problem,
since they heavily exploit query structures, which are secret in this work.

TABLE I
STATISTICS OF THE REAL-WORLD DATASETS

GraphG |V (G)| |E(G)| Avg. Degree |Σ(G)|
DBLP 317,080 1,049,866 6.62 199

Amazon 334,863 925,872 5.52 153
Youtube 1,134,890 2,987,624 5.26 978

LiveJournal 3,997,962 34,681,189 17.34 1355

the degree of the vertex as its label [18]. Some statistics of
the datasets are shown in Table I.

For each dataset, we generated two types of queries [27]:
(1) BFS queries (BFS) and (2) DFS queries (DFS) by random
BFS and DFS methods, respectively. BothBFS and DFS

contain query setsQ2-Q8, wherein eachQn contains 1,000
query graphs, andn is the number of vertices of each query of
the query set.h of the query sets are around3-4 on average.
Default values of the parameters.In CGBE, the primep
and q are 2048 bits and 32 bits, respectively. The random
numberr is 32 bits. The largest valuec is 12 by Formula 6.
However, to study the performance of bothSPVerify∗ and
SPVerify, we first setc to 6, by default. That is, if|V (Q)| ≤ 6,
we usedSPVerify∗. Otherwise, we usedSPVerify. We finally
investigated the effectiveness ofSPVerify∗ with c = 11. For
SPVerify∗, we setM = 100 by default (i.e., we aggregated
100 Ris into eachRk). For SPVerify, we setM = 10 only.
Unless specified otherwise,δ = 5. Under these settings, no
false positives was detected from the entire experiments.

 0

 2

 4

 6

 8

 10

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. t
im

e
(m

s)

BFS
DFS

(a) DBLP

 0

 2

 4

 6

 8

 10

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. t
im

e
(m

s)

BFS
DFS

(b) Amazon

 0

 2

 4

 6

 8

 10

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. t
im

e
(m

s)

BFS
DFS

(c) Youtube

 0

 2

 4

 6

 8

 10

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. t
im

e
(m

s)

BFS
DFS

(d) LiveJournal
Fig. 6. Average preprocessing time at the client.

B. Performance at the Client Side

Preprocessing time at the client.We report the average
preprocessing time of the queryQ at the client side on all
datasets in Fig. 6. Specifically, the preprocessing ofQ includes
(1) the computation forℓs and h; and (2) the encryption of
Q by CGBE. We observe that the average times for each
query on all datasets are around 4ms, which shows that the
preprocessing is in cognitively negligible.
The sizes of messages received by the client.We report the
sizes of the encrypted messagesRks that the client received in
Fig. 7. Due to the optimizations bySPsubIso, the largest sizes
of Rks (atQ6) are around13KB on LiveJournal, which can be
efficiently transmitted via today’s networks. ForQ7-Q8, as we
set c to 6 (by default),SPsubIso usesSPVerify. The number
of Ris aggregated in eachRk is 10. Thus, the message sizes
for Q7-Q8 are larger. Since the maximum value ofc is 11 in

 0

 5

 10

 15

 20

 25

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. s
iz

e
(K

B
)

BFS
DFS

(a) DBLP

 0

 50

 100

 150

 200

 250

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. s
iz

e
(K

B
)

BFS
DFS

(b) Amazon

 0

 2

 4

 6

 8

 10

 12

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. s
iz

e
(K

B
)

BFS
DFS

(c) Youtube

 0

 50

 100

 150

 200

 250

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. s
iz

e
(K

B
)

BFS
DFS

(d) LiveJournal
Fig. 7. Average received encrypted message size at the client.

the current configuration,SPVerify∗ can be used to produce
much smaller messages (to be discussed with Fig. 14).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. t
im

e
(m

s)

BFS
DFS

(a) DBLP

 0

 2

 4

 6

 8

 10

 12

 14

 16

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. t
im

e
(m

s)

BFS
DFS

(b) Amazon

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. t
im

e
(m

s)

BFS
DFS

(c) Youtube

 0

 2

 4

 6

 8

 10

 12

 14

 16

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. t
im

e
(m

s)

BFS
DFS

(d) LiveJournal
Fig. 8. Average decryption time at the client.

The decryption time at the client. After receiving the en-
crypted messagesRks, the client decryptsRks. The decryption
time is shown in Fig. 8. Since the sizes ofRks are small and
the decryption method is simple, the average decryption times
at the client are correspondingly fast at most16ms.

C. Performance at the SP Side

 0

 400

 800

 1200

 1600

 2000

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. t
im

e
(m

s)

BFS
DFS

(a) DBLP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. t
im

e
(m

s)

BFS
DFS

(b) Amazon

 0

 1000

 2000

 3000

 4000

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. t
im

e
(m

s)

BFS
DFS

(c) Youtube

 0

 2000

 4000

 6000

 8000

 10000

 12000

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. t
im

e
(m

s)

BFS
DFS

(d) LiveJournal
Fig. 9. Average total running time at theSP .

The total runtime at the SP. Fig. 9 shows the average total
runtime at theSP on all datasets, which is exactly the runtime

of SPsubIso. For the simplicity of performance analysis, we
terminatedSPsubIso once the client found at least one valid
mapping. (The client may postpone the termination to achieve
higher privacy [9], although that introduces small but non-
trivial overhead toSPsubIso.) It is not surprising that the
runtimes increase exponentially with the query sizes. ForQ8,
the largest runtime is around12s on LiveJournal. However,
the running times for small queries (Q2-Q6) are well below
600ms for all datasets.

We further report the breakdowns of the total runtimes
of SPsubIso: (1) GenCandSubGraph andMinCandSubGraph;
and (2) GenCandMatch and SPVerify. For the DBLP and
Amazon datasets, the breakdown percentages of both query
sets are similar:30% and 70%. For Youtube, they are81%
and19%, and for LiveJournal, they are53% and47%.

 0

 20

 40

 60

 80

 100

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. %

BFS
DFS

(a) DBLP

 0

 20

 40

 60

 80

 100

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. %

BFS
DFS

(b) Amazon

 0

 20

 40

 60

 80

 100

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. %

BFS
DFS

(c) Youtube

 0

 20

 40

 60

 80

 100

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. %

BFS
DFS

(d) LiveJournal
Fig. 10. Average % of reduced vertices inCSs by NC.

The effectiveness of minimization of CSs. In Fig. 10,
we show the average percentage of the reduced vertices
of CSs by NC in MinCandSubGraph. We observe that
MinCandSubGraph reduces around 40% of the vertices of
CSss on DBLP and Amazon, and at least 60% on Youtube.
However, for LiveJournal, the percentage (on average) is
around20%.

In our experiment, we note that a small fraction of queries
haveCSss that contain numerous candidate mappings. The
reason is thatSPsubIso cannot exploit query structures for
optimizations. In this case, for eachCSs, we compute an upper
bound of the number of candidate mappings of a query by
simple calculations onCSs. For those candidate subgraphs
that may exceed100, 000 mappings, we transmit the candidate
subgraphs to the client to dosubIso (e.g., using [14] or [8]).
The percentage of such queries is very small, at most1%
for Q2-Q7 on all datasets. ForQ8, the percentage is only
10%. In other words, most subgraph queries are successfully
outsourced to theSP .
The effectiveness of the elimination of redundantCMs.
Fig. 11 shows the average percentage of redundantCMss
pruned byCache in GenCandMatch. We note that as the
query size increases, the effectiveness ofCache increases.
For Q2-Q4 of all datasets, the percentage of the elimination
of redundantCMs increases from0% in Q2 to 80% in Q4.
For Q5-Q8 on DBLP, Amazon and Youtube, the percentages

 0

 20

 40

 60

 80

 100

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. %

BFS
DFS

(a) DBLP

 0

 20

 40

 60

 80

 100

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. %

BFS
DFS

(b) Amazon

 0

 20

 40

 60

 80

 100

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. %

BFS
DFS

(c) Youtube

 0

 20

 40

 60

 80

 100

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. %

BFS
DFS

(d) LiveJournal
Fig. 11. Average % of the pruned redundantCMs by Cache.

are stable at around80%. We note the graph structures of
LiveJournal are diverse and there are many distinctCMss.
The effectiveness ofCache then decreases from80% to 50%
for Q5-Q8. This is also reflected by the fact that the sizes of
the encrypted messagesRks are the largest for LiveJournal
(see Fig. 7).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. s
iz

e
(K

B
)

BFS
DFS

(a) DBLP

 0

 500

 1000

 1500

 2000

 2500

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. s
iz

e
(K

B
)

BFS
DFS

(b) Amazon

 0

 5

 10

 15

 20

 25

 30

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. s
iz

e
(K

B
)

BFS
DFS

(c) Youtube

 0

 5000

 10000

 15000

 20000

 25000

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. s
iz

e
(K

B
)

BFS
DFS

(d) LiveJournal
Fig. 12. AverageCache size atSP.

The memory consumption ofCache. We report the memory
consumption ofCache in Fig. 12. As we only store the hash
code of the canonical labeling of each distinctCMs, the
memory consumption is very small (at most25MB).

 0

 20

 40

 60

 80

 100

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. %

BFS
DFS

(a) DBLP

 0

 20

 40

 60

 80

 100

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. %

BFS
DFS

(b) Amazon

 0

 20

 40

 60

 80

 100

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. %

BFS
DFS

(c) Youtube

 0

 20

 40

 60

 80

 100

Q2 Q3 Q4 Q5 Q6 Q7 Q8

A
vg

. %

BFS
DFS

(d) LiveJournal
Fig. 13. Average % of the pruned redundant mappings byNEC.

The effectiveness of pruning redundant mappings byNEC.

We report the pruning of redundant mappings by usingNEC

in Fig. 13. We observe that, for most of the queries, we pruned
approximately20% of redundant mappings on average. This
further saves on computations inSPVerify andSPVerify∗.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

10 20 40 60 80 100

A
vg

. s
iz

e
(K

B
)

Value M

Q8-DFS

(a) DBLP

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

10 20 40 60 80 100

A
vg

. s
iz

e
(K

B
)

Value M

Q8-DFS

(b) Amazon

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

10 20 40 60 80 100

A
vg

. s
iz

e
(K

B
)

Value M

Q8-DFS

(c) Youtube

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

10 20 40 60 80 100

A
vg

. s
iz

e
(K

B
)

Value M

Q8-DFS

(d) LiveJournal
Fig. 14. Average size of messagesRks whenc = 11.

The number of aggregated messages bySPVerify∗. In Fig. 7,
sincec was set to6 by default, we usedSPVerify for Q7-Q8,
where eachRk is an aggregate ofM messages andM = 10.
As discussed, the messages are small. To studySPVerify∗, we
then setc = 11. We usedQ8 with DFS and varied the values
of M from 10 to 100. Fig. 14 shows the detailed performance
of all datasets. We report that forM = 10, the message size
is the same as those values ofQ8 DFS in Fig. 7. Importantly,
asM increases, the message size decreases accordingly.

IX. RELATED WORK

While there has been some work on privacy-preserving
query processing, due to space limitations, we can only include
the work relevant to graph queries.
Privacy-preserving graph queries.Cao et al. [4] proposed
supporting subgraph queries over an encrypted database with a
number of small graphs. Their work protects the privacy of the
query, index and data features. However, this work does not
address the subgraph isomorphism verification of candidate
graphs. Cao et al. [3] studied tree pattern queries over en-
crypted XML documents. The traversal order for each query
(required by their method) is predetermined. In the context
of graphs, the order cannot be predetermined. He et al. [15]
analyzed vertex reachability, while preserving edge privacy.
Gao et al. [12] proposed neighborhood-privacy protection
for the shortest distance. It aims to preserve the neighbor-
hood connections and the shortest distances between vertices.
Mouratidis et al. [24] proposed a shortest path computation
with no information leakage using the PIR protocol [7], whose
high computational cost is a known concern. Karwa et al.
[19] addressedsubgraph countsby satisfying the differential
privacy of edges. Fan et al. [10], [11] proposedauthenticated
subgraph query services under the classical data outsourcing
setting. A subgraph isomorphism verification method that
keepsboth query and data graphs secret was proposed [9].
To our knowledge, this is the first work that subgraph queries
are protected, whereas the data graph is publicly known.

Subgraph isomorphism.Ullmann [28] proposed a seminal al-
gorithm for subgraph isomorphism. The basic idea is a search
with backtracking with respect to the matrix that represents
possible isomorphic relationships. In the last decade, several
algorithms (e.g., VF2 [8], QuickSI [26] and Turboiso [14])
have been proposed to enhance performance significantly.
They all require totraversing the query on graph data. For
instance, VF2 [8] relies on a set of state transitions and
traversals on the graph and query. QuickSI [26] optimizes the
ordering in traversals of graphs. Turboiso [14] exploits neigh-
borhood information and local regions of vertices. Turboiso

also involves determining an optimal traversal in query pro-
cessing. However, the traversals themselves carry topological
information, which makes privacy preservation complicated if
it is possible at all. Wu et al. [31] supports structureless graph
queries, as the query structure is automatically formulated.
However, the queries are known to theSP.

X. CONCLUSION

This paper studies the first practical private approach for
subgraph query service: asymmetric structure-preservingsub-
graph query processing. Our techniques include deriving min-
imized candidate subgraphs to significant reduce the number
of candidate mappings, generating candidate matchings and
then candidate mappings without redundancies and verifying
candidate mappings without leaking query structures. Our
experiments confirm that our techniques are efficient and
effective. A future work is to support data values associated
with the graphs. We also plan to apply distributed computing
once candidate subgraphs are generated.

REFERENCES

[1] SNAP. http://snap.stanford.edu/, 2014.
[2] P. Barceĺo, L. Libkin, and J. L. Reutter. Querying graph patterns. In

PODS, 2011.
[3] J. Cao, F.-Y. Rao, M. Kuzu, E. Bertino, and M. Kantarcioglu. Efficient

tree pattern queries on encrypted xml documents. EDBT, 2013.
[4] N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou. Privacy-preserving

query over encrypted graph-structured data in cloud computing. In
ICDCS, 2011.

[5] R. Chen, B. Fung, P. Yu, and B. Desai. Correlated network data
publication via differential privacy.The VLDB Journal, in press.

[6] J. Cheng, A. W.-c. Fu, and J. Liu. K-isomorphism: privacy preserving
network publication against structural attacks. SIGMOD, 2010.

[7] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information
retrieval. J. ACM, 45:965–981, 1998.

[8] L. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomor-
phism algorithm for matching large graphs.PAMI, IEEE, 26(10):1367–
1372, 2004.

[9] Z. Fan, B. Choi, Q. Chen, J. Xu, H. Hu, and S. S.
Bhowmick. Structure-preserving subgraph isomorphism query
services. submitted to TKDE (under 2nd round review), 2014.
http://www.comp.hkbu.edu.hk/∼zfan/techreport14a.pdf.

[10] Z. Fan, Y. Peng, B. Choi, J. Xu, and S. S. Bhowmick. Towardsefficient
authenticated subgraph query service in outsourced graph databases.
IEEE Transactions on Services Computing, 99, 2013.

[11] Z. Fan, Y. Peng, B. Choi, J. Xu, and S. S. Bhowmick. Authenticated
subgraph similarity search in outsourced graph databases.IEEE Trans-
actions on Knowledge and Data Engineering, 99, 2014.

[12] J. Gao, J. X. Yu, R. Jin, J. Zhou, T. Wang, and D. Yang. Neighborhood-
privacy protected shortest distance computing in cloud. SIGMOD, 2011.

[13] H. Hacigumus, B. Iyer, and S. Mehrotra. Providing database as a service.
In ICDE, 2002.

[14] W.-S. Han, J. Lee, and J.-H. Lee. Turboiso: towards ultrafast and robust
subgraph isomorphism search in large graph databases. SIGMOD, 2013.

http://www.comp.hkbu.edu.hk/~zfan/techreport14a.pdf

[15] X. He, J. Vaidya, B. Shafiq, N. Adam, and X. Lin. Reachability analysis
in privacy-preserving perturbed graphs. WI-IAT, pages 691–694, 2010.

[16] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for
range queries. VLDB, 2004.

[17] H. Hu, J. Xu, Q. Chen, and Z. Yang. Authenticating location-based
services without compromising location privacy. SIGMOD, 2012.

[18] H. Hung, S. Bhowmick, B. Truong, B. Choi, and S. Zhou. Quble:
towards blending interactive visual subgraph search queries on large
networks.The VLDB Journal, 23:401–426, 2014.

[19] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev. Private
analysis of graph structure. InVLDB, 2011.

[20] J. Katz and Y. Lindell.Introduction to Modern Cryptography. Chapman
& Hall/CRC, 2007.

[21] A. Kundu, M. J. Atallah, and E. Bertino. Efficient leakage-free
authentication of trees, graphs and forests.IACR Cryptology ePrint
Archive, 2012:36, 2012.

[22] K. Liu and E. Terzi. Towards identity anonymization on graphs.
SIGMOD, 2008.

[23] D. A. Menasće. Qos issues in web services.IEEE Internet Computing,
(6):72–75, 2002.

[24] K. Mouratidis and M. L. Yiu. Shortest path computation with no
information leakage.PVLDB, 2012.

[25] NCBI. PubChem.http://pubchem.ncbi.nlm.nih.gov/.
[26] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness:

an efficient algorithm for testing subgraph isomorphism.PVLDB, 2008.
[27] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph

matching on billion node graphs.PVLDB, 2012.
[28] J. R. Ullmann. An algorithm for subgraph isomorphism.J. ACM, 23:31–

42, 1976.
[29] Y. Wu, X. Yan, and S. Yang. Ontology-based subgraph querying. In

ICDE, 2013.
[30] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-based

approach. InSIGMOD, 2004.
[31] S. Yang, Y. Wu, H. Sun, and X. Yan. Schemaless and structureless graph

querying. PVLDB, 2014.
[32] B. Zhou and J. Pei. Preserving privacy in social networks against

neighborhood attacks. InICDE, pages 506–515, 2008.
[33] L. Zou, L. Chen, and M. T.̈Ozsu. k-automorphism: a general framework

for privacy preserving network publication.VLDB, 2009.
[34] L. Zou, L. Chen, J. X. Yu, and Y. Lu. A novel spectral coding in a large

graph database. InEDBT, 2008.

	introduction
	Problem Formulation
	Preliminaries and Overview
	Subgraph Queries
	Overview of Our Approach

	Query Preprocessing at the Client
	Retrieving Parameters for Optimization
	Query Encoding
	Query Encryption

	Minimized SP Mapping Generation
	Candidate Subgraph Generation
	Candidate Matching Generation
	Candidate Mapping Generation

	SP Mapping Verification
	SPVerify
	Optimized SPVerify for Queries of Bounded Sizes

	Privacy Analysis
	Experimental Evaluation
	Experimental Setup
	Performance at the Client Side
	Performance at the SP Side

	Related Work
	Conclusion
	References

