
The XQuery Formal Semantics:

A Foundation for Implementation and Optimization

Byron Choi, University of Pennsylvania, kkchoi@gradient.cis.upenn.edu
Mary Fernández, AT&T Labs - Research, mff@research.att.com

Jérôme Siméon, Bell Laboratories, simeon@research.bell-labs.com

May 31, 2002

Abstract

XQuery is a strongly typed, functional language, which supports the common processing, transfor-
mation, and querying tasks of a wide variety of XML applications. Following the tradition of other
functional languages, XQuery includes a complete formal semantics. In this paper, we argue that basing
an XQuery implementation on the XQuery Formal Semantics not only ensures correctness, but is a good
foundation for optimization. We describe an architecture that we have implemented and that is based on
the XQuery Formal Semantics and describe several logical and physical optimizations that can be easily
integrated in the above architecture.

1 Introduction

XML [4] is a flexible exchange format that can represent many classes of data: structured documents with
large fragments of marked-up text; homogeneous records with values such as those in relational databases;
and heterogeneous records with varied structure and content such as those in object-oriented and hierarchical
databases. Many new applications need to deal with all these classes of data simultaneously.

XQuery [29] is a language for XML currently being defined by the World-wide Web Consortium (W3C) to
meet the varied needs of XML applications. XQuery is a strongly typed, functional language, which supports
the common processing, transformation, and querying tasks of XML applications. It contains XPath [28]
expressions for traversing and extracting fragments of XML documents, expressions to join several documents
and to construct new XML documents, and a large library of functions on XML documents and values.

Several communities have contributed to the design and definition of XQuery.

• The “document” community contributes their experience in designing languages and tools (e.g., editors
and text engines) for processing structured documents. Document-centric applications often require
text search that spans markup boundaries and processing that depends on document context and order.
Within XPath, XQuery supports operations on document order and axis expressions, which are used
to navigate in the document and to access the context of particular document fragments.

• The “database” community contributes their experience in designing query languages and processing
tools for data-intensive applications. Data-centric applications often require very efficient selection, re-
trieval, and transformation of small fragments of data stored in massively large databases. XQuery in-
corporates features from query languages for relational databases (SQL) and object-oriented databases
(OQL). Notably, it can express joins between multiple documents and can restructure existing or
construct new documents.

1

• The “programming language” community contributes their experience in designing functional lan-
guages, type systems, and specifying formal language semantics. XQuery is a purely functional lan-
guage with a static type system based on XML Schema [25, 20]. It is fully compositional, supports
user defined functions, as well as recursion. Following the tradition of other functional languages [21],
XQuery includes a complete formal semantics [30], which is an integral part of its specification.

Despite being a young – and still evolving! – language, XQuery already has numerous implementations.
The XML Query working group Web page1 lists eighteen publicly announced implementations. Not sur-
prisingly, each community favors its own implementation and optimization techniques, and there is active
debate over what are the best techniques for implementing XQuery.

In this paper, we argue that basing an XQuery implementation on the XQuery Formal Semantics not
only ensures correctness, but is a good foundation for optimization. This claim will not surprise many
implementors of programming languages, but is a subject of vigorous debate among implementors from the
database and document communities.

Efficient language implementations often rely on the ability to discover alternative execution strategies.
Implementations of database query languages typically rely on algebraic query plans, for which the system
can perform rewritings and apply some cost comparison. Implementations of functional languages typically
rely on optimization techniques that include type-based rewritings, operation elimination, unboxing, and
function inlining, among others.

Applying similar optimization techniques to XQuery requires addressing two difficult problems. First,
any rewriting technique must preserve the semantics of the original expression. To accommodate the flex-
ibility of structure within XML documents, many XQuery expressions have a complex implicit semantics.
For instance, an expression’s semantics might depend on the type of its sub-expressions, apply automatic
type-conversion rules, or include implicit existential quantification of predicates. Any rewriting must guar-
antee that these implicit semantics are preserved. A second problem arises from the diversity of physical
representations of XML documents. Many techniques already exist for storing XML documents in native
XML [18] and in non-XML database systems [3, 8, 12, 23] and for translating XQuery into SQL or other
implementation languages [11, 24]. Because efficient evaluation of path expressions is central to any viable
XQuery implementation, most optimization techniques focus on path evaluation [5, 1, 15], but only apply
to a narrow subset of XQuery.

As we will discuss, one important property of the XQuery Formal Semantics is that it makes all of the
implicit semantics of XQuery expressions explicit by normalizing them into expressions in the XQuery Core.
Since the XQuery Core makes all operations atomic and explicit, it provides a foundation to support many
traditional and XQuery-specific optimizations. This paper makes the following contributions.

• We describe how an XQuery implementation can be derived directly from the XQuery Formal Seman-
tics. We describe the architecture of such a system and explain the role of the XQuery Core in this
architecture.

• We show that many useful logical and physical optimizations are easily expressed as rewritings over
the XQuery Core and can be easily integrated in the above architecture. We present examples of
traditional and XQuery-specific optimizations.

• We identify some of the challenges of supporting physical-level optimizations in such an architecture.

To the best of our knowledge, this paper is the first to propose an approach that can support a compre-
hensive set of optimization techniques while preserving XQuery’s complex semantics. This paper is based
largely on our experience with Galax [13], one of the first implementations of XQuery and the first complete
implementation of the XQuery type system. Galax implements the proposed architecture. An interactive
demo of Galax is available on the Galax web site.

1http://www.w3.org/XML/Query

2

<bibliography>

<book year="1994">

<title>TCP/IP Illustrated</title>

<author><last>Stevens</last><first>W.</first></author>

<publisher>Addison-Wesley</publisher>

<price>65.95</price>

</book>

<book year="2000">

<title>Data on the Web</title>

<author><last>Abiteboul</last><first>Serge</first></author>

<author><last>Buneman</last><first>Peter</first></author>

<author><last>Suciu</last><first>Dan</first></author>

<publisher>Morgan Kaufmann Publishers</publisher>

</book>

<book year="1999">

<title>The Economics of Technology and Content for Digital TV</title>

<editor>

<last>Gerbarg</last><first>Darcy</first>

<affiliation>CITI</affiliation>

</editor>

<publisher>Kluwer Academic Publishers</publisher>

<price>129.95</price>

</book>

</bibliography>

Figure 1: Example XML document

The rest of the paper is organized as follows. In Section 2, we introduce the family of XQuery specifi-
cations, give an overview of the XQuery Formal Semantics and give an introduction to the XQuery Core.
In Section 3, we explain how one can build a “naive” XQuery implementation based on the XQuery Formal
Semantics. In Section 4, we show how many optimization techniques can be adapted to such an implemen-
tation.

2 XQuery and the XQuery Formal Semantics

2.1 XQuery Overview

To illustrate XQuery, we use the example XML document in Figure 1. The document contains one
bibliography element that contains three book elements. This document is “well-formed” because ev-
ery open element tag has a corresponding closing element tag and the elements are properly nested. One
strength of XML is its support for variability in document content and structure. In this example, all the
books contain a year attribute, a title element, and a publisher element, but only two books contain a
price element, two books contain one or more author elements, and only one contains an editor.

XQuery is designed to support variance in XML data. For example, this expression:

input()//book[author/last = "Stevens"]

returns book elements at any level in the input document that contains one author element with one last
element with content equal to “Stevens”. The expression is implicitly existentially quantified: A book
element is returned if it has at least one author with at least one last name with the given value.

A common querying task is to transform the structure and content of an XML document, which re-
quires construction of XML values. For example, this expression illustrates element construction and the

3

document { element bibliography }
element bibliography {

element book*

}
element book {

attribute year { xs:integer },
element title,

(element author+ | element editor+),

element publisher,

element price?

}

element title { xs:string }
element author {

element last { xs:string },
element first { xs:string }

}
element publisher { xs:string }
element price { xs:float }

Figure 2: An example XML Schema in XQuery type notation

for-let-where-return (pronounced “flower”) expression:

<books> {
for $b in input()//book[publisher = "Addison-Wesley"]
let $authorct := count($b/author)
where $authorct > 3
return <awbook> { $b/title, $b/price } </awbook>

} </books>

It constructs one books element, which contains one awbook for each book (in the input document) that has
at least three authors and whose publisher is “Addison-Wesley”. The awbook contains the title and price
of the selected book.

Although XQuery supports well-formed XML documents, it is specifically designed to support XML
documents that have associated XML Schemas [25, 20]. At its core, an XML Schema is a tree grammar
that specifies the permissible element and attribute names, types of atomic terminal values, and vertical
and horizontal structure of a collection of XML documents. An XML document is valid with respect to
an XML Schema if it is in the collection of documents specified by the XML Schema. The XQuery type
system is based on XML Schema. XML Schemas can be imported in the XQuery type system and used
for static type analysis [30]. We will not discuss static typing further in this paper, but we will make use
of static type information in some optimizations. We refer the reader to the XQuery Formal Semantics for
more details [30].

The example schema in Figure 2 uses XQuery’s type notation. A bibliography element contains zero
or more book elements. A book element contains a year attribute and one title element followed by a
choice of one or more author elements or one or more editor elements, followed by one publisher, followed
by an optional price element. The sequence operator (,) combines types in a sequence; the repetition
operator * (+) denotes zero (one) or more instances of a type; and the optionality operator (?) denotes zero
or one instance of a type. An author contains one last and one first element, each with string content.
The title and publisher elements contain a single string and the price element contains a floating point
number. The document in Figure 1 is an instance of the type in Figure 2. We return to this example when
we discuss type-based optimizations.

XQuery is strongly typed: The operand, argument, and return types of all built-in operators and functions
are specified and the signature of a user-defined function must specify the types of its arguments and its
return value. XQuery’s type semantics requires that an operand or argument value be of the corresponding
required type. Type checking may be implemented dynamically or statically. Given the types for input
documents, XQuery’s static type semantics infers the static type for every expression in a query and checks
that the inferred type of an expression is subsumed by the required type for the expression. For example,

4

assume that the variable $book is bound to the first book in the document in Figure 1 and has the type
element book defined in Figure 2, then the following expression is well-typed:

data($book/price) * 0.07

because the inferred type of data($book/price) is xs:float and multiplication is defined on xs:float.
The following expression, however is ill-typed:

data($book/publisher) * 0.07

because multiplication is not defined on xs:string.

The XQuery Family of Specification Implementing XQuery is a non-trivial task, in part, because
its specification spans several documents. The definition of XQuery comprises the following W3C working
drafts:

• the XQuery and XPath 2.0 data model [9], which defines the information in an XML document that
is available to a query processor;

• a language specification [29], which includes XQuery’s user-level grammar and an English-language
description of XQuery’s semantics;

• a formal semantics [30], which includes a formal-language definition of the static and dynamic semantics
of each XQuery expression; and

• a library of built-in functions and operators [27].

In addition, these working drafts depend on other W3C specifications, in particular, XML [4], and XML
Schema [25, 20].

2.2 XQuery Formal Semantics

The purpose of the XQuery formal semantics is to provide implementors with a processing model and a
complete description description of the language’s static and dynamic semantics. This can be used as a
detailed “road map” for a complete (albeit naive) XQuery implementation.

The formal semantics processing model is composed of four phases: parsing, normalization, static type
analysis, and dynamic evaluation. Parsing checks that an input query is an instance of the language defined
by the XQuery grammar – we do not discuss this phase further.

The XQuery Core and Normalization The XQuery language provides many features that make queries
simpler to write and use, but are also redundant. For instance, complex for-let-where-return expressions
can be rewritten as the composition of individual for, let, and if-then-else expressions. The formal
semantics defines a proper subset of the XQuery language, called the XQuery Core language, and gives
rules that rewrite or normalize every XQuery expression as a XQuery Core expression. The static type and
dynamic value semantics of XQuery are defined on this core language. The core grammar is in Appendix A.

Many normalization rules rewrite expressions with complex implicit semantics into Core expressions with
simpler, but more verbose, explicit semantics. For example, the expression:

input()//book[publisher = "Addison-Wesley"]

is normalized into the (surprisingly verbose) Core expression:

5

1. for $book in
2. (for $dot in input() return descendant-or-self::book)
3. return
4. let $bool :=
5. (some $pub in (for $dot in $book return child::publisher)
6. satisfies
7. (let $pubval :=
8. typeswitch $pub
9. case atomic value return $pub
10. case node return
11. (typeswitch data($pub) as $val
12. case atomic value return $val
13. default return xf:error())
14. default return xf:error()
15. return $pubval eq "Addison-Wesley"))
16. return if ($bool) then $book else ()

The two for expressions on line 2 and line 5 implement, respectively, the path expressions input()//book
and book/publisher. They each bind the context node (represented by the special variable $dot); the axis
expressions descendant-or-self::book and child::publisher are defined in terms of this context node.
The existentially quantified some expression on lines 5–15 expresses the selection predicate [publisher =
"Addison-Wesley"]. Its body is evaluated once for each publisher node bound to $pub. and contains
two typeswitch expressions, which handle the potential variability of values bound to $pub. The outer
typeswitch (lines 8–14) raises an error if $pub is not a single atomic value or node. If it is an atomic value,
its value is returned; otherwise, the node’s content value is extracted; The inner typeswitch (lines 11–13)
raises an error if the node’s value is not a single atomic value. It is often possible to simplify Core expressions
given the type associated with the input document. We discuss type-based optimizations in Section 4.

After normalization, the semantics of an expression is obtained by applying static type and dynamic
value inference rules to its normalized Core expression. This is done during the next two phases.

Static type analysis Static type analysis checks that an expression is type correct, and if so, determines
its static type. Static type analysis is defined only on Core expressions and proceeds by applying type
inference rules to the abstract syntax tree of a Core expression, starting with the types of literals and valid
input documents and proceeding up the tree. We refer the reader to the formal semantics [30] for examples
of type inference rules.

Static type analysis can result in a static error, if the expression is not type correct. For instance, a
comparison between an integer value and a date value is an error that can be detected during static type
analysis. If static type analysis succeeds, it results in an abstract syntax tree where the top-level Core
expression and each sub-expression is annotated with its static type.

Dynamic evaluation In this phase, the value of an expression is computed. The dynamic semantics is
defined only on Core expressions. Evaluation proceeds by applying value inference rules to the abstract
syntax tree of a Core expression, starting with the top-level query expression and conditionally applying
inference rules to sub-expressions top down and synthesizing values bottom up. The dynamic semantics
guarantees that every Core expression can be unambiguously reduced to a value. We refer the reader to the
formal semantics [30] for examples of value inference rules.

6

XQuery Core
Internal Structure

Static Error
for non
well−typed
queries!

XQuery Type System
Internal Structure

XML Schema
Description

XQuery
Expression

XML
Document

XQuery Parser

XML Parser

XML Data Model
Internal Structure

XML Data Model
Loader

Type System
Mapping

Type
of Query Result

Data Model
Query Result

XML Parser

Parsing Layer

Static Type
Analysis

Dynamic
Evaluation

Query
Normalization

XQuery
Syntax Tree

XML Schema
Syntax Tree

XML
Syntax Tree

Schema Validation

Execution LayerMapping Layer

Figure 3: Galax’s Architecture

3 Implementing the XQuery Formal Semantics

We give an overview of the architecture of Galax, an implementation of XQuery 1.0 based on the XQuery
Formal Semantics. We note that another XQuery prototype developed by GMD-IPSI [10] is also based
on the XQuery Formal Semantics. Our goal is for Galax to be a reference implementation of XQuery and
therefore, completeness, strict conformance to the specifications, and semantic integrity are the goals of our
current prototype. Because XQuery is a complex language, we believe that basing Galax’s architecture and
implementation directly on the XQuery 1.0 Formal Semantics is the surest way to achieve these goals. This
approach also permits us to evaluate the soundness of the XQuery specification and to identify semantic
problems during early stages of specification.

Galax is implemented in Objective Caml [19] and is open source, making it a useful reference for
other XQuery implementors. Galax is reasonably light weight (its native-code footprint under Linux is
about 1.2 MB) and very portable (O’Caml targets include Win32, Macintosh, and virtually all Unix plat-
forms). Although most implementations of XQuery will not be implemented in functional languages, we
found that O’Caml is ideal for implementing Galax. Its algebraic types and higher-order functions sim-
plify the symbolic manipulation that is central to the query transformation, analysis, and optimization
that we need to perform. A detailed description of Galax can be found on the Galax home page at:
http://db.bell-labs.com/galax/.

Figure 3 depicts Galax’s architecture and relates Galax’s modules with XQuery’s processing model and
formal semantics. Inputs to the Galax engine comprise one or more input XML documents, one or more
XML Schema associated with input documents, and one or more queries that process the input documents.
The system is decomposed into three layers:

Parsing Layer The parsing layer implements the parsing phase of the XQuery processing model. It takes all
of the inputs, parses them, and builds abstract syntax trees (AST) corresponding to the inputs. XML
documents and XML Schema documents are parsed according to the grammar rules in the XML 1.0
specification [4]. Queries are parsed according to the grammar rules in the XQuery 1.0 document [29].
For input documents, an abstract syntax tree is never materialized. Instead, Galax’s SAX parser
instantiates an XML document directly in its memory-resident implementation of the XQuery data
model.

Mapping Layer The mapping layer implements the normalization phase of the processing model and
transforms the input ASTs into their corresponding internal representations. XQuery expressions are

7

normalized into XQuery Core expressions and XML Schema documents are mapped into XQuery’s
internal type values. The XQuery normalization rules are implemented (almost) literally in Galax
making it possible to correlate easily the definition of an expression with its implementation. Input
documents that have associated XML Schemas are validated while the documents are parsed and
instantiated in the XQuery data model.

Execution Layer The execution layer implements the static type analysis and dynamic evaluation phases
of the processing model. First, static type analysis is applied to the Core expressions and input types.
The type inference rules are implemented (almost) literally in Galax making it possible to correlate
easily each typing rule with its implementation. If static typing fails, the system raises an error and
halts.

If static typing succeeds, the evaluation module is applied to the core expressions and to the data model
representation of the input documents. The value inference rules are implemented (almost) literally in
Galax making it possible to correlate easily each evaluation rule with its implementation. Evaluation
can either raise a run-time error (for errors that static analysis cannot detect) or return an XML value
as the result.

Clearly, an evaluation strategy based on literal interpretation of Core expressions does not scale, but it
is adequate for testing semantic correctness and is a sound basis for other implementation strategies,
which we discuss next.

4 Optimizing XQuery

Although XQuery is a new language, it can benefit from the many optimization techniques that exist for
functional programming languages and for other database query languages. Optimizations for both functional
programming languages and database query languages broadly fall into two categories: logical and physical.
Logical optimizations typically transform the intermediate representation of a program or query and make
improvements that are independent of a particular target architecture or query engine. Physical optimizations
typically transform the executable representation of a program or query (e.g., machine instructions or a
physical data operations in a query execution plan) and make improvements that depend on features of the
target architecture or query engine.

In this section, we illustrate how to use the XQuery Core as a basis for optimization. We illustrate how
existing and new techniques can be applied directly to the Core representation.

4.1 Type-based optimization

As shown in Section 2.2, the dynamic semantics of an XQuery expression often depends on the dynamic
types of sub-expressions and on the cardinality of the sequences computed by sub-expressions. In XQuery
Core expressions, the typeswitch, explicit quantifier some, and casting expressions implement the semantics
that handles this potential variability of the XML input.

For queries applied to input documents with known schemas, however, static type information can be
used to simplify the queries. These type-based optimizations remove unnecessary operations, which is often
a prerequisite to more advanced optimizations.

The typeswitch expression The typeswitch expression is used extensively in the normalized semantics
of XQuery. For example, the normalized query in Section 2.2 contains two nested typeswitch expression
(lines 8 to 14):

...
typeswitch $pub
case atomic value return $pub

8

case node return
(typeswitch data($pub) as $val
case atomic value return $val
default return xf:error())

default return xf:error()
...

Static type analysis infers that the $pub variable is always a node and therefore, the second branch of
the first typeswitch is always executed. In addition, when the input document has the type document {
element bibliography }, static type analysis infers that the variable $pub has type element publisher
and therefore always contains an atomic value of type string. Again, only the first case in the second
typeswitch is always executed. The original typeswitch expression can then be replaced by data($pub).
This results in the following simplified Core expression:

for $book in
(for $dot in input() return descendant-or-self::book)

return
let $bool :=

(some $pub in (for $dot in $book return child::publisher)
satisfies

(let $pubval := data($pub)
return $pubval eq "Addison-Wesley")

return if ($bool) then $book else ()

The typeswitch expression is unique to XQuery, but it is similar to pattern-match expressions in ML
languages and XDuce [16]. This shows that techniques for simplifying pattern-match expressions [17], or for
converting dynamic dispatch into static dispatch [7] are certainly relevant to XQuery.

Existential quantification Continuing with the example above, static type analysis infers that the vari-
able $book has type element book. Since each book has one publisher, the body of the for expression in
the existential quantification is a single publisher element, therefore the existential quantification can be
eliminated. This results in the following simplified expression:

for $book in
(for $dot in input() return descendant-or-self::book)

return
let $bool :=

(let $pub := (for $dot in $book return child::publisher)
returns

(let $pubval := data($pub)
return $pubval eq "Addison-Wesley")

return if ($bool) then $book else ()

It is important to note that a number of optimizations are enabled by the presence of a schema and by
the ability to do static type inference. Indeed, without XQuery being statically typed, many such rewritings
are infeasible and will make further optimizations more difficult to apply.

4.2 Logical optimizations

The XQuery Core expressions: let, for, and if-then-else are analogs of list-comprehension operations [26],
therefore, standard rewritings of list comprehensions, which correspond to some typical logical optimizations
for database query languages, can be applied.

9

The let expression A let-bound variable can be replaced by the expression to which it is bound.
Applying this rule to the variables $pub and $pubval in the example above results in the simplified expression:

for $book in
(for $dot in input() return descendant-or-self::book)

return
if (data(for $dot in $book return child::publisher)

eq "Addison-Wesley")
then $book
else ()

The $dot variable XPath axis expressions (e.g., child::publisher) implicitly refer to the context node,
which is bound to the $dot variable. As a result, the $dot variable cannot always be replaced, because it
preserves the context in which XPath axis expressions will be evaluated.

Some simplification, however, is possible. In the example above, static type analysis infers that the
input() function evaluates to a unique node and that the $book variable is bound to one element book.
This means that two for expressions can be replaced by two let expressions that bind $dot. This results
in the simplified expression:

for $book in
(let $dot := input() return descendant-or-self::book)

return
if (data(let $dot := $book return child::publisher)

eq "Addison-Wesley")
then $book
else ()

As the $book variable in the outer for expression and the second $dot variable denote the same value,
we can bind the $dot variable directly in the outer for expression:

for $dot in
(let $dot := input() return descendant-or-self::book)

return
if (data(child::publisher)

eq "Addison-Wesley")
then $dot
else ()

The resulting expression is much simpler than the original Core expression: It contains only one for expres-
sion, two XPath axis expressions and one conditional expression.

Clearly, any implementation strategy that transforms a core expression into a physical execution plan
will be more effective on the simplified expression above than on the original expression.

The for expression Other traditional optimizations involve for expressions. An important query op-
timization is “pushing selections”, that is, moving selection predicates earlier in an execution plan. (In
the programming-language literature, this is known as “hoisting” loop-invariant expressions.) For example,
consider this expression:

for $book in //book
return
for $title in $book/title return
where $book/publisher = ‘‘Addison-Wesley’’
return $title

10

The where selection condition is invariant for all bindings of $title for a particular binding of $book,
therefore the selection condition can be “pushed” (“hoisted”) before the for expression that binds $title.
This results in the following expression:

for $book in //book
where $book/publisher = ‘‘Addison-Wesley’’
return
for $title in $book/title return
return $title

Most of those optimizations have been applied to database query languages [2] and programming lan-
guages [26].

Join reordering Although XML documents are inherently ordered, many applications of XML do not
depend on the relative order of elements within a document. When order is insignificant, it is possible to
apply “join reordering” techniques. XQuery includes an unordered keyword, which indicates that the
semantics of the query can disregard order. For example, this expression:

unordered
for $book in //book,
for $review in //reviews
where $review/title = $book/title and $review/score > 14
return ($book/title, $book/author)

can be rewritten into the (potentially) more efficient expression:

unordered
for $review in //reviews
where $review/score > 14 return
for $book in //book,
where $review/title = $book/title
return ($book/title, $book/author)

The latter expression first selects reviews with a score greater than fourteen before joining those reviews
with books. Join rewriting techniques are the subject of a large body of database research. We refer the
reader to the appropriate literature[14, 6, 22] for more detail.

Sorting by document order Another complexity of XPath’s (and XQuery’s) semantics is document
order. Most XPath expressions require their result to be sorted in document order and sorting is typically
expensive. It is sometimes possible to remove sorting by document order, but some query analysis is necessary
to do so. For example, if the original sequence is already sorted, such operation can be removed. For example,
the following expression:

input()/book/author

is normalized into the following core expression, which explicitly sorts the author elements by document
order:

sort-docorder(
for $dot in
sort-docorder(for $dot in input() return child::book)

return
child::author

)

11

However, in this query, since the result of the input() function is a single node and the child:: axis returns
the children in document order, the result of the expression is already in document order and does not need
to be sorted. Since the expression preserves the original order of its input sequence, the same analysis can
be performed for the outer sort-docorder function. As a result, both sort functions can be removed, which
yields the following expression:

for $dot in
(for $dot in input() return child::book)

return
child::author

4.3 Physical optimizations

The document-processing and database user communities are already investigating many techniques for
optimizing XPath and XQuery. The techniques are typically tuned for a particular application domain and
to take advantage of features provided by particular XML storage systems. Document-processing queries,
for example, often include full-text operators and therefore can take advantage of full-text indexes.

Database applications shred XML documents into relational tables and rewrite XQuery queries into SQL
expressions that can be optimized by the relational query optimizer [3, 8, 12, 23]. Native XML databases
also propose specific algorithms and indices specifically tuned to evaluate XML path expressions [18].

It is out of the scope of this paper to provide a complete review of the growing number of algorithms
which have been proposed. Still, we would like to illustrate some of the possibilities on a simple example.
Assume that our document has been stored, e.g., in a relational database, that supports efficient access to
all the elements with a given name. We will call the corresponding physical operation name-index. This
operation takes the name of the element as input. Then our previous query can be rewritten as:

for $book in name-index(book)
return
let $bool :=

data(let $dot := $book return child::publisher) eq "Addison-Wesley"
return if ($bool) then $book else ()

This might already perform better than the naive evaluation that would navigate from the root of the
document. Assume also that the query engine implements a twig-join algorithms [5]. Such an algorithm can
be used to evaluate efficiently the parent-child relationship used in XPath navigation. We call parent-join
the corresponding join operation. Then the expression can be further rewritten as:

parent-join (name-index(book),
for $pub in name-index(publisher)
where data($pub) eq "Addison-Wesley")

Here the query plan can use the name-index physical access method for book and publisher elements,
and the parent-join operation checks that indeed each publisher is a child of a book.

The role of a cost model To conclude, we would like to point out that many physical optimizations and
the ability to detect an efficient rewriting depend on the physical storage model for XML and the presence
of a cost model to detect “good” query plans. Because of XML’s flexibility and expressiveness, we expect
there will be many physical storage models for XML, adapted for particular applications’ needs, and that
a variety of cost models will be developed that depend on the features of the particular physical storage
system. Regardless of the physical features available to a query engine, preserving XQuery’s semantics
during optimization and translation will be difficult, but starting with the XQuery Core should help simplify
this problem.

12

References

[1] Sihem Amer-Yahia, S. Cho, Laks Lakshmanan, and Divesh Srivastava. Minimization of tree pattern
queries. In Proceedings of ACM Conference on Management of Data (SIGMOD), 2001.

[2] Catriel Beeri and Yoram Kornatzky. Algebraic optimization of object-oriented query languages. Theo-
retical Computer Science, 116(1&2):59–94, August 1993.

[3] Philip Bohannon, Juliana Freire, Prasan Roy, and Jérôme Siméon. From XML schema to relations:
A cost-based approach to XML storage. In Proceedings of IEEE International Conference on Data
Engineering (ICDE), 2002.

[4] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible markup language (XML) 1.0. W3C
Recommendation, February 1998. http://www.w3.org/TR/REC-xml/.

[5] N. Bruno, Divesh Srivastava, and N. Koudas. Holistic twig joins: Optimal xml pattern matching. In
Proceedings of ACM Conference on Management of Data (SIGMOD), 2002.

[6] Sophie Cluet and Guido Moerkotte. Nested queries in object bases. In Proceedings of International
Workshop on Database Programming Languages, pages 226–242, New York City, USA, August 1993.
http://cosmos.inria.fr:8080/cgi-bin/publisverso?what=abstract&query=064.

[7] Jeffrey Dean, Greg DeFouw, David Grove, Vassily Litvinov, and Craig Chambers. Vortex: An optimizing
compiler for object-oriented languages. In OOPSLA Proceedings, 1996.

[8] Alin Deutsch, Mary F. Fernandez, and Dan Suciu. Storing semistructured data with STORED. In
Proceedings of ACM Conference on Management of Data (SIGMOD), pages 431–442, Philadelphia,
Pennsylvania, June 1999.

[9] XQuery 1.0 and XPath 2.0 data model. W3C Working Draft, April 2002.

[10] Peter Fankhauser, T. Groh, and S. Overhage. Xquery by the book: The ipsi xquery demonstrator. In
Proceedings of the International Conference on Extending Database Technology, 2002.

[11] Mary Fernandez, Yana Kadiyska, Atsuyuki Morishima, Dan Suciu, and Wang-Chiew Tan. SilkRoute:
A framework for publishing relational data in XML. ACM Transactions on Database Systems, 2002.

[12] Daniela Florescu and Donald Kossman. A performance evaluation of alternative mapping schemes for
storing xml data in a relational database. IEEE Data Engineering Bulletin 1999, 1999.

[13] Galax: An implementation of xquery. http://db.bell-labs.com/galax/.

[14] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25(2):73–170,
June 1993.

[15] T. Grust. Accelerating xpath location steps. In Proceedings of ACM Conference on Management of
Data (SIGMOD), 2002.

[16] Haruo Hosoya and Benjamin C. Pierce. XDuce: an XML processing language. In International Workshop
on the Web and Databases (WebDB’2000), Dallas, Texas, May 2000.

[17] Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern matching for XML. In 25th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 67–80, January
2001.

[18] Carl Christian Kanne and Guido Moerkotte. Efficient storage of XML data. In Proceedings of IEEE
International Conference on Data Engineering (ICDE), 2000.

13

[19] Xavier Leroy. The Objective Caml system, release 3.04, Documentation and user’s manual. Institut
National de Recherche en Informatique et en Automatique, December 2001. http://caml.inria.fr/.

[20] Murray Maloney and Ashok Malhotra. XML schema part 2: Datatypes. W3C Recommendation, May
2001.

[21] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML -
Revised. MIT Press, 1997.

[22] Guido Moerkotte. Building query compilers.
http://pi3.informatik.uni-mannheim.de/staff/mitarbeiter/moer/querycompiler.ps, May
1999.

[23] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. DeWitt, and Jeffrey F.
Naughton. Relational databases for querying XML documents: Limitations and opportunities. In Pro-
ceedings of International Conference on Very Large Databases (VLDB), Edinburgh, Scotland, September
1999.

[24] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang. Storing and querying
ordered xml using a relational database system. In Proceedings of ACM Conference on Management of
Data (SIGMOD), 2002.

[25] Henri S. Thompson, David Beech, Murray Maloney, and N. Mendelsohn. XML schema part 1: Struc-
tures. W3C Recommendation, May 2001.

[26] Philip Wadler. Comprehending monads. Mathematical Structures in Computer Science, 2:461–493,
1992.

[27] Xquery 1.0 and xpath 2.0 functions and operators version 1.0. W3C Working Draft, April 2002.

[28] XPath 2.0. W3C Working Draft, April 2002.

[29] XQuery 1.0: An XML query language. W3C Working Draft, April 2002.

[30] XQuery 1.0 formal semantics. W3C Working Draft, March 2002.

A Core grammar

The following grammar descrines the XQuery Core. See [30] for a complete description.

-- The (almost) full XQuery core grammar --

ExprSequence ::= Expr ("," Expr)*
Expr ::= "for" Variable "in" Expr "return" Expr

| "let" Variable ":=" Expr "return" Expr
| "typeswitch" "(" Expr ")" "as" Variable TypeswitchClauses
| "if" "(" Expr ")" "then" Expr "else" Expr
| ("cast" "as" | "assert" "as") Datatype "(" Expr ")"
| ("element" | "attribute")

(QName | EnclosedExpr) "" ExprSequence? ""
| Axis NodeTest
| Variable
| Literal
| "text" String

14

| QName "(" (Expr ("," Expr)*)? ")"
| "/"
| "(" ExprSequence? ")"

TypeswitchClauses ::= CaseClause+ "default" "return" Expr
CaseClause ::= "case" Datatype "return" Expr

EnclosedExpr ::= "" ExprSequence ""

-- XPath Axis --

Axis ::= "child" "::"
| "descendant" "::"
| "attribute" "::"
| "self" "::"

-- Node tests --

NodeTest ::= NameTest | KindTest
NameTest ::= QName | Wildcard
Wildcard ::= "*" | NCName ":*" | "*:" NCName
KindTest ::= ProcessingInstructionTest

| CommentTest
| TextTest
| AnyKindTest

ProcessingInstructionTest ::= ProcessingInstruction "(" StringLiteral? ")"
CommentTest ::= Comment "(" ")"
TextTest ::= Text "(" ")"
AnyKindTest ::= Node "(" ")"

-- Tokens (only partial) --

Variable ::= "$" QName
QName ::= ":"? NCName (":" NCName)?

Note that there is no ’.’ expression in the core, which is represented as a standard variable with name
$dot.

15

