
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 1

GFocus: User Focus-based Graph Query
Autocompletion

Peipei Yi, Byron Choi, Zhiwei Zhang, Sourav S Bhowmick, and Jianliang Xu

Abstract—Graph query autocompletion (GQAC) generates a small list of ranked query suggestions during the graph query
formulation process in a visual environment. The current state-of-the-art of GQAC provides suggestions that are formed by adding
subgraph increments to arbitrary places of an existing (partial) user query. However, according to the research results on
human-computer interaction (HCI), humans can only interact with a small number of recent software artifacts in hand. Hence, many of
such suggestions could be irrelevant. In this paper, we present the GFOCUS framework that exploits a novel notion of user focus of
graph query formulation (or simply focus). Intuitively, the focus is the subgraph that a user is working on. We formulate locality
principles inspired by the HCI research to automatically identify and maintain the focus. We propose novel monotone submodular
ranking functions for generating popular and comprehensive query suggestions only at the focus. In particular, the query suggestions
of GFOCUS have high result counts (when they are used as queries) and maximally cover the possible suggestions at the focus. We
propose efficient algorithms and an index for ranking the suggestions. Our results show that GFOCUS saves 12%-32% more mouse
clicks and is 35× more efficient than the state-of-the-art competitor.

Index Terms—Subgraph query, Query autocompletion, Database usability.

F

1 INTRODUCTION

QUery formulation, typically, using a graph query lan-
guage, is the first key step of querying graph data.

Several graph query languages (e.g., SPARQL, and Cypher)
have been proposed to realize the query formulation step.
While most of these languages can express a wide variety
of graph queries, their syntaxes can be too complex to be
used by ordinary users. A popular approach toward making
query formulation tasks palatable to end users is to build
visual graph query interfaces (a.k.a GUIs) that facilitate the
drawing of query graphs in an easy and intuitive manner. In
fact, several such visual graph query interfaces are already
offered by the industry to facilitate query construction (e.g.,
PUBCHEM1, CHEMSPIDER2, and SCAFFOLD HUNTER3). This
reflects a real demand for visual graph query interface.

Despite these efforts, composing graph queries in a
visual environment may still be cumbersome. In particular,
during query formulation, a user needs to precisely draw
the (edge) relationships between nodes in a query graph to
construct the topological structure he/she is interested in.
Due to the topological complexity of the underlying graph
data, it is often unrealistic to assume that an end user can
easily specify such relationships precisely.

This paper studies the problem of graph query autocom-
pletion (GQAC) to alleviate the burden of visual query

• P. Yi, B. Choi, Z. Zhang and J. Xu are with the Department of Computer
Science, Hong Kong Baptist University, Hong Kong. P. Yi is a data
scientist at Lenovo Machine Intelligence Center, Hong Kong.
E-mail: {csppyi, bchoi, cszwzhang, xujl}@comp.hkbu.edu.hk

• S. S. Bhowmick is with School of Computer Science and Engineering,
Nanyang Technological University, Singapore.
E-mail: assourav@ntu.edu.sg

Manuscript received MM DD, YYYY; revised MM DD, YYYY.
1. https://pubchem.ncbi.nlm.nih.gov/search/
2. http://www.chemspider.com/
3. http://scaffoldhunter.sourceforge.net/

C C

q0

q0 + ∆q1 q0 + ∆q2 q0 + ∆q3 q0 + ∆q4

Reset Rollback Submit Query

Edge

Node

N C O F S · · ·

Query editor

Suggestions

Label panel

· · ·

1 2 3 4

e3

e2

e1

N

C C

C

N

C C

C

C C C

N

C C

C

C

N

C C

C N

C C

C

target query q
C C

N

C C

C

“Pentadienylamine”

Fig. 1. Left: A typical GUI and suggestions of GQAC; and Right: the
target query of Example 1.1

formulation. We start with a typical scenario that a user
intends to formulate a query graph q iteratively using a
visual query interface. Given an existing (partial) visual query
graph q0, the aim of GQAC is to suggest a subgraph increment
∆q to q0, such that adding ∆q to q0 yields a query suggestion
toward q.4 Since it is hard to accurately predict the individual
query graph a user intends to draw, GQAC may return a
ranked list of query suggestions for users to choose from.

Example 1.1. Consider the visual interface in Fig. 1 for
querying a chemical compound database. The query for-
malism of the query is subgraph isomorphism. Suppose
Mike wishes to search for compounds containing the
“Pentadienylamine”5 substructure (as shown in Fig. 1).
The partial subgraph query constructed by him is de-
picted in the Query editor panel. It is helpful to Mike
if the query system can suggest top-k possible query
fragments (subgraphs) that he may add to his query.
An example of such top-4 suggestions (i.e., q0 + ∆q1 to

4. We consider a “query suggestion toward q” to be a subgraph of q
and supergraph of q0. By adopting the suggestion, the user adds fewer
nodes/edges by manual formulation to formulate q.

5. https://pubchem.ncbi.nlm.nih.gov/compound/59750537

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 2

q0 q0 + ∆q1 q0 + ∆q2 q0 + ∆q3 q0 + ∆q4

query suggestions

focus

incrementN

C C

C

C

e3

e2

e1

N

C C

C

C

N

C C

C

C C

N

C C

C

C C

N

C C

C

useful
suggestions

query

Fig. 2. Suggestions (example) of GFOCUS

q0 + ∆q4) is shown in the Suggestions panel. Observe
that each suggestion is composed by adding small in-
crements (highlighted in blue with gray background) to
the query graph. Mike may select a useful suggestion (if
present) by clicking on it, thus saving his mouse clicks
to formulate the new nodes and edges manually. He
may then continue formulating the final query graph
in subsequent steps by leveraging the query suggestion
capability iteratively. However, none of the suggestions
in Fig. 1 can be further extended to the target query. By
using GFOCUS, Mike obtains some useful suggestions,
as shown in Fig. 2. �

Despite the increasing research efforts on visual graph
querying in recent years to enhance both usability and per-
formance of graph databases [1], graph query autocomple-
tion has received relatively little attention in the literature.
To the best of our knowledge, there are only two related
studies on GQAC [2], [3]. VIIQ [2] demonstrates edge in-
crements to the user’s existing query, whereas AUTOG [3]
returns the top-k subgraph increments that yield query
suggestions with high selectivities and structural diversity.

Nevertheless, these studies suffer from the following
drawbacks. First, the returned query suggestions may be too
diversified, i.e., they are extended from the existing query
graph at seemingly arbitrary subgraphs, which may lead to
a cognitive overload to users. Following up Mike’s example,
users typically focus their attention6 on a specific subgraph
of the query at each query formulation operation due to
the limited short-term/working memory [5], [6]. Suppose
Mike formulates q0 in a clockwise way, as shown in Fig. 1
(i.e., first add e1, then e2 and e3), he may continue to add
edges connecting with e3 or e2 but not e1. In Fig. 2, the
left-hand side shows the current query q0, the red colored
portion of q0 (surrounded by the dashed line) is the more
recently added edges and hence is more likely at Mike’s
focus. Note that the increments of all the four suggestions
showed in Fig. 2 are now connected to the red portion
only. Mike obtains two useful suggestions, which connect a
carbon node (C) to the red portion via an edge of the double
chemical bond, i.e., C=C, in the increments.

Second, a “user focus-unaware” strategy, adopted by
existing GQAC techniques, may adversely impact not only
the quality of the suggestions but also the response time of
GQAC. In Example 1.1, since the user pays little attention
to e1 at the current step, three suggestions in Fig. 1 are
deemed to be irrelevant.7 Additionally, since these existing
techniques search for useful suggestions from a large num-
ber of candidate suggestions, they may take a long time.

6. Readers interested in visual attention may refer to a nice chapter
by Chun and Wolfe [4].

7. Users may not even “see” the suggestions if they appear in the
portion users are not paying attention to. Such a phenomenon has been
called inattentional blindness or amnesia [7], [8].

This makes users wait for suggestions to appear, disrupting
their flow of query construction.

In this paper, we address the drawbacks above. We pro-
pose GFOCUS, a user focus-based graph query autocompletion
framework. Intuitively, user focus (or simply focus) refers to
a small subgraph of a query graph that has the highest user
attention, from where GQAC generates query suggestions.8

While there has not been an agreed-upon definition of
attention, it has been generally understood as being selective
and reactive and having a limited capacity (e.g., [4], [9]).
While users may explicitly mark their focus, this approach
requires extra human intervention [10]. Instead, we propose
to automatically derive the focus from users’ query formu-
lation operations. That is, the computation of user focus is
transparent to users.

The main ideas are to propose user’s attention weight
for each query edge and to maintain the weights of a query
graph by proposing two locality principles. Specifically, we
define a set of operators to capture users’ actions for query
formulation, e.g., adding edges and adopting suggestions.
We introduce user attention weights to edges/subgraphs that
involve these operators. The weights are maintained by the
following locality principles. We propose the temporal locality
of query formulation to capture human’s memory decay as
time passes [11]. The human’s memory decay is modeled
by a parameter τ . We then formulate the structural locality
to capture the attention propagation to limited neighboring
structures around the attended edges. The user focus is then
the (proper) connected subgraph of the query with the
maximal normalized weight. Next, we propose an algorithm
to automatically identify the user focus.

To address the limitation related to both suggestion qual-
ity and efficiency, we propose new techniques for generating
suggestions at the focus. In particular, we propose a struc-
tural union of suggestions to compactly represent all possible
candidate suggestions and then generate suggestions that
maximally cover the union. We remark that it is infeasible to
compute suggestion coverage without the user focus as the
number of candidate suggestions can be huge. The previous
work [3] resorts to computing suggestion diversity only. We
propose new linear submodular ranking functions of sug-
gestions that involve not only query suggestions’ selectivities
but also the coverage of the union. It is not surprising that
the ranking problem is NP-HARD. We propose a greedy
algorithm and an index for structural unions to efficiently
compute the top-k suggestions.

We observed from user studies and extensive simula-
tions on popular datasets that GFOCUS shows significant
improvements of suggestion quality over the current state-
of-the-art (i.e., AUTOG). Moreover, GFOCUS almost always
generates suggestions within a second. Such efficiency has
not been achieved before. In all, this paper makes the
following contributions.
• We formalize query formulation sequence that users carry

out in constructing their queries visually. We define the
user attention weight of each edge of the query and
locality principles of query formulation. Based on these,
for the first time in the context of GQAC, we formally

8. Humans may shift their focus at arbitrary times. Modeling such
arbitrary shifts is beyond the scope of this paper.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 3

TABLE 1
Frequently used notations

Symbol Meaning
q the current query or existing query
q′ a query suggestion or simply suggestion
∆q query increment (adding ∆q to q yields q′)
Q′ query suggestions
q ⊆λ q′ q is a subgraph of q′ and λ is the embedding of q in q′

f the user focus, a (proper) connected subgraph of the query q

introduce the concept of user focus. We present a PTIME
algorithm to determine user focus.

• We propose structural union of suggestions. It is compact
and yet contains all the suggestion structures. It can also
be efficiently computed.

• We propose new ranking functions for generating sugges-
tions at the focus, where efficient ranking algorithms are
possible. To optimize the online ranking, we propose the
Structural-Union-of-Suggestions DAG index (SUDAG) to
support the covering semantics for suggestion ranking.

• We investigate the usefulness and efficiency of GFOCUS
by an exhaustive experimental study including user stud-
ies and simulations. The results show that GFOCUS saves
12%-32% more mouse clicks and speeds up the suggestion
process by 35X on average when compared to the state-
of-the-art competitor (i.e., AUTOG).

2 BACKGROUND ON GRAPH QUERY AUTOCOMPLE-
TION (GQAC)
We first provide some background on graph databases and
visual graph query formulation that are necessary to de-
scribe graph query autocompletion. We summarize common
user behaviors of query formulation in visual environments.
Frequently used notations are listed in Table 1.
Graph databases. We consider a graph database D as a
large set of data graphs {g1, g2, . . ., gn}. Each graph is a
3-ary tuple g = (V,E, l), where V and E are the vertex
and edge sets of g, respectively, and l is the label function
of g. For nodes/edges that contain attribute values, we use
labels to denote those values. The size of a graph is defined
by |E|. In this paper, we illustrate the techniques with a
large collection of data graphs of modest sizes (e.g., chemical
compounds). The query formalism adopted by this paper
is subgraph isomorphism. Intuitively, the query graph q
retrieves the data graphs that contain q as a subgraph. The
definition of subgraph isomorphism is recalled below.

Definition 2.1. [Subgraph isomorphism] Given two graphs
g = (V,E, l) and g′ = (V ′, E′, l′), g is a subgraph of g′,
denoted as g ⊆λ g′, iff there is an injective (or embedding)
function λ : V 7→ V ′ such that

1) ∀u ∈ V , ∃λ(u) ∈ V ′ such that l(u) = l′(λ(u)); and
2) ∀(u, v)∈E, ∃(λ(u),λ(v))∈E′ and l(u, v) = l′(λ(u), λ(v)).

�

Multiple subgraph isomorphic embeddings of g may
exist in g′, denoted as λ0

g,g′ , λ
1
g,g′ , . . ., λ

m
g,g′ . For succinct

presentation, we often refer each λig,g′ to as an embedding
λ, when the subscripts and superscripts are clear from
or irrelevant to the context. The embeddings specify the
locations of subgraphs in a query and GQAC requires them
to analyze how suggestions can be composed.

q, ~u

2© Analyze the query 3© Decompose the user focus f

5© Rank top-k

6© Review

Q′
k = {q′1, . . . , q′k}

1© Submit query q
and user intent ~u

4© Generate candidate suggestions

SUDag
Q′

at focus f , Q′ = {q′1, . . . , q′n}

suggestions Q′
k

q:

~u : (τ, β)

Client Server

· · ·

adopt q′

to derive user focus f

f

q, ~u

f

comprehensive

into a set of feature embeddings

f

suggestions at the focus

Fig. 3. The major steps in user focus-based graph query autocompletion

Definition 2.2. [Subgraph query] Given a graph database
D = {g1, g2, . . . , gn} and a query graph q, the answer
(or result set) of q is Dq = {g | q ⊆λ g, g ∈ D}. �

Graph feature representation of queries. Graph features
(or simply features) are generally understood as subgraphs
that carry important characteristics of graph data. Features
have been extensively used in subgraph query indexing [12].
Recently, Yi et al. proposed indexing c-prime features [3]
for GQAC. c-prime features are frequent features that can
be constructed from other smaller features in no more than
c ways. Non c-prime features are not indexed as they are
more likely to be suggested by GQAC. The paper follows
this approach because, without prior knowledge, users may
prefer to include such important characteristics in their
queries. The current query is decomposed into a set of
features and then another feature is added to form query
suggestions.
Visual formulation of queries. Subgraph queries are
graphs. It is therefore natural to provide a visual interface
for drawing the queries, such as Fig 1. In visual query
formulation, edge addition is a fundamental operation of
manual query composition. That is, each manual operation
adds one edge to the query graph q. Some visual interfaces
may provide subgraph templates that can be added to an
existing query as a whole. This is equivalent to adding a set
of edges at a time. Moreover, it is handy for users to return
to a previous state of the query graph.

Consistent with the findings of human-computer interac-
tions [13], [14], users may continue with their tasks at hand.
Users may compose a connected query subgraph. However,
users may shift their attention occasionally, such as starting
a new query subgraph (which is disconnected from the
existing query) at some empty space in the query editor
and connecting them later. Disconnected queries can be
considered independent queries and passed individually to
GQAC for autocompletion [3]. Such details are minor and
omitted for a concise presentation.
Graph query autocompletion (GQAC). GQAC aims at
alleviating users from the cumbersome actions needed to
compose a visual query. The details of the user focus-
based GQAC process can be illustrated with the sketch
shown in Fig. 3. The autocompletion process is extended
from the previous work [3], which is not focus-aware. Here,
we summarize only the GQAC process but postpone some
technical details for later sections.
1) GQAC takes a user’s existing partial query and pref-

erence in a visual environment as input. The query is
analyzed and decomposed into a set of graph features.
Query suggestion candidates are generated and ranked.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 4

A suggestion is a graph that is formed by adding a
subgraph increment (or increment) to the existing query.
An increment may contain multiple edges. A small set of
query suggestions (or suggestions) are returned as output.

2) A user may further compose the query by either adopt-
ing a suggestion or adding an edge manually. This step
repeats until the desired query completes.

Comparison with previous work. Recently, a GQAC frame-
work [3], namely AUTOG, provides the top-k suggestions
according to a user’s preference on suggestion selectivity
and diversity. AUTOG proposed c-prime features as logical
units to be added to the user’s query. AUTOG proposed
algorithms to rank candidate suggestions and an index
called feature DAG (FDAG) to optimize the ranking. Due
to the user’s preference for structural diversity, the returned
suggestions can be subgraph increments connected to dif-
ferent subgraphs of the query. As reported in [3], AUTOG
saved approximately 40% of clicks in query formulation.
Hence, there are a notable amount of clicks not yet saved.

To enhance the quality of query suggestions, this paper is the
first work that proposes a notion of user focus (of users’ query
formulation) and provides comprehensive query suggestions at the
focus. In particular, as motivated in Sec 1, new suggestion
ranking definitions are needed; the suggestion candidates
are localized and compactly represented; and new ranking
algorithms and index are required.

Remarks. We follow the general phenomenon (i.e., in
web searches and AUTOG [3]) that query autocompletion
does not give suggestions involving infrequent items of a
database. The analogy is that in web searches, infrequent
keywords are not suggested; similarly, in GFOCUS, infre-
quent increments are not suggested. By definition, infre-
quent edges lead to small answer sets. In this case, users
may simply run their queries to obtain the few answers.

3 QUERY FORMULATION SEQUENCE

The process (steps) that users go through to build their
queries in a visual query formulation environment provides
useful implicit information for GQAC. In this section, we for-
malize a query formulation sequence that aims at capturing
major user interactions with the visual environment, which
are then used to derive the user focus.

Formulation operators. The set of fundamental query for-
mulation operators in this paper is OP = {add, adopt, select,
rollback}. For better readability, we illustrate these essential
operators by providing their narrative definitions.

• add(q, s): The add operator denotes that a user manually
adds a structure s to an existing query q, and returns the
augmented query.

• adopt(q, ∆q): The adopt operator specifies that a user
adopts a query suggestion, which augments query q with
an increment ∆q.

• select(q, e): The select operator denotes that a user indi-
cates the edge of the query that he/she may work on. The
select operator does not change the structure of the query,
but indicates the working region of q.

q1

visual graph formulation

q2 = add(q1, e2)

q2

q3 = add(q2, e3)

q3

e3

e2

e1

N

C C

C

e2

e1

N

C Ce1

N

C

Fig. 4. An example of visual graph formulation

C C

C

C C

C

C C

C
q3 small τ medium τ large τ

formulation op possible focuses

q1 = add(q∅, e1)

q2 = add(q1, e2)

q3 = add(q2, e3)

current query

e3

e2

e1
N

C C

C N N N

Fig. 5. User focuses by varying τ

• rollback(q, k): The rollback operator denotes that a user re-
vokes the last k operators. It is a special form of deletion.9

We remark that other interesting operators (e.g., mouse
hover) may be introduced according to the application. The
add and adopt operators formalize the major user interac-
tions in the current state-of-the-art and are sufficient for
user studies of GFOCUS. rollback is proposed for users’
convenience. select is proposed for manually indicating the
user focus when GFOCUS fails to detect users’ desired one.
Query formulation sequence. A query formulation se-
quence is a sequence of query formulation operators, which
specifies how a user composed the current query. A query
formulation sequence St at time t is denoted as follows:

qt = opt(. . . opk(. . . op1(q0))), (1)

where qt is the current formulated query, opt is the user’s
last operator, and q0 is the initial query.

Example 3.1. Suppose a user is composing a query graph
q3 manually from q1, as shown in Fig. 4. He/She may
obtain the query q3 via the formulation sequence below:

q3 = add(add(q1, e2), e3),

where e1, e2, and e3 are edges in the query. The labels
of the nodes are marked in the circles (i.e., “C”), and the
labels of the edges are represented by “=” and “-” con-
necting the circles. We remark that users may formulate
the same query by going through different sequences. �

At any time point t, the current query qt and its formu-
lation sequence St are the least information for GFOCUS to
automatically determine the user focus, and then produce
suggestions at the focus.10

4 LOCALITY PRINCIPLES FOR GQAC
Madison and Batson [15] show that both human cognitive
processes and program executions exhibit localities. A sur-
vey by Denning [16] reports that the locality principle has
influenced a wide range of applications. Because of limited
human short-term memory [5], [6], [9], it is intuitive that
locality principles apply to query formulation. Inspired by
the classical work on locality principles, we formulate the

9. It is an open issue that an arbitrary deletion might lead to
arbitrary focus shift. We consider arbitrary deletion as if it is
emulated by rollbacks followed by add operators.

10. There is a stream of work on exploiting the human gaze
to predict human-computer interactions. However, such work
requires users to install special hardware and is beyond the
scope of this paper.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 5

temporal and structural locality principles of user atten-
tion of the query formulation and propose a decay-and-
propagation algorithm that runs in O(|q|) at each query
formulation step to compute the (implicit) user attention. It
is possible to adopt other efficient approaches to derive the
attention. In Sec. 5, we define user focus to be the subgraph
of the highest user attention.

4.1 Temporal locality principle
Berman et al. [11] observe that memory fades due to the
mere passage of time. In the context of query formulation,
the temporal locality principle can be stated as follows:
human’s attention on the edges that he/she is working on fades as
time passes. In other words, his/her attention localizes on the
small number of newly operated edges. When this principle
is applied to graph query autocompletion, the suggestions
are more likely to be useful if they are connected to the small
number of recently operated edges. Hence, the user focus is
localized in the newly operated edges.

Temporal locality can be modeled by the decay theory [11].
To model user attention during the query formulation, we
propose an attention weight for each edge e, denoted as wte,
where t is the t-th formulation operator in the query for-
mulation sequence. We adopt the exponential decay function,
as a forgetting function of wte, which has a wide range of
applications, e.g., [17].

wtempe = wt−1
e e−1/τ , (2)

where wtempe is the attention weight of wte after the decay, e
is the Euler’s number, e is an edge in the query, and τ is a
constant that controls the decay rate. τ conveys the semantic
of the relative strength of the user’s memory. The intuition
is that the edge weight decays more slowly for a user with
a strong memory (i.e., a large τ) than a user with a weak
memory (i.e., a small τ).

The edge weight is set to a constant w0 (w0 = 1 by
default) when the edge is just involved in a formulation op-
erator. The edge weight decays by e−1/τ after each operator
(i.e., the recently operated edges have higher weights).
Example 4.1. At this point, assume user focus is intuitively

the subgraph having the highest attention weight. Fig. 5
shows an example of the possible users focuses based
on the temporal locality principle. The formulation se-
quence of query q3 is shown in the leftmost, in which the
edges e1, e2, and e3 are added one by one. The graphs
on the right show three possible focuses (highlighted in
red) for users with different memory strengths. �

4.2 Structural locality principle
When humans are working on a software artifact, their
attention is naturally localized on, and then propagated to a
small number of neighboring artifacts [6], which is generally
known as the spatial spread of attention. In the context of
graph query formulation, we translate the structural locality
principle as follows: the edges that are close to the newly
operated edges receive closer user attention and are more likely
to be a part of the user focus.

We capture the structural locality by Formula 3. It propa-
gates some attention weight from the newly operated edges
to their neighboring edges.

q3
e4 q4

temporal temporal + structural

q4 = add(q3, e4)

last query & focus possible focusescurrent query

C C

CN

e3

e2

e1 e3

e2

e1

N

C C

C

C

N

C C

C

C

N

C C

C

C

Fig. 6. Illustration of focuses by applying the locality principles

q2 q3

we1 = 0.43
we2 = 0.43 we1 = 0.43

we2 = 0.43
we3 = 1.00

attention

we1 = 0.19
we2 = 0.19
we3 = 0.43

decay

we1 = 0.30
we2 = 0.43
we3 = 0.43

propagation
q3 = add(q2, e3)

query decay-and-propagationquery

weight
C C

CN

e3

e2

e1
C C

N

e2

e1

Fig. 7. An example of decay and propagation

wte = wtempe + ∆we−h/τ , (3)

where e is an existing edge in the query before the last
operation; h is the smallest number of edge hops from e
to the last operated edge(s), that quantifies the structural
proximity between them. ∆w is the constant for control-
ling the maximum propagated weights. GFOCUS sets ∆w
to the decayed weight of the last operated edge(s), i.e.,
∆w = w0 − w0e

−1/τ , because the last operated edge(s) has
(have) an initial weight w0, and a weight of w0e

−1/τ after
one decay according to Formula 2. Such a ∆w guarantees
that the last operated edges have the highest weights (see
Appx. E of [18]), after applying the locality principles (see
Sec. 4.3).

Formula 3 states that each neighboring edge of the
last operated edges receives some amount of weight that
is positively proportional to their structural proximity h,
and inversely exponentially proportional to a parameter τ ,
which models the user’s relative memory strength. With a
stronger memory (i.e., a larger τ), the user’s last operation
propagates more attention weight to its neighboring struc-
tures. While τ in Formulae 2 and 3 has the same semantics
of memory strength, they could be of different values.

Formula 3 has some advantages over existing propa-
gation methods, e.g., PAGERANK. Formula 3 spreads some
weights from the newly operated edges to their neighboring
edges once after each query operation. This well reflects
the users’ spatial spread of attention based on the query
formulation sequence and the evolving structure of the
query graph. In comparison, the propagation of PAGERANK
repeats until it converges to a stationary distribution over
the whole graph based on the last structure only.
Example 4.2. Fig. 6 shows an example of the possible

focuses based on the locality principles. The leftmost
graph shows the last query q3 and the user focus. q3 is
formulated in three consecutive add operators, adding
e1, e2, and e3. The user then adds edge e4 to obtain
query q4. The last operated edge e4 is the user focus
after the temporal locality is applied. After applying the
structural locality, the first edge e1 can be in the focus. �

4.3 Decay-and-propagation algorithm
In this subsection, we propose a unified decay-and-
propagation algorithm to maintain the attention weights
in background. The algorithm of the attention weight is
presented in Algo. 1. Specifically, an edge obtains its initial
attention weight (i.e., w0) when it appears in a formulation
operator op (Lines 6-11), and its weight decays after each

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 6

Algorithm 1 Decay-and-propagation Algorithm for Main-
taining Attention Weights
Input: query formulation sequence qt = opt(qt−1, ...)
Output: updated query graph
1: switch opt do
2: case rollback(qt−1, k)
3: revoke qt−1 to the query structure qt−1−k
4: wte ← wt−1−k

e for e ∈ qt−1

5: return qt−1

6: case add(qt−1, s)
7: add s to qt−1, and set wt−1

e ← w0 for all e ∈ s
8: case adopt(qt−1, ∆q) // ∆q is the suggested increment
9: add ∆q to qt−1, and set wt−1

e ← w0 for all e ∈ ∆q

10: case select(qt−1, e) // e is the clicked edge
11: set wt−1

e ← w0

12: //the decay step
13: for all e ∈ qt−1, wtempe ← wt−1

e e−1/τ //Formula 2
14: //the propagation step
15: denote C to be the last operated edge(s)
16: R← qt−1.E \ C // the remaining edges
17: h← 0
18: while R 6= ∅ do
19: increase h by 1
20: for all e ∈ R and ec ∈ C do
21: if e is connected to ec then
22: wte ← wtempe + ∆we−h/τ //Formula 3
23: C ← C ∪ {e} //C: completed propagation
24: R← R \ {e}
25: return qt−1

operator. rollback is an exception, which simply revokes the
changes of the query structure and weights of the last k
steps, in Lines 2-5. In Lines 12-13, the edge weights decay
as time passes, according to Formula 2. Next, the algorithm
proceeds to the propagation step (Lines 14-24). C is a set
of edges whose weights have completed the propagation
step. Initially, C is the last operated edge(s) and R is the
remaining edges. The algorithm updates the weights (in
Line 22) in a breadth-first traversal manner (Lines 18-24).
The time complexity of maintaining the attention weights
is O(|q|) since each of the decay step and the propagation
step takesO(|q|) time to update the edge weights. The space
complexity is also O(|q|) since both C and R contains O(|q|)
edges at most.
Example 4.3. Consider an existing query q2 with two edges

e1 and e2 added in op1 and op2, respectively, illustrated
with Fig 7. The attention weights of e1 and e2 are 0.43.
Then, we add another edge e3 with an initial weight of
1.0 in op3. Suppose we have τ set to 1.2. In the decay
step, the weights of the three edges are reduced to 0.19,
0.19, and 0.43, respectively. In the propagation step, the
weights of e1 and e2 increase. After one decay-and-
propagation step, the weights of e1, e2, and e3 are 0.30,
0.43, and 0.43, respectively. �

5 USER FOCUS OF GQAC
In this section, we define the user focus, derived from the
user attention weights (Sec. 4), and propose a polynomial
time algorithm to compute the focus. Query graphs have
been modeled by edge-weighted graphs with attention
weight associated with each edge. We then define the user
focus as a subgraph of the query.
Definition 5.1. [User focus] The user focus f is the (proper)

connected subgraph of the query q with the maximal
normalized weight wf , defined as follows:

Algorithm 2 GREEDY for Determining the User Focus
Input: the current query q
Output: user focus f
1: Cf ← q.E // each edge as a candidate focus
2: initialize user focus fmax to the edge with the highest weight
3: repeat
4: C′f ← ∅ // initialize the next cand. focuses
5: for all cf ∈ Cf do // current candidate focus
6: emax ← argmaxe∈q.E\cf (wcf⊕e) // ⊕: edge adding
7: c′f ← cf ⊕ emax // next candidate focus
8: if wc′f > wcf then
9: C′f ← C′f ∪ {c

′
f}

10: if wc′f > wfmax then
11: fmax ← c′f // maintain the user focus

12: Cf ← C′f // candidates updated in this iteration
13: until Cf = ∅ // no more candidates to be expanded
14: return fmax

wf =

∑
we

|f.E|ω(τ)
, (4)

where e ∈ f.E and f ⊆λ q and when an edge is added
to f , the normalized weight is reduced. �

The user’s relative memory strength τ is an input of the
function ω that models the relevant importance between the
sum of the weights and the size of the subgraph f . For
illustration purposes, we define ω(τ) to be 1/τ .

A user with a strong memory (i.e., a large τ) can focus on
a larger subgraph than a user with a weak memory, which is
consistent with intuitions. In extreme cases, when τ is set to
1, the formula defines a user focus containing only the last
operated edges. In case τ is set to a sufficiently large value,
the formula defines the focus to be the whole query.
Example 5.1. Continuing with Fig. 7, τ is set to 1.2. When

formulated q2, the user focus is the subgraph that con-
sists of e1 and e2. After adding e3 with the operator add,
the attention weights are updated. The new focus is the
subgraph of e2 and e3 (highlighted in q3). �

The problem of determining the user focus is closely
related to a classical NP-complete problem. Identifying the
user focus of the size k (with the maximum normalized weight)
is equivalent to find the node-optimal connected k-subgraph
problem [19], which is NP-complete. In particular, given an
instance of the node-optimal k-subgraph problem, we can
convert it into its line graph in linear time [20]. And the node
weights are converted to the edge weights. Then, suppose
we find the query focus of the size k, which is the one
with the largest sum of edge weights. The query focus of
the line graph can be converted back to the solution of the
node-optimal connected k-subgraph problem in linear time.
However, we note that user focus is transparent to users.
The definition does not require a fixed user focus size and
the maximum normalized weight, it only requires a maximal
normalized weight.
Greedy algorithm for computing the focus. Users may
compose a query in arbitrary formulation sequence. We
propose a bottom-up greedy algorithm (called GREEDY)
to enumerate the subgraph with the maximal normalized
weight w.r.t Formula 4. The most important design of
GREEDY is that every single edge in the query is initially a candi-
date focus. GREEDY then iteratively expands each candidate
focus with its neighboring edge which maximizes Formula 4.
The iterations terminate when the candidate focuses cannot

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 7

be expanded and meanwhile their normalized weights are
increased. Then, the candidate with the largest weight is
selected as the user focus. In Appx. F of [18], we further
elaborate the pseudocode.

The complexity of determining user focus depends on
ω(τ). We show that when ω(τ) is a constant greater than
0, GREEDY correctly determines the user focus. The time
complexity of GREEDY is simply O(|q|3) since i) there are at
most O(|q|) candidate focuses; ii) it takes O(|q|) to expand
each candidate focus in one iteration; and iii) there are at
most O(|q|) iterations before GREEDY terminates. The space
complexity of GREEDY is O(|q|2) since i) there are at most
O(|q|) candidate focuses, and ii) each focus can expand to
at most O(|q|) edges.

Proposition 5.1. GREEDY determines the maximal user focus
when ω(τ) ≥ 0. �

The proof is presented in Appx. A of [18].

6 GQAC AT USER FOCUS

Sec. 5 presents how GFOCUS determines a user focus f (Step
2© of Fig. 3). Next, GFOCUS decomposes f into a set of

feature embeddings (Step 3©). GFOCUS then performs the
following two main steps. First, in a candidate generation
step, we generate possible candidate suggestions at the
focus. This step determines the increments to be attached
to the current query to form suggestions. In Sec. 6.1, we
propose structural union and efficiently compute it to com-
pactly represent the “universe” of all candidate suggestions.
Second, in Sec. 6.2, we propose several new ranking func-
tions for the top-k suggestions.

6.1 Candidate suggestions at user focus

We observed from our experiments that the numbers of
possible subgraph increments to an existing query in the
presence of a user focus typically ranged from hundreds
to thousands. Without user focus, such numbers are huge.
Hence, at the user focus, it is feasible to compute the “uni-
verse” of all candidate suggestions. To provide comprehen-
sive suggestions (i.e., Sec. 6.2), we rank the top-k candidate
suggestions that cover such universe the most.

6.1.1 The Universe of Candidate Suggestions – Structural
Union
We propose the structural union of a set of graphs. For
simplicity, we first consider the “union” of a pair of sugges-
tions (graphs) and then generalize it to a set of suggestions.
Intuitively, a structural union is a graph that preserves
the structures of the individual graphs. In particular, it
combines the two suggestions by sharing the maximum
common edge subgraph (mces) between them.11 We recall
the function [3] that combines two graphs in Def. 6.1.

11. There are existing notions of union of two graphs.
One popular approach is to consider the graphs as finite
state automata (FSA). Such techniques preserve the accept-
ing languages or behaviors of the FSA but may eliminate
states/transitions of the FSAs. However, query graphs are not
state machines. If applied, the structures of the individual
graphs cannot be preserved.

q′1 q′2q mcesq(q
′
1, q

′
2) union(q′1, q

′
2)

C C

C C

C C

C

F C

C

C C

C

C

C C

CN

C

C

C C

C

C

C C

S

N

C

C

C

C C

C

C

C C

F C

C

C C

C

C

C C

S

N

C

CN

mcesq

query

suggestion 1 suggestion 2 structural union

Fig. 8. Structural union of a pair of suggestions (q′1 and q′2) for q

q′3 mcesq(union(q
′
1, q

′
2), q

′
3) union(union(q′1, q

′
2), q

′
3) mcesq(q

′
1, q

′
3) mcesq(q

′
2, q

′
3)

C

C C

C

C

C C

C

C

O

C

C C

C

C

C C

C

C

F C

C

C C

C

C

C C

S

N

C

C

O

N

C

C C

C

C

C C

C

C

C C

C

C

C C

C

suggestion 3 structural union

Fig. 9. Structural union of a set of suggestions (q′1, q′2 and q′3) for q

Definition 6.1. [Query composition] compose [3] takes two
graphs, q1 and q2, and the corresponding embeddings,
λ1 and λ2, of a common subgraph cs as input, returns
the graph g that is composed by q1 and q2 via λ1 and λ2

of cs, respectively, i.e., g = compose(q1, q2, cs, λ1, λ2). �

Definition 6.2. [Structural union of a suggestion pair] Given
a pair of suggestions q′1 and q′2 for a query q, the query-
centric mces of q′1 and q′2 (denoted as mcesq(q

′
1, q
′
2))

satisfies the following properties:
• q ⊆ mcesq(q

′
1, q
′
2); and

• mcesq(q
′
1, q
′
2)⊆λ1 q

′
1 and mcesq(q

′
1, q
′
2)⊆λ2 q

′
2, where λ1

and λ2 are the corresponding subgraph isomorphism
embeddings.

The structural union of q′1 and q′2, denoted as union(q′1, q
′
2), is

• compose(q′1, q′2, mcesq(q
′
1, q
′
2), λ1, λ2). �

Structural union (Def. 6.2) is space-efficient since q′1 and
q′2 are combined via their maximum common subgraph (see
Def. 6.1 for compose). Note that q appears in mcesq . That
is, the mcesq of q′1 and q′2 is a supergraph of q. Further,
union(q′1, q′2) contains the structures of q′1 and q′2, i.e., q′1 and
q′2 are subgraphs of union(q′1, q′2).
Example 6.1. Fig. 8 shows a partially formulated query q

and a pair of query suggestions, q′1 and q′2, for q. The
increments of q′1 and q′2 are highlighted in blue with the
gray background. The maximum common subgraph of
q′1 and q′2 (i.e., mcesq(q

′
1, q
′
2)) are surrounded by dotted

lines. The structural union of the two suggestions is the
composed graph of q′1 and q′2 via mcesq(q

′
1, q
′
2), shown

as union(q′1, q
′
2). �

We then generalize Def. 6.2 to the structural union of a
set of query suggestions and remark its properties.
Definition 6.3. [Structural union of a suggestion set] Given a

set of query suggestions Q′: {q′1, q′2, . . . , q′n} for a query
q, the structural union of Q′ is the graph formed by a
sequence of union of the suggestions, denoted as

union(Q′) = union(...union(q′1, q
′
2), ..., q′n). �

Proposition 6.1. [Constant minimum structural union size]
Given a set of graphs,
• the structural union(s) may not be unique; and
• all structural unions are of the same minimum size. �

Given a set of query suggestions Q′, its structural
union(s) may not be unique, since the mcesq of a pair of
query suggestions may not be unique and each mcesq may

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 8

have multiple embeddings. The second part of Prop. 6.1 can
be established from a proof by contradiction. In essence,
graphs are combined via mcesq in union and the union graph
contains the original graphs. If a union graph is larger than
the others, this graph must not be composed via mcesq .

6.1.2 Efficient Structural Union Computation
The structural union defined in Def. 6.3 allows us to propose
an optimization for computing them. In particular, the costly
mcesq computation of the intermediate union graph and
suggestions can be optimized.

Given a set of query suggestions Q′ = {q′1, q′2,...,q′n},
when computing the union(Q′), union(...union(q′1, q′2),...,q′n),
as defined in Def. 6.3, is a left-deep approach. This approach
is inefficient because as union being called, the sizes of the
intermediate union graphs increase and the runtimes of
mcesq increase significantly. The time complexity of com-
puting the structural union is exponential to the graph
sizes since it involves computing mcesq of the intermediate
union graphs and suggestions. In contrast, Prop. 6.2 states
a decomposition property of computing structural union.
Prop. 6.2 states that to compute the mcesq of union(Q′) and a
suggestion graph q′n+1, we can compute the structural union
of the mcesq of q′n+1 and each suggestion graph in Q′. The
intermediate union graph size is much smaller.
Proposition 6.2. [Decomposition of structural union] Given

a query q and its query suggestions Q′: {q′1, q′2, . . . , q′n}
and a new query suggestion q′n+1, union(Q′∪{q′n+1}) is:

compose(union(Q′), q′n+1,mcesq(union(Q′), q′n+1), λi, λj), (5)

where λi (resp.λj) is the embedding of the mcesq in
union(Q′) (resp. q′n+1); and
mcesq(union(Q′), q′n+1) = union({mcesq(q

′
n+1, q

′)|q′ ∈ Q′}). (6)

The proof is provided in Appx. A of [18].
Example 6.2. We use Fig. 9 to illustrate the decomposition of

the structural union of a set of query suggestions. Recall
that we obtained the structural union of two query sug-
gestions q′1 and q′2 in Example 6.1, shown as union(q′1, q

′
2)

in Fig. 8. We further consider another query suggestion
q′3 (shown in Fig. 9). To obtain union(union(q′1, q

′
2), q′3),

we first need to compute mcesq(union(q′1, q
′
2), q′3). To

avoid directly computing mcesq(union(q′1, q
′
2), q′3) since

the size of the intermediate union graph union(q′1, q
′
2) is

large, we first compute mcesq(q
′
1, q′3) and mcesq(q

′
2, q
′
3)

(shown in Fig. 9), then obtain mcesq(union(q′1, q
′
2),q′3)

by computing the structural union of mcesq(q
′
1, q
′
3) and

mcesq(q
′
2, q
′
3). �

Analysis. The time complexity of the structural union com-
putation using Prop. 6.2 is O(|Q′| × Tcompose1 + |Q′|2 ×
(Tmcesq + Tcompose2)). (a) The first term is the time for
combining the intermediate union graphs and suggestions,
and Tcompose1 is the time for combining the union graph
union(Q′) and a suggestion graph q′n+1. This is invoked |Q′|
times. (b) The second term is for the mcesq computation be-
tween the intermediate union graph and suggestions. Each
mcesq computation between a pair of suggestions is denoted
as Tmcesq . There are |Q′|2 pairs. The time of Tcompose2 is
for the union of the computed mcesq graphs. The union is
called |Q′|2 times. In practice, the terms |Q′|, Tcompose1 and
Tcompose2 are often small.

6.2 Suggestion ranking at user focus

This section presents the ranking that determines the top-k
suggestions that cover the structural union, the suggestion
universe, the most, namely structural cover (Def. 6.4). We also
present some additional ranking functions can be plugged
into GFOCUS.

Definition 6.4. [Maximum Structural Cover] Given a query
q, a set of query suggestions Q′, and the structural union
U of Q′, a user-specified constraint k, the structural
cover of Q′ is to determine k suggestions Q′′ , where
Q′′ ⊆ Q′, |Q′′| ≤ k and there is no other Q′′′ ⊆ Q′, such
that the size of union(Q′′′) is larger than union(Q′′), i.e.
|union(Q′′′).E| > |union(Q′′).E|. �

The problem of determining the maximum structural
cover is NP-hard. The hardness can be established by a
reduction from the MAXIMUM COVERAGE problem.

6.2.1 Baseline ranking function

Given the hardness of determining the maximum structural
cover, one may be tempted to design greedy algorithms
from covering problems. A greedy algorithm may favor
suggestions of large increments that greedily cover the
universe. Such suggestions are large queries but they do
not often retrieve many answers, which may not be useful
to users. In addition, to provide suggestions with prior
knowledge about the users, we propose a baseline ranking
function to balance the user’s preference on popular (e.g.,
high selectivities) and comprehensive (e.g., high coverage)
suggestions, presented in Def. 6.5. The preference of popular
suggestions simply reflects users’ intent to retrieve more
answers, whereas the preference of comprehensive sugges-
tions recognizes the importance of covering all candidate
suggestions. These two preferences can be quantified as the
following objective functions:
1) sel(q): the selectivity of q on D is defined as |Dq|/|D|,

where |Dq| is estimated using the candidate answer set
(using techniques such as [3]), |D| is for normalization.

2) coverage(Q): the coverage of Q over the structural union
of all candidate suggestions is defined as |union(Q)|/|U |,
where U is the structural union of all candidate sug-
gestions. The coverage of suggestions quantifies how
comprehensive a set of suggestions are.

Definition 6.5. [Utility of query suggestions] Given a set
of query suggestions Q′ : {q′1, q′2, . . . , q′k}, the structural
union U of all candidate suggestions and a user prefer-
ence component β, the utility of Q′ is defined as follows:

util(Q′) =
β

k

∑
q′∈Q′

sel(q′) + (1− β)coverage(Q′),

where β ∈ [0, 1]. �

The bi-criteria ranking function combines the selectivity
and the coverage of the query suggestions. β is for balancing
the two criteria and k is the constant denominator for
normalization. Furthermore, the two objectives of util are
competing: in practice, the selectivities of smaller queries
are often larger as more data graphs contain smaller queries,
whereas smaller queries cover a smaller portion of the
structural union of all candidate suggestions.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 9

The ranking task is then to find the top-k suggestions
that have the highest util value. The ranking problem of
query suggestions (presented in Def. 6.6) is also NP-hard.
Definition 6.6. [Ranked Subgraph Query Suggestions

(RSQ)] Given a query q, a set of query suggestions Q′,
the ranking function util, a user preference component
β, and a user-specified constraint k, the ranked subgraph
query suggestions problem is to determine a subset Q′′,
util(Q′′) is maximized, i.e., Q′′ ⊆ Q′, |Q′′| ≤ k and there
is no other Q′′′ ⊆ Q′ such that util(Q′′′) > util(Q′′). �

Proposition 6.3. The RSQ problem is NP-hard. �

The proof is presented in Appx. A of [18].

6.2.2 Additional ranking functions
The coverage function presented in Def. 6.5 counts the
number of edges in the structural union of all candidate
suggestions that the top-k suggestions cover. Depending
on users’ applications, users may prefer more sophisticated
covering semantics. Hence, we illustrate that other functions
can be seamlessly plugged into the second component of
util.12 In the following, we propose three intuitive monotone
submodular functions. The function takes a suggestion q′

(q′ ∈ Q′) as input and returns a weight as output. Then,
coverage(Q′) is simply the sum of these weights.
1) overlap(q′) returns the normalized weights of the edges
in the increments of q′. The weight of each edge e is the
number of candidate suggestions that cover e, in the struc-
tural union of all candidate suggestions. The edges having
high weights are those that are covered by many candidate
suggestions. That is, suggestions that cover popular edges
among all candidate suggestions have high weights.
2) freq(q′) returns Σe∈∆q′ |De|/|D| (after normalization) as
the weight of q′, where ∆q′ = q′.E \ q.E and |De| is the
number of data graphs in database D containing e. That is,
suggestions that contain frequent edges have high weights.
3) sel∆(q′) returns the number of supergraphs of the incre-
ments (∆q′) in the databaseD. That is, suggestions that may
retrieve many data graphs have high weights.
Proposition 6.4. util is monotone submodular. �

The proof is presented in Appx. A of [18]. A natural
approximation algorithm for solving RSQ is greedy algo-
rithm of iteratively adding the element with the maximum
marginal gain, because the problem of maximizing a mono-
tone submodular function subject to a cardinality constraint
admits a 1− 1/e approximation algorithm.

6.2.3 Greedy ranking algorithm
We propose a greedy algorithm (Algo. 3) to rank the candi-
date suggestions according to the user preference. Since the
user focus is yet another graph, we can also decompose it
into a set of feature embeddings Mq . Algo. 3 then greedily
determines the overall top-k suggestions Q′k from all can-
didate suggestions Q′. More specifically, Line 1 computes
the overall structural union of all candidate suggestions
using Uf s, where f is a feature at the focus. We remark

12. Users may not modify the first component of util (i.e.,
sel) as query autocompletion generally requires the relative
importance of the selectivities of the query suggestions.

Algorithm 3 Ranking Candidate Suggestions
Input: a query q and the set of feature embeddings Mq at the user fo-

cus, user preference component β, number of suggestions requested
k and max. increment size δ

Output: the top-k suggestions Q′k
1: Let U ← union({Uf |f ∈ Mq}) be the overall structural union,

where Uf is indexed offline in SUDAG (see Def. G.1)
2: Let Q′ be an empty set // initialize candidate suggestions
3: Let Q′k be an empty set // initialize top-k suggestions
4: for all (f, λ) ∈Mq do
5: Q′ ← Q′ ∪ Q′C //Q′C is the possible suggestions composed

by adding another feature to f , where f is embedded in q via λ,
q′c ∈ Q′C implies |q′c|-|q|≤δ.

6: for i = 1 . . . k do
7: q′max ← argmax(util(Q′k ∪ {q

′})), where q′ ∈ Q′
8: Q′k ← Q′k ∪ {q

′
max}

9: Q′ ← Q′ \ {q′max}
10: return Q′k

that Uf is retrieved by a lookup of the SUDAG index (to be
proposed next). Hence, it avoids computing the structural
union of all possible candidate suggestions online. Lines
4-5 generate possible candidate suggestions Q′ using each
feature embedding (f , λ) at the focus. In each iteration of
Lines 6-9, the algorithm greedily adds the composed query
suggestion q′ to Q′k that makes the util function the largest.
This step repeats until it obtains k query suggestions in Q′k.
Analysis. Denote the time to generate a candidate sugges-
tion as O(Tcompose). Denote O(|Q′C |) to be the number of
possible suggestions generated in Line 5. The algorithm
takes O(|Mq| × |Q′C | × Tcompose) to generate all candidate
suggestions. Denote the time to compute the util value
in Line 7 as O(Tutil). The ranking time is then O(k×
(|Mq| × |Q′C |)×Tutil). The time complexity of Algo. 3 is
O((|Mq| × |Q′C |) × (Tcompose + k × Tutil)). We assume the
size of the increment to the current query q is at most
δmax, which is small when compared to the query size |q|.
Then, each candidate suggestion takes O(|q|) space. The
space complexity of Algo. 3 is O(|Mq| × |Q′C | × |q|) for the
candidate suggestions Q′ where there are O(|Mq| × |Q′C |)
candidates and each suggestion takes O(|q|) space. The
overall structural union U and the top-k suggestions Q′k
are negligible when compared to Q′. We observed from
our experiments that the numbers of candidate suggestions
typically ranged from hundreds to thousands only.

7 INDEXED GQAC AT USER FOCUS

This section presents the Structural-Union-of-Suggestions
DAG index (SUDAG), and how it optimizes Algo. 3. Due to
space limitations, we highlight the novel parts of SUDAG
that index the structural unions of the feature compositions
of a database. The verbose definition and construction algo-
rithm of SUDAG are provided in Appx. G of [18].

SUDAG adopts the index topology and relevant auxil-
iary information of features for GQAC from the state-of-the-
art [3]. Each index node represents a feature and the index
edge (fi, fj) indicates fi ⊆λ fj and the embeddings of fi in
fj are indexed. The left-hand side of Fig. 10 shows a sketch
of the index topology of the PUBCHEM dataset. The main
novelty of SUDAG relies on, for each feature f , indexing
the structural union (Uf) of all possible compositions (ζf)
and their embeddings (ηf) in Uf , shown in the right-hand
side of Fig. 10. We elaborate the main techniques below.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 10

Partial SUDag

Mf4,f10
= {λ0 : (0, 2), λ1 : (2, 0)}

fi fj cs λi

c0

c1

Fl

f4 f10 f4

f4 f13 f4 λ0

∅
∅

λ0 λ0

λ0

λj fij

f10

f13

. . .

ζf4

ci embedding in

c0 M(q′c0
, Uf4

)

c1
. . .

ηf4

. . .

. . .

f10 f13

f22f18f17

. . .

. . .

.

0 1 1 0

2

0 1

2f4 f10 f13

.

Uf4

M(q′c1
, Uf4

)

Indexed features

Index topology

C C N C

C

C C

C

N

f4 index node

Partial indexed content
elaborate

Uf4

N

C C

CC . . .

.
c0

c2

.

Df4
= {2, 3, 5, 7, 11, · · ·}

Fig. 10. The (partial) SUDAG of PUBCHEM

1) SUDAG is feature-based.13 The indexed content of each
feature includes all possible query compositions (i.e.,
possible ways to combine graph features) for generating
candidate suggestions (ζf) at f of q, and selectivity esti-
mation (Df). For example, the top right corner of Fig. 10
shows that f4 can be composed together with f10 and f13.
A record c1 indexes such a composition, which is used in
Line 5 of Algo. 3, to generate the candidate suggestions.
This eliminates enumerating the feature compositions
online, whose runtime is exponential to the graph sizes.

2) SUDAG indexes (i) the structural union Uf of all query
compositions of a feature (i.e., Uf4

in Fig. 10) and (ii)
the embedding of each feature composition in Uf (i.e.,
ηf4

in Fig. 10) to accelerate the online ranking in Lines 1
and 7 of Algo. 3. Each Uf is precomputed, and retrieved
(e.g., the union graph in the right-hand side of Fig. 10)
for online ranking. This eliminates computing the per-
feature structural union online

3) Further, in Line 7, it computes the candidate suggestion
that yields the largest util value. Hence, SUDAG indexes
the IDs of the graphs that contain f (i.e., Df) for com-
puting sel in util. Next, since the embedding of a feature
composition in the structural union Uf has been indexed,
the computation of coverage does not require subgraph
matching but simple SUDAG lookups and counting.

8 EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of GFO-
CUS. We first investigate the quality (or the effectiveness)
of both user focus and suggestions via user studies. As
user studies are hardly scalable, we make a connection
of suggestion quality with a popular quantitative metric.
We then conduct an extensive experimental evaluation on
popular real datasets, to study the performance of GFOCUS.
Platforms. We implemented the GFOCUS prototype [10]
on top of the state-of-the-art (AUTOG [3]). The prototype
was mainly implemented in C++, using VF2 for subgraph
queries and McGregor’s algorithm (with minor adaptations)
for mcesq . We used GSPAN [21] for frequent subgraph min-
ing. We followed AUTOG to obtain a sufficient number of
features offline for GFOCUS to generate compositions.

We conducted all the experiments on a machine with a
2.2GHz Xeon E5-2630 processor and 256GB memory, run-

13. We assume that the graph features of the database have been
mined using existing techniques (e.g., GSPAN [21]) and the details are
omitted since this work is orthogonal to the feature definitions.

TABLE 2
Some characteristics of the datasets

Dataset |D| avg(|V |) avg(|E|) |l(V)| |l(E)|
PUBCHEM 1M 23.98 25.76 81 3

EMOL 9.14M 23.68 25.49 81 5
AIDS 10K 25.42 27.40 51 4

TABLE 3
Some statistics of the features of datasets

Dataset minSup |F | avg(|V |) avg(|E|)
PUBCHEM 0.10 1,206 7.44 6.47

EMOL 0.10 1,107 7.05 6.08
AIDS 0.10 460 6.15 5.20

ning Linux. All the indexes were built offline and loaded
from hard disk and were then made fully memory-resident.
Datasets. We used popular benchmarked datasets. (i) For
ease of comparison with AUTOG, we used PUBCHEM, a
real chemical compound dataset containing 1M graphs,
unless otherwise specified. (ii) We used the eMolecules
Plus database (denoted as EMOL) which consisted of 9.14M
graphs; and (iii) AIDS (AIDS antiviral dataset), which con-
sisted of 10k graphs. Experiments on EMOL and AIDS are
presented in Appx. C and D of [18], due to space limitations.
Tab. 2 and Tab. 3 report some characteristics of the datasets
and features including the number of graphs (|D|), the av-
erage number of vertices and edges (avg(|V |) and avg(|E|)),
the number of vertex/edge labels (|l(V)| and |l(E)|) and |F |
is the number of features.
Query sets. We generated numerous sets of query graphs
of different query sizes |q| (the numbers of edges) and
other characteristics. In particular, we generated queries
that yield different minimum result set sizes |Dmin

q | (i.e.,
|Dq| > |Dmin

q | for all query graphs) because the result
set size is a part of the util function and queries with no
answers are meaningless to users. Each query set contained
100 graphs.14 Query sets of various query sizes (called Q4,
Q8, . . . , Q24) were generated with |Dmin

q | set to 10. Query
sets of the minimum result set sizes 1, 10, 100, and 1000 (if
applicable) were generated with |q| set to 20, respectively.
Default settings. We used the default values of AUTOG
parameters when applicable. Regarding user focus, we set
τ of Formulae 2 and 3 to 1.2. Users can use the GFOCUS
prototype 15 to tune its values by observing the highlighted
user focuses. We set the default maximum query increment
size (i.e., δmax) to 5. To decouple the effect of different
increment sizes from the experiment results, we introduced
the fixed increment size δfix. Its default value is 2. We used
δfix instead of δmax unless otherwise specified. For ranking
function parameters of AUTOG and GFOCUS, we set α to
0.1, β to 0.1. k is set to 10. The default query size |q| is 8.
We set the default covering semantic of util to coverage. The
default parameter values are summarized in Appx. H of
[18]. We place some experiments on parameter tuning and
other covering semantics in Appx. J of [18].
Index. We briefly summarize some characteristics of con-
structing SUDAG. The left-hand side of Tab. 4 shows the
size and construction time of the feature DAG topology

14. A query was generated as follows. We randomly chose a
graph g from the dataset and randomly selected |q| edges from
g to form a new graph q. We checked if q is connected and has
a result count |Dq| larger than |Dmin

q |.
15. http://autog.comp.hkbu.edu.hk:8000/gfocus/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 11

TABLE 4
Some statistics of SUDAG

DAG topology Structural unions (Uf)
Dataset |V | |E| time (s) avg(|V |) avg(|E|) time (s)

PUBCHEM 1,206 31,610 2.6 173 374 65,512
EMOL 1,107 26,885 1.5 164 416 85,164
AIDS 460 6,965 0.4 131 279 13,447

of the SUDAG. The sizes (i.e., number of edges) of the
DAG topology are on average 22 times of the number of
the features. The construction times of the DAG topology
are within three seconds. The right-hand side of the Tab. 4
shows some statistics of the indexed structural unions of
the SUDAG. The average sizes of structural unions are at
hundreds of nodes and edges. The sizes of the structural
union are on average 15, 16, 10 times of the average sizes
of the graphs of PUBCHEM, EMOL and AIDS, respectively.
Hence, the indexed structural unions are highly compact,
considering that there are only thousands of structural
unions for millions of data graphs. The times to index them
are within a day when Prop. 6.2 for efficient structural union
computation was used. With Prop. 6.2, 90% of the features
finished the computation within one hour. The average
time of computation was 1703 seconds. The 95% confidence
interval of the time cost is [1561s, 1845s]. Without it, none
of them finished within an hour. The distribution of the
runtime of the structural union computation (for features
with 7 edges) is reported in Fig. 16.
Quality metrics. We adopted several popular metrics for
suggestion qualities [3], [22]. We report the number of
suggestion adoptions (i.e., #AUTO) and the total profit metric
(i.e., TPM). Specifically, the total profit metric (TPM) is adopted
from [3], [22], which quantifies the % of mouse clicks saved
by adopting suggestions in visual formulation:

no. of clicks saved by suggestions

no. of clicks without suggestions
× 100%.

When appropriate, we report the increment size of the
adopted suggestions (denoted as ∆) and the useful sug-
gestion ratio U defined as no. of useful suggestions

no. of returned suggestions × 100%.
Each reported number is the average of the 100 queries in
each query set. The subscripts G and F indicate the results
of AUTOG and GFOCUS, respectively. Note that even when
the suggestions are correct, users still need mouse clicks to
adopt them to obtain the target query. Hence, the optimal
TPM of a GQAC system is not 100% (see Appx. I of [18]).

8.1 Suggestion quality via user studies

We conducted user studies to show (i) the effectiveness of
user focus and using TPM as an indicator of suggestion
qualities (User study 1), and (ii) the comparison of AUTOG
by volunteers (User study 2) and chemists (User study 3).

We mimicked the GUI and followed the settings of
AUTOG [3] for the user studies. All the users were not
exposed to the user studies before. In each study, every user
was given six 8-edge target queries with high, medium, and
low TPM values obtained from the GFOCUS or AUTOG sim-
ulations. We randomly shuffled these queries and asked the
users to formulate them. Users are reminded to wait for the
suggestions from AUTOG before composing their queries
further. To simplify the experiments, we disabled rollback
as the users’ rollback actions depend on their discretions

TABLE 5
Settings of user studies

User study GQAC system queries from users
User study 1 GFOCUS GFOCUS 21 volunteers
User study 2 GFOCUS and AUTOG [3] AUTOG 10 volunteers
User study 3 GFOCUS and AUTOG [3] AUTOG 3 chemists

but they affect our measurements in a non-trivial way. The
computed user focuses were highlighted in red when users
use GFOCUS. The users were not aware of their details. After
formulating each query, they reported their agreement to
following two statements:

1) “The red colored edges capture the portion that I am working
on.”; and

2) “The suggestions are useful when I draw my query.”
We adopted a symmetric 5 level agree-disagree Likert scale:
1 means “strongly disagree” and 5 means “strongly agree”).16

We summarize the settings of the user studies in Tab. 5.
User study 1. Effectiveness of user focus and TPM. The
objective of Statement 1) is to study the effectiveness of
the determined user focus. We invited 21 volunteers using
GFOCUS to formulate queries obtained from the GFOCUS
simulations. The average user satisfaction to the determined
user focus was consistently very high. In particular, users
gave 4.45, 4.31, and 4.48 (between “strongly agree” and
“agree”) to the focuses of the queries having high, medium,
and low TPM values, respectively. This verified the effective-
ness of the focus.

Next, it is known that qualitative analysis is often hardly
scalable. Hence, the objective of Statement 2) is to test the
effectiveness of using TPM as an indicator of suggestion qualities.
Consistent with the finding of AUTOG, the user’s opinion
on suggestion usefulness and the TPM values have a high
correlation coefficient of 0.930 and a p-value of 0.007. Hence,
TPM is a statistically significant indicator of suggestion
usefulness. The average ratings of the queries with high,
medium, and low TPM values was 4.14 (between “strongly
agree” and “agree”), 3.07 (between “agree”, and “neither agree
nor disagree”) and 2.45 (between “neither agree nor disagree”,
and “disagree”), respectively.
User study 2. Comparison of GFOCUS and AUTOG from
volunteers. The objective of this study is to compare the
suggestion qualities of GFOCUS and AUTOG using the same
query set (used in the user study of AUTOG [3]). Similar to
[3], we invited 10 volunteers using GFOCUS to formulate
queries from the AUTOG simulations, and compared the
results with [3].

There are totally 60 reported values of GFOCUS for each
statement in this test. The average user satisfaction to the
determined user focus from GFOCUS (response to Statement
1)) is generally high. Users gave 4.10, 4.00, and 3.80 (approx-
imately “agree”) to their satisfaction of the focuses of the
queries having high, medium, and low TPM values.

Comparing the response to Statement 2) to the response
of the user study of [3], the results show that GFOCUS

16. The questionnaire for the user studies can be found at
https://goo.gl/sPNq4u. The agreements to the statements have sev-
eral advantages over the query formulation time when inves-
tigating suggestion qualities. For example, query formulation
times depend on the users’ knowledge, users’ concentration,
and the physical environment during the studies, which com-
plicate our study of the systems.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 12

achieves higher user satisfaction for queries having medium
and low TPM values (3.30 for GFOCUS and 2.95 for AU-
TOG on queries having medium TPM values; and 2.10 for
GFOCUS and 1.65 for AUTOG on queries having low TPM
values). This verifies that GFOCUS outperforms AUTOG in
the cases where diversified suggestions from AUTOG are
not desirable. For target queries having high TPM values,
users gave higher ratings to AUTOG (3.85 for GFOCUS and
4.55 for AUTOG). It is not surprising since those queries are
the best simulated queries of AUTOG.

The user’s opinion on the suggestion usefulness and the
TPM values had a relatively high correlation coefficient of
0.896 with a p-value of 0.016, which shows that TPM is a sta-
tistically significant indicator of the suggestion usefulness.
The average ratings of the queries with high, medium, and
low TPM values were 3.85, 3.30, and 2.10, respectively.
User study 3. Comparison of GFOCUS and AUTOG from
domain users (chemists). We invited three chemists to do
the same test as user study 2. For Statement 1), the average
user satisfaction to the determined user focus is generally
high. The chemists gave 5.0, 4.2 and 3.5 (approximately
“agree”) to their satisfaction of the focuses of the queries
having high, medium, and low TPM values. For Statement
2), the average ratings of the queries with high, medium and
low TPM values are 3.7, 3.5 and 3.2, respectively. Compared
to the results of the user study reported in [3], the results
show that GFOCUS generally achieves slightly higher user
satisfaction (3.7 for GFOCUS and 3.5 for AUTOG on queries
having high TPM values; 3.5 for GFOCUS and 3.5 for AUTOG
on queries having medium TPM values; and 3.2 for GFOCUS
and 1.2 for AUTOG on queries having low TPM values).

8.2 Suggestion quality via experiments
For large-scale experiments, we conducted simulations and
hereafter mainly used TPM as an indicator of suggestion
quality. Each simulation started with a 2-edge subgraph
as the initial query. In each step, GFOCUS or AUTOG
was invoked. Then, the simulation process simulates users
adopting a suggestion at the user focus or adding a manual
edge. If useful suggestions were present, the largest one was
adopted. If there were ties, they are randomly broken since
GFocus always attach subgraphs to the focus. If no useful
suggestion was present, a “manual” edge (e.g., the next edge
in a canonical DFS order from the last formulated edge) was
added.

8.2.1 Validation of the locality principles
To validate the locality principles, we have compared GFO-
CUS with a naı̈ve user focus. A naı̈ve user focus is computed
from a constant attention weight for all query edges. Tab. 6
reports the quality metrics of these two settings. The results
show that the user focuses computed from the locality
principles clearly resulted in more useful suggestions (UF

by 25%) and saved more mouse clicks (TPMF by 21%) when
compared to the naı̈ve user focus. The U value is around
10% and hence, on average, there was a useful suggestion
among the top-10 suggestions.

We tested a large number of τ values and report some
representative results in Tab. 7. The results show that there
was an optimal range (i.e., [1.01, 1.20]) for good quality

TABLE 6
Quality metrics by varying user focus

user focus #AUTOF UF TPMF

naı̈ve user focus 4.5 8 43
localities based user focus 5.2 10 52

TABLE 7
Quality metrics by varying τ (PUBCHEM)

τ 1.00 1.01 1.10 1.20 2.00 10 100
#AUTOF 4.4 5.0 5.0 5.1 5.0 4.5 4.5

UF 7 10 9 10 9 8 8
TPMF 43 50 50 51 48 43 43

suggestions. It validates that suggestions are useful when
GFOCUS exploits a user focus. However, as the user focus
becomes less localized (i.e., τ is large), the suggestions are
less useful.

8.2.2 GFOCUS on query logs
It has been generally known that advanced query autocom-
pletion (e.g., personalized search) exploits query logs. While
there have not been public real query logs for subgraph
queries, we have voluminous simulated queries. We use
them as query logs (i.e., the dataset of GFOCUS) to inves-
tigate GFOCUS’s performance.

More specifically, we randomly selected target queries of
Q20 (i.e., queries of 20 edges) and their intermediate queries
in the simulation to form the query logs. The logs contained
1.36K queries, where the average number of vertices and
edges were 11 and 10, respectively. The target queries were
queries of various sizes from the query logs. We mined
features from the logs (minSup = 5%). We used the default
settings of GFOCUS. The TPMs under default δmax and δfix are
40 and 49, respectively. Those TPMs of PUBCHEM are 39 and
52, respectively. Hence, the suggestion qualities on the query
logs and dataset are similar. Hence, GFOCUS can capture
some characteristics of the logs to generate suggestions.

8.3 Online autocompletion efficiency
In this section, we vary some representative parameters and
report the Average Response Time (ART) of both GFOCUS and
AUTOG on PUBCHEM. More efficiency results on PUBCHEM
and extensive experimental results on EMOL and AIDS can
be found in Appx. B, C, and D of [18].

GFOCUS only computes suggestions at the focus as op-
posed to the whole query graph. Under the default setting,
the ARTs of GFOCUS and AUTOG were 0.63s and 22s,
respectively. GFOCUS was 35 times more efficient than the
state-of-the-art on average. It can be considered interactive.

We further investigated the ART as a function of some
important parameters. The ARTs of GFOCUS were always
just a fraction of a second. Fig. 11 plots ART as a function of
γ, where γ determines how existing queries were analyzed.
This only affected the computation of the query decom-
position but not the relatively costly candidate suggestion
generation and ranking. The ART appeared independent to
γ. Similar ARTs can be observed from Fig. 12, as we varied
the parameters in the ranking function (β for GFOCUS and
α for AUTOG).

The ARTs of suggestion ranking of GFOCUS were stable
under various k and |q| values (see Figs. 13 and 14) and
GFOCUS is significantly faster. The reason for this is that

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 13

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

PubChem

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

gamma

AutoG
GFocus

Fig. 11. ART by varying γ

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

PubChem

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

alpha or beta

AutoG
GFocus

Fig. 12. ART by varying α/β

 0

 5

 10

 15

 20

 25

 30

 35

10 20 30 40 50

PubChem

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

topk

AutoG
GFocus

Fig. 13. ART by varying k

 0

 10

 20

 30

 40

 50

 60

 70

4 8 12 16 20 24

PubChem

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

query size

AutoG
GFocus

Fig. 14. ART by varying |q|

 0

 0.2

 0.4

 0.6

 0.8

 1

coverage overlap freq sel∆

PubChem

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

Fig. 15. ART by varying rank-
ing functions

 0

 50

 100

 150

 200

 250

 300

 350

<15m <30m <45m <60m >60m

PubChem
n
u
m

b
e
r

o
f

st
ru

ct
u
ra

l
u
n
io

n
with optimization

without optimization

Fig. 16. Efficient Structural
Union Computation (offline)

GFOCUS only ranks suggestions at the focus. Many irrele-
vant suggestions are not even computed. ARTs of GFOCUS
were independent of the existing query size |q|.

Finally, we evaluate the additional ranking functions
under the default settings. The ARTs of the baseline (i.e.,
coverage), overlap, freq, and sel∆ were 0.68s, 0.58s, 0.73s, and
0.62s, respectively. That is, all functions return suggestions
within 1s, reported in Fig. 15.

9 RELATED WORK

Query formulation aids have recently gained increasing re-
search attention. Firstly, recent work has proposed a variety
of innovative approaches to help query formulation. For
example, GESTUREQUERY [23] proposes to use gestures for
specifying SQL queries. SnapToQuery [24] guides users
to explore query specification via snapping user’s likely
intended queries. [25] has proposed a data-driven approach
for GUI construction. Exploratory search has been demon-
strated as useful for enhancing interactions between users
and search systems (e.g., [26], [27], [28]). QUBLE [29] allows
users to explore regions of a graph that contains at least
a query answer. SEEDB [30] proposes visualization recom-
mendations for supporting data analysis. [31] introduces
Meaningful Query Focus (MQF) of given keywords to generate
XQUERY. While keyword search (e.g., [32]) has been pro-
posed to query graphs, this approach does not allow users
to precisely specify query structures. This paper contributes
to the query autocompletion approach for query formulation.

Secondly, there is existing work on query autocomple-
tion on various query types. For instance, there is work on
query autocompletion for keyword search (e.g., [22], [33],
[34]) and structured queries (e.g., [35]). Li et al. [36] ex-
tended keyword search autocompletion to XML queries. [31]
associates structures to query keywords. LotusX provides
position-aware autocompletion capability for XML [37]. An
autocompletion learning editor for XML provides intelli-
gence autocompletion [38]. [39] presents a conversational
mechanism that accepts incomplete SQL queries, which then
matches and replaces a part of the previously issued queries.
There has been a stream of work on extending Query By
Example to construct structural queries, e.g., [40], [41], [42].

In contrast, this paper focuses on structural queries for
graphs. Hence, we only include related work on graphs.

Regarding query autocompletion on graphs, Yi et al.
[3] proposed AUTOG. As motivated, diversified suggestions
over the whole existing query can be costly to compute yet
irrelevant to users. In [43], Li et al. studied the why-not
questions over a query autocompletion system. It outputs a
small change of the parameters of the ranking function such
that the system would return the desired suggestion. In [27],
Mottin et al. proposed graph query reformulation, which
determines a set of reformulated queries that maximally
cover the results of the current query. When users start
drawing a small query, its results can be many and not
all of them are relevant. Pienta et al. [44] and Li et al. [2]
demonstrated methods to produce edge or node suggestions
for visual graph query construction. In contrast, this paper
considers subgraph suggestions.

10 CONCLUSION

We have proposed GFOCUS that exploits the user focus
on a user query being constructed to generate top-k query
suggestions to help query formulation. Inspired by HCI re-
search, we have proposed user focus and locality principles
for query formulation. Possible query suggestions are rep-
resented by a notion of structural union and ranked online.
We have proposed optimization and indexing techniques
for suggestion ranking. Our user studies and experiments
verified both the effectiveness and efficiency of GFOCUS.

This paper leads to a variety of interesting future work.
We are extending the study of histories of users’ activities
[45] (e.g., query logs) into the ranking. We are investigat-
ing techniques for GQAC for massive networks. We are
studying the explanations of the few cases (e.g., [46]) where
GQAC returned incorrect suggestions. As this is the first
work on user focus-aware GQAC, we plan to investigate
other efficient notions of user focuses.
Acknowledgements. This work is partly supported by
HKRGC GRF 12258116, 12201119, 12232716, 12201518,
12200817, and 12201018, and NSFC 61602395.

REFERENCES

[1] S. S. Bhowmick, B. Choi, and C. Li, “Graph querying meets HCI:
state of the art and future directions,” in SIGMOD, 2017, pp. 1731–
1736.

[2] N. Jayaram, S. Goyal, and C. Li, “VIIQ: Auto-suggestion enabled
visual interface for interactive graph query formulation,” PVLDB,
pp. 1940–1951, 2015.

[3] P. Yi, B. Choi, S. S. Bhowmick, and J. Xu, “Autog: a visual query
autocompletion framework for graph databases,” VLDB J., vol. 26,
no. 3, pp. 347–372, 2017.

[4] M. M. Chun and J. M. Wolfe, “Visual attention,” Blackwell Handbook
of Perception, pp. 272–310, 1999.

[5] R. C. Atkinson and R. M. Shiffrin, “Human memory: A proposed
system and its control processes,” The psychology of learning and
motivation (Volume 2), pp. 89–195, 1968.

[6] A. Baddeley, M. Eysenck, and M. Anderson, Memory, ser. Cog-
nitive Psychologie. Psychology Press, 2009. [Online]. Available:
https://books.google.com.hk/books?id=3h-BPQAACAAJ

[7] A. Mack and I. Rock, “Inattentional blindness,” MIT Press, 1998.
[8] W. J. M., “Inattentional amnesia,” In Fleeting Memories. In Cognition

of Brief Visual Stimuli, pp. 71–94, 1999.
[9] C. Roda and J. Thomas, “Attention aware systems: Theories,

applications, and research agenda,” Computers in Human Behavior,
vol. 22, no. 4, pp. 557–587, 2006.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 14

[10] N. Ng, P. Yi, Z. Zhang, B. Choi, S. S. Bhowmick, and J. Xu, “FGreat:
Focused graph query autocompletion,” in ICDE, 2019, pp. 1956–
1959.

[11] M. G. Berman, J. Jonides, and R. L. Lewis, “In search of decay in
verbal short-term memory.” J Exp Psychol Learn Mem Cogn, p. 317,
2009.

[12] F. Katsarou, N. Ntarmos, and P. Triantafillou, “Performance
and scalability of indexed subgraph query processing methods,”
PVLDB, vol. 8, pp. 1566–1577, 2015.

[13] A. Baddeley, “Recent developments in working memory,” Curr
Opin Neurobiol, pp. 234–238, 1998.

[14] E. Vergauwe and N. Cowan, “A common short-term memory
retrieval rate may describe many cognitive procedures,” Front
Hum Neurosci, 2014.

[15] A. W. Madison and A. P. Batson, “Characteristics of program
localities,” Commun. ACM, pp. 285–294, 1976.

[16] P. J. Denning, “The locality principle,” Communications of the ACM,
pp. 19–24, 2005.

[17] A. Heathcote, S. Brown, and D. Mewhort, “The power law re-
pealed: The case for an exponential law of practice,” Psychon Bull
Rev, pp. 185–207, 2000.

[18] P. Yi, B. Choi, Z. Zhang, S. S. Bhowmick, and J. Xu, “Gfocus: User
focus-based graph query autocompletion,” https://www.comp.hkbu.
edu.hk/∼bchoi/gfocus-tr-2020.pdf, 2020.

[19] D. S. Hochbaum and A. Pathria, “Node-optimal connected k-
subgraphs,” manuscript, UC Berkeley, 1994.

[20] N. Roussopoulos, “A max{m, n} algorithm for determining the
graph h from its line graph c,” Inf. Process. Lett., vol. 2, pp. 108–
112, 1973.

[21] X. Yan and J. Han, “gSpan: Graph-based substructure pattern
mining,” in ICDM, 2002, pp. 721–724.

[22] A. Nandi and H. V. Jagadish, “Effective phrase prediction,” in
VLDB, 2007, pp. 219–230.

[23] A. Nandi, L. Jiang, and M. Mandel, “Gestural query specification,”
PVLDB, vol. 7, no. 4, pp. 289–300, 2013.

[24] L. Jiang and A. Nandi, “Snaptoquery: Providing interactive feed-
back during exploratory query specification,” PVLDB, vol. 8,
no. 11, pp. 1250–1261, 2015.

[25] S. S. Bhowmick, B. Choi, and C. E. Dyreson, “Data-driven visual
graph query interface construction and maintenance: Challenges
and opportunities,” PVLDB, vol. 9, no. 12, pp. 984–992, 2016.

[26] D. Mottin and E. Müller, “Graph exploration: From users to large
graphs,” in SIGMOD, 2017, pp. 1737–1740.

[27] D. Mottin, F. Bonchi, and F. Gullo, “Graph query reformulation
with diversity,” in KDD, 2015, pp. 825–834.

[28] G. Marchionini, “Exploratory search: from finding to understand-
ing,” Commun. ACM, pp. 41–46, 2006.

[29] H. H. Hung, S. S. Bhowmick, B. Q. Truong, B. Choi, and S. Zhou,
“QUBLE: blending visual subgraph query formulation with query
processing on large networks,” in SIGMOD, 2013, pp. 1097–1100.

[30] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Poly-
zotis, “Seedb: Efficient data-driven visualization recommenda-
tions to support visual analytics,” PVLDB, vol. 8, no. 13, pp. 2182–
2193, 2015.

[31] Y. Li, C. Yu, and H. V. Jagadish, “Enabling schema-free xquery
with meaningful query focus,” VLDB J., pp. 355–377, 2008.

[32] Y. Wu, S. Yang, M. Srivatsa, A. Iyengar, and X. Yan, “Summarizing
answer graphs induced by keyword queries,” PVLDB, vol. 6,
no. 14, pp. 1774–1785, 2013.

[33] H. Bast and I. Weber, “Type less, find more: fast autocompletion
search with a succinct index,” in SIGIR, 2006, pp. 364–371.

[34] C. Xiao, J. Qin, W. Wang, Y. Ishikawa, K. Tsuda, and K. Sadakane,
“Efficient error-tolerant query autocompletion,” PVLDB, pp. 373–
384, 2013.

[35] A. Nandi and H. V. Jagadish, “Assisted querying using instant-
response interfaces,” in SIGMOD, 2007, pp. 1156–1158.

[36] J. Feng and G. Li, “Efficient fuzzy type-ahead search in xml data,”
TKDE, pp. 882–895, 2012.

[37] C. Lin, J. Lu, T. W. Ling, and B. Cautis, “LotusX: A position-aware
xml graphical search system with auto-completion,” in ICDE,
2012, pp. 1265–1268.

[38] S. Abiteboul, Y. Amsterdamer, T. Milo, and P. Senellart, “Auto-
completion learning for xml,” in SIGMOD, 2012, pp. 669–672.

[39] Y. E. Ioannidis and S. Viglas, “Conversational querying,” Inf. Syst.,
pp. 33–56, 2006.

[40] S. Comai, E. Damiani, and P. Fraternali, “Computing graphical
queries over xml data,” TOIS, pp. 371–430, 2001.

[41] D. Braga, A. Campi, and S. Ceri, “XQBE (XQuery By Example):
A visual interface to the standard xml query language,” in TODS,
2005, pp. 398–443.

[42] N. Jayaram, M. Gupta, A. Khan, C. Li, X. Yan, and R. Elmasri,
“GQBE: Querying knowledge graphs by example entity tuples,”
in ICDE, 2014, pp. 1250–1253.

[43] G. Li, N. Ng, P. Yi, Z. Zhang, and B. Choi, “Answering the why-
not questions of graph query autocompletion,” in DASFAA, 2018,
pp. 332–341.

[44] R. Pienta, F. Hohman, A. Tamersoy, A. Endert, S. B. Navathe,
H. Tong, and D. H. Chau, “Visual graph query construction and
refinement,” in SIGMOD, 2017, pp. 1587–1590.

[45] A. Zhang, A. Goyal, W. Kong, H. Deng, A. Dong, Y. Chang, C. A.
Gunter, and J. Han, “adaqac: Adaptive query auto-completion via
implicit negative feedback,” in SIGIR, 2015, pp. 143–152.

[46] J. Li, Y. Cao, and S. Ma, “Relaxing graph pattern matching with
explanations,” in CIKM, 2017.

Peipei Yi is a Data Scientist at Lenovo Machine
Intelligence Center, Hong Kong. He received the
PhD and BEng degrees in computer science
from Hong Kong Baptist University (HKBU) and
University of Electronic Science and Technology
of China (UESTC) in 2018 and 2013, respec-
tively. His research interests include graph data
processing and graph database usability.

Byron Choi is an Associate Professor in the
Department of Computer Science at the Hong
Kong Baptist University. He received the bache-
lor of engineering degree in computer engineer-
ing from the Hong Kong University of Science
and Technology (HKUST) in 1999 and the MSE
and PhD degrees in computer and information
science from the University of Pennsylvania in
2002 and 2006, respectively.

Zhiwei Zhang is a Research Assistant Profes-
sor in the Department of Computer Science at
the Hong Kong Baptist University. He received
the Bachelor degree in Computer Science &
Technology from Renmin University of China in
July 2010 and the PhD degree in Department of
Systems Engineering and Engineering Manage-
ment at the Chinese University of Hong Kong in
December 2014.

Sourav S Bhowmick is an Associate Profes-
sor in the School of Computer Science and
Engineering, Nanyang Technological University.
Sourav’s current research interests include data
management, data analytics, computational so-
cial science, and computational systems biology.
He has published many papers in major venues
in these areas such as SIGMOD, VLDB, ICDE,
SIGKDD, MM, TKDE, VLDB Journal, and Bioin-
formatics.

Jianliang Xu is a Professor in the Department of
Computer Science, Hong Kong Baptist Univer-
sity (HKBU). He held visiting positions at Penn-
sylvania State University and Fudan University.
He has published more than 150 technical pa-
pers in these areas, most of which appeared in
leading journals and conferences including SIG-
MOD, VLDB, ICDE, TODS, TKDE, and VLDBJ.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 15

Appendices of GFocus: User Focus-
based Graph Query Autocompletion

APPENDIX A
PROPERTIES OF GREEDY AND STRUCTURAL UNION

In this appendix, we present the analysis of the properties
of GREEDY and structural union.

Proposition 5.1. GREEDY determines the maximal user focus
when ω(τ) ≥ 0. �

(Proof sketch) From GREEDY, we can see that i) each expan-
sion of the candidate focus increases its normalized weight;
ii) the candidate focus is maximal when GREEDY terminates.
In Lines 8-9 of Algo. 2, a focus is only expanded when
the normalized weight increased. Lines 6-9 show that the
iteration terminates when the focus is maximal, i.e., cannot
be expanded and meanwhile their weights are increased. �
Proposition 6.2. [Decomposition of structural union] Given

a query q and its query suggestions Q′: {q′1, q′2, . . . , q′n}
and a new query suggestion q′n+1, union(Q′∪{q′n+1}) is:

compose(union(Q′), q′n+1,mcesq(union(Q′), q′n+1), λi, λj), (7)

where λi (resp.λj) is the embedding of the mcesq in
union(Q′) (resp. q′n+1); and

mcesq(union(Q′), q′n+1) = union({mcesq(q
′
n+1, q

′)|q′ ∈ Q′}). (8)

(Proof sketch) Formula 7 rewrites Def. 6.3. Formula 8 is estab-
lished by arguing mcesq(union(Q′), q′n+1) contains mcesq(q′,
q′n+1) for all q′ in Q′, via a proof by contradiction. �

Proposition 6.3. The RSQ problem is NP-hard. �

(Proof sketch) The maximization of this utility function is
NP-hard, by a reduction from the Set Cover (SC) problem.
Given an instance of SC problem, each subset Si of elements
{oi1,. . ., oim} is converted to a candidate suggestion having
the edge (r, oi), where r is an artificial root node; the
graph constructed is considered the structural union; and
k remains the same. β of RSQ is set to 0; Finding the query
suggestion set is then to find the i query suggestions, where
i is smaller than or equal to k, that cover the union graph. It
can be trivially mapped to the solution of SC, that covers all
elements with the smallest number of subsets i. �

Proposition 6.4. util is monotone submodular. �

(Proof sketch) util is monotone since util(S) ≤ util(T) for
any suggestion sets S, T such that S ⊆ T . A function f
is submodular if the marginal gain from adding an ele-
ment to a set S is at least as high as the marginal gain
from adding it to a superset of S. Formally, f satisfies
f(S ∪ {o}) − f(S) ≥ f(T ∪ {o}) − f(T) for all elements o
and all pairs of sets S ⊆ T . Next, we proof util is submodular
by contradiction. Assume

util(T ∪ {q′})− util(T) > util(S ∪ {q′})− util(S)

where S and T are sets of suggestions, such that S ⊆ T , and
q′ ∈ Q′ \ T is the suggestion being added. By substituting
the definition of util to the inequality, we can eliminate the
term sel. By simple arithmetic, we have got

coverage(T∪{q′})−coverage(T) > coverage(S∪{q′})−coverage(S)

By the definition of coverage, we have

|union(T ∪ {q′})| − |union(T)| > |union(S ∪ {q′})| − |union(S)|

Denote the left-hand and right-hand side of the inequal-
ity as ∆T and ∆S , i.e., the number of new edges covered
by the structural union when adding q′ to T and S. We
have ∆T > ∆S . By the definition of structural union
(Def. 6.3), union(S) ⊆λ union(T) given S ⊆ T . Hence
we have ∆S ≥ ∆T since the structural union of q′ and
union(S) covers more new edges than that of union(T).
This contradicts with ∆T > ∆S . Similar proofs can be
established for overlap, freq, and sel∆. �

APPENDIX B
ONLINE PERFORMANCE ON PUBCHEM (PUBCHEM)
In this section, we show the online performance of GFOCUS
and AUTOG on the PUBCHEM dataset.

Foremost, GFOCUS only computes suggestions at the
focus as opposed to the whole query graph. Under the
default setting, the ARTs of GFOCUS and AUTOG were 0.63s
and 22s, respectively. That is, GFOCUS could be considered
interactive and was 35 times faster than AUTOG on average.

We further investigated the ART as a function of some
important parameters. The ARTs of GFOCUS were always
just a fraction of a second. Fig. 17 plots ART as a function of
γ, where γ determines how existing queries were analyzed.
This only affected the computation of the query decom-
position but not the relatively costly candidate suggestion
generation and ranking. The ART appeared independent to
γ. Similar ARTs can be observed from Fig. 18, as we varied
the parameters in the ranking function (β for GFOCUS and
α for AUTOG).

The ARTs of suggestion ranking of GFOCUS were stable
under various k and |q| values (see Figs. 19 and 20). The
reason for this is that GFOCUS only ranks suggestions at the
focus. Many irrelevant suggestions are not even computed.
Therefore, GFOCUS generated query suggestions signifi-
cantly faster, and its ARTs were independent of the existing
query size |q|.

Fig. 21 shows that the ART of GFOCUS gradually in-
creased with the values of δfix. We note that AUTOG com-
puted its structural diversity faster for large δfixs, due to its
optimized implementation. We plotted the ARTs of GFOCUS
as a function of τ in Fig. 22. It shows that the ART of GFOCUS
remained roughly constant w.r.t. the values of τ .

Finally, we ran the additional ranking functions under
the default settings. The ARTs of the baseline, overlap, freq,
and sel∆ were 0.68s, 0.58s, 0.73s, and 0.61s, respectively. That
is, all functions return suggestions well within 1s.

APPENDIX C
ONLINE PERFORMANCE ON EMOLECULES (EMOL)
To further demonstrate the online performance of GFOCUS
with large datasets, we present detailed evaluations of both
GFOCUS and AUTOG on the EMOL dataset under various
parameter settings (reported in Figs. 23-28).

Under the default setting, the ARTs of GFOCUS and
AUTOG were 2.9s and 45.8s, respectively. This shows that

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 16

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

PubChem

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

gamma

AutoG
GFocus

Fig. 17. ART by varying γ

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

PubChem

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

alpha or beta

AutoG
GFocus

Fig. 18. ART by varying α/β

 0

 5

 10

 15

 20

 25

 30

 35

10 20 30 40 50

PubChem

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

topk

AutoG
GFocus

Fig. 19. ART by varying k

 0

 10

 20

 30

 40

 50

 60

 70

4 8 12 16 20 24

PubChem

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)
query size

AutoG
GFocus

Fig. 20. ART by varying |q|

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5

PubChem

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

fixed increment size

AutoG
GFocus

Fig. 21. ART by varying δfix

 0.4

 0.6

 0.8

 1 3 5 7 9 11 13 15

PubChem

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(s
)

tau

GFocus

Fig. 22. ART by varying τ

GFOCUS outperformed AUTOG by a factor of 16. The ARTs
of GFOCUS were less than 3s under most settings, while
AUTOG returned suggestions after more than 20s in most
cases. It is clear that GFOCUS is significantly more efficient
than AUTOG. The ARTs of GFOCUS and AUTOG by varying
some important parameters are reported.

Fig. 23 shows the ARTs of GFOCUS and AUTOG on EMOL
by varying the parameter that controls the overlapping of
the decomposed query features – namely γ – that is in
the range [0,1]. Both GFOCUS and AUTOG tended to take
relatively more time to return the suggestions for larger γs
because the query (or focus for GFOCUS) may be decom-
posed into more feature embeddings. The ARTs of GFOCUS
appeared to be a small constant, mainly because only the
user focus is decomposed followed by the efficient ranking
algorithm. Fig. 24 shows the ARTs of GFOCUS and AUTOG
when varying the parameters in ranking (β for GFOCUS
and α for AUTOG). The ARTs were independent of those
parameters.

Fig. 25 and Fig. 26 show the ARTs of GFOCUS and
AUTOG by using various k and |q|. Again, GFOCUS always
returned the suggestions under 3s, while the ARTs of AU-
TOG increased to several minutes when the values of k
or |q| increased. One possible reason is that GFOCUS only
ranks suggestions at the focus, which means that GFOCUS
can handle large queries more efficiently.

Fig. 27 shows that GFOCUS had smaller ARTs than AU-
TOG for various suggestion increment sizes. The ARTs of
GFOCUS increased with the value of δfix due to the com-
putation of composing the candidate suggestions (Line 5 of
Algo. 3). GFOCUS took a longer time when the increment
size became larger. The short ARTs of AUTOG with large
increment sizes were possibly due to its optimization when
computing the structural diversity. Again, Fig. 28 shows that
the ARTs of GFOCUS were constantly below 3s for a wide
range of τ values.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.2 0.4 0.6 0.8 1

eMolecules

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

gamma

AutoG
GFocus

Fig. 23. ART by varying γ

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1

eMolecules

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

alpha or beta

AutoG
GFocus

Fig. 24. ART by varying α/β

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

10 20 30 40 50

eMolecules

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

topk

AutoG
GFocus

Fig. 25. ART by varying k

 0

 20

 40

 60

 80

 100

 120

 140

 160

4 8 12 16 20 24

eMolecules

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

query size

AutoG
GFocus

Fig. 26. ART by varying |q|

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5

eMolecules

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

fixed increment size

AutoG
GFocus

Fig. 27. ART by varying δfix

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 10 100 1000

eMolecules

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

tau

GFocus

Fig. 28. ART by varying τ

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

AIDS

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

gamma

AutoG
GFocus

Fig. 29. ART by varying γ

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

AIDS

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

alpha or beta

AutoG
GFocus

Fig. 30. ART by varying α/β

 0

 5

 10

 15

 20

 25

 30

 35

 40

10 20 30 40 50

AIDS

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

topk

AutoG
GFocus

Fig. 31. ART by varying k

 0

 10

 20

 30

 40

 50

 60

4 8 12 16 20 24

AIDS
A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

query size

AutoG
GFocus

Fig. 32. ART by varying |q|

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5

AIDS

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

fixed increment size

AutoG
GFocus

Fig. 33. ART by varying δfix

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 100 1000

AIDS

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
 (

s)

tau

GFocus

Fig. 34. ART by varying τ

APPENDIX D
ONLINE PERFORMANCE ON AIDS (AIDS)

In addition to the two large datasets (i.e., PUBCHEM and
EMOL), we report the evaluation of the online performance
of both GFOCUS and AUTOG on AIDS when varying some
important parameters, reported in Figs. 29-34.

Under the default setting, the ARTs of GFOCUS and
AUTOG were 0.6s and 22.2s, respectively. GFOCUS was 37
times faster when compared to AUTOG.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 17

Next, we present a detailed study of ARTs of both proto-
types under various settings. In all, GFOCUS almost always
returned suggestions within 1s under most settings, while
AUTOG took more than 10s in most cases (except for small
queries).

Fig. 29 shows the ARTs of GFOCUS and AUTOG on
AIDS with different values for γ. The ARTs of GFOCUS and
AUTOG both appeared to be independent of the γ setting,
possibly because the query decomposition time was small
when compared to the relatively costly candidate generation
and ranking algorithms. Fig. 30 shows similar ARTs trends
of GFOCUS and AUTOG when varying the weights of the
ranking functions.

Fig. 31 and Fig. 32 show the ARTs of GFOCUS and
AUTOG with various k and |q|. GFOCUS returned the sug-
gestions in less than 1s, except that it took 1.2s for queries
with 24 edges. We remark that both GFOCUS and AUTOG
returned suggestions under 1s for small queries, such as
|q| = 4, 8, and 12.

Fig. 33 and Fig. 34 show that GFOCUS returns sugges-
tions within 1s for various δfix and τ settings, except 1.4s
when δfix = 5. While AUTOG generally returned sugges-
tions after 10s, excepting 2.3s when δfix = 5.

APPENDIX E
THE CHARACTERISTICS OF USER ATTENTION
WEIGHTS

The user attention weights are defined and maintained by
Formulae 2 and 3. The intuitive effects of the formulae
are that the edges operated by the last query formulation
operator have the highest attention weights.

Suppose the users’ last operator is opt andOt is the set of
edges operated by opt, where t is the t-th step of the query
formulation. An edge e ∈ Ot got its initial weight w0. Then,
according to the definition of Formula 2, the weight of e at
the t-th step is wte = w0e

−1/τ . Next, consider an existing
edge e, i.e., e ∈ q.E and e 6∈ Ot. During the decay step
(temporal locality), we have the following:

wtempe = wt−1
e e

−1/τ

≤ w0e
−2/τ

During the propagation step (structural locality), we
have the following:

wte = wtempe + ∆we−h/τ

≤ w0e
−2/τ + (w0 − w0e

−1/τ)e−h/τ

≤ w0e
−2/τ + (w0 − w0e

−1/τ)e−1/τ

≤ w0e
−1/τ

Hence, despite the non-trivial effects of Formulae 2 and 3
on the user attention weights, any edge that is not operated
by opt have a smaller weight than the latest operated edges.

APPENDIX F
THE PSEUDOCODE FOR DETERMINING THE USER
FOCUS

This appendix elaborates the pseudocode of GREEDY for
determining the user focus presented in Sec. 5. The pseu-
docode is provided in Algo. 2. Algo. 2 employs a bottom-up

strategy to enumerate the candidate focuses. Initially, each
edge in the query is considered as a candidate focus, and
the user focus is set to one edge with the largest normal-
ized weight (Lines 1-2). Then, in each iteration, GREEDY
expands each candidate focus with an edge that makes the
normalized weight the largest (Lines 5-7). The expanded
candidates with an increased normalized weight are kept
for the next iteration (Lines 8-9). The user focus is updated
to the expanded candidate if the candidate has a higher
normalized weight (Lines 10-11). The next iteration starts
after all candidates have been expanded. The iterations ter-
minate when there is no candidate focuses to be expanded
(Lines 12-13). At last, the algorithm returns the user focus
(Line 14).

APPENDIX G
THE DEFINITION OF SUDAG AND ITS CONSTRUC-
TION

To be self-contained, this appendix presents the definition
of the SUDAG index below.

Definition G.1. SUDAG is a DAG: (V , E, M , A, ζ , D, freq,
U , η), where

1) V is a set of index nodes. Each node v represents a
feature, denoted as fv . For clarity of presentation, we
may use fv to refer to the index node;

2) E ⊆ V × V is a set of edges, (vi, vj) ∈ E iff fvi ⊆λ fvj .
Further,M is a function that takes an edge (vi, vj) as in-
put and returns the subgraph isomorphism embeddings
of fvi in fvj , denoted as Mfi,fj ;

3) A takes a feature fv as input and returns the automor-
phism embeddings of fv , denoted as Afv , where A is
used to prune structurally identical composed graphs;

4) ζ is a function that takes a feature fv as input and
returns a set of composition records C as output, where
each record in C is a 6-ary tuple (fv ,fvj ,cs, λv ,λvj ,Fl),
where cs is a common subgraph of fv and fvj ,λv (resp.
λvj) is the embedding of cs in fv (resp. fvj) and Fl is
the set of features embedded in the composed graph;

5) D takes an index node fv as input and outputs the IDs
of the graphs that contain fv . We denote the graph IDs
of fv as Dfv ;

6) freq takes an edge as input and returns the number of
graphs contain it in the database; and

7) Each index node fv also stores the structural union
Ufv of all possible compositions with it. η takes a
composition record c =(fv , fvj , cs, λv , λvj , Fl) as input,
and returns the embeddingM(q′c, Ufv) of the composed
graph in the structural union Ufv . �

Next, we present the construction of SUDAG (shown
in Algo. 4). The SUDAG construction exploits existing
algorithms (Lines 1-2) of AUTOG to construct the feature
DAG topology and enumerate the query compositions (the
valid combinations of two feature graphs). However, it does
not require the costly computation of maximum common
subgraph (mces aux) anymore after the offline enumera-
tion. What is unique in Algo. 4 is that it precomputes the
structural union of the possible query compositions of each
feature (Lines 3-4) and indexes the structural union graph

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 18

Algorithm 4 Index Construction
Input: graph database D, feature set F , max. increment size δ
Output: SUDAG I

1: Construct the feature DAG topology (Algo. 3 in AUTOG [3])
2: Enumerate feature-pair compositions (Algo. 4 in AU-

TOG [3]) without computing mces aux
3: for all f ∈ F do
4: f.Uf ← UNION({compose(c) for c ∈ ζ(f)})
5: return I
6: function UNION(Q′C)
7: Denote Q′C as the composed graphs {q′1, q′2, . . . , q′n}
8: Let q′i be the smallest composed graph in Q′C // for

efficiency
9: Let Uf ← q′i

10: for all q′c ∈ Q′C and q′c 6= q′i do
11: Uf ← union(Uf , q′c) // optimized using Prop. 6.2
12: return Uf

TABLE 8
Default parameters

Parameter Range Default Meaning
τ [1,1000] 1.2 user’s relative memory strength
γ [0,1] 0.5 degree of overlapping features in q
δmax [1,5] 5 maximum increment size
δfix [1,5] 2 fixed increment size
α [0,1] 0.1 weighting factor for AUTOG
β [0,1] 0.1 weighting factor for GFOCUS
k [4,50] 10 number of suggestions
m [1,16] 4 selectivity sampling interval
|q| [4,24] 20 target query size
|Dmin
q | [1,1000] 10 minimum result set size

Uf and the embedding of the composed graph for each
composition (in Uf) in SUDAG I .

More specifically, the UNION function exploits the de-
composition property of the structural union (Prop. 6.2)
and therefore, avoids the costly mcesq computation between
large graphs. In Line 8, the algorithm selects the smallest
composition q′i from the possible query compositions for
efficiency. Then, in Lines 10-11, it iteratively unions one
composed graph with the union graph Uf to yield the final
structural union.

The runtime of Algo. 4 is mainly determined by (i)
the number of compositions based on the feature and (ii)
the time to compute the structural union of composition
pairs. Denote the time to compute the mces of two com-
positions as O(Tmces). Denote O(|Q′C |) to be the number of
possible query compositions of each feature. The algorithm
takes O(|F | × |Q′C |2 × Tmces) to compute the structural
union for each feature. The worst-case space complexity is
O(|F | × |Q′C)| × |f |) for the structural union graphs. We
observed from our experiments that the size of the structural
union graphs typically ranged from hundreds of edges.

APPENDIX H
DEFAULT PARAMETERS

The optimal parameters for GFOCUS are dataset-specific.
We ran extensive simulation tests on the parameters and
determined their default values. Tab. 8 shows a summary
of the default values for the parameters. These values are
obtained from large-scale performance simulations of the
datasets (Tab. 2) and selected the robust ones. We stick to
these default settings throughout the experimental evalua-
tion unless otherwise specified.

TABLE 9
Comparison of the TPM of GFOCUS with optimal TPM

δfix TPMF TPMOPT
1 58 75
2 52 88
3 44 92
4 37 93
5 35 94

We remark that existing techniques could help to tune
the parameters, e.g., applying machine learning techniques
[38] to tune α and β automatically and conducting pretest
of user’s memory strength to set τ properly.

APPENDIX I
OPTIMAL TPM

In this appendix, we illustrate the optimal values of TPM,
which is extensively used in the experiments (in Sec. 8)
using Formula 9.

TPMOPT(q, δfix) =
(|q.E|+ |q.V | − 5)× 2− d |q.E|−2

δfix
e

(|q.E|+ |q.V | − 5)× 2
, (9)

where the denominator is the number of clicks without
autocompletion (5 is the number of vertices and edges from
the initial query used in the experiments, 2 clicks are needed
for adding each vertex and edge, since their labels are con-
sidered), and the numerator is the number of clicks saved
by autocompletion (d |q.E|−2

δfix
e is the number of adoptions of

δfix sized increments needed to correctly formulate the target
query from the initial query).

Tab. 9 shows the TPMs of the optimal autocompletion
determined by Formula 9 and the TPMs of GFOCUS on
the default query size (|q| = 20). These numbers indicate
that GFOCUS saved the majority manual clicks even when
compared to an optimal autocompletion system (e.g., when
δfix = 1 or 2). It is expected that the TPMs of GFOCUS will
drop as δfix increases since it is much harder to provide
accurate suggestions with large increments.

APPENDIX J
FURTHER EXPERIMENTS ON PARAMETERS

We studied the effects of the major parameters of GFOCUS
and compared the results of GFOCUS with AUTOG. We
reported the representative simulation results in Tabs. 10-
15. The performance characteristics presented here can be
helpful for users to set their default parameter values,
which are dataset-specific. For ease of comparison, we used
PUBCHEM. We note that GFOCUS can run simulations on
the larger dataset EMOL, but AUTOG cannot finish some of
them within 5s.
Varying the maximum increment sizes (δmax). Tab. 10
shows the quality metrics of Q20 with various δmax. The
results show the qualities decrease as δmax increases. (The
same trend can be observed from other query sets.) (i) From
#AUTOG and #AUTOF , we note that GFOCUS achieved
more adoptions than AUTOG when the δmax value was 1
or 2. (ii) From ∆G and ∆F , we observe that the average
increment sizes of the adopted suggestions of GFOCUS were
roughly 13% larger than those of AUTOG. (iii) The difference

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MM YYYY 19

TABLE 10
Quality metrics by varying δmax (PUBCHEM)

δmax #AUTOG #AUTOF ∆G ∆F TPMG TPMF TPM∆%

1 12.1 13.6 1.0 1.0 50 58 16
2 5.6 5.9 1.7 1.9 45 54 19
3 3.4 3.4 2.2 2.7 36 47 28
4 2.5 2.6 2.7 3.2 32 43 32
5 2.2 2.2 3.2 3.7 32 39 22

TABLE 11
Quality metrics by varying δfix (PUBCHEM)

δfix #AUTOG #AUTOF UG UF TPMG TPMF TPM∆%

1 12.1 13.6 19 18 50 58 16
2 4.6 5.2 8 10 44 52 16
3 2.2 2.8 3 5 34 44 27
4 1.5 1.8 2 3 32 37 15
5 1.0 1.3 1 2 28 35 25

TABLE 12
Quality metrics by varying |q| (PUBCHEM)

|q| #AUTOG #AUTOF UG UF TPMG TPMF TPM∆%

8 1.2 1.4 3 5 36 41 13
12 2.5 2.8 6 9 44 50 12
16 3.6 4.0 7 9 45 51 13
20 4.6 5.2 8 10 44 52 16
24 5.3 6.4 7 10 43 53 23

in TPMG and TPMF (i.e., TPM∆%) show that GFOCUS offered
a 16%-32% improvement in TPM.

We remark that even #AUTOG and #AUTOF were
roughly the same when δmax was 3 to 5, GFOCUS exhibited
better performance. The reason is that its suggestions were
generally with larger increment size which led to more
mouse clicks being saved.

Another remark on Tab. 10 is that δmax has a significant
impact on the qualities in a non-trivial way, e.g., small sug-
gestions were more likely to be useful but large ones saved
more mouse clicks. To illustrate the suggestion qualities
more clearly, we used suggestions of the fixed increment
size (δfix) in subsequent experiments.
Varying the fixed increment sizes (δfix). Tab. 11 shows the
quality metrics of Q20 with various δfix. They verify that the
quality decreased as δfix increased. #AUTOG and #AUTOF
show that GFOCUS on average resulted in 19% more sug-
gestion adoptions. UG and UF show GFOCUS generally
produced more useful suggestions. TPMG and TPMF show
that GFOCUS outperformed AUTOG by 20% on average.
Varying the target query sizes (|q|). Tab. 12 shows the
quality metrics of various |q|. It is not surprising that both
GFOCUS and AUTOG achieved more suggestion adoptions
as |q| increased. Importantly, GFOCUS resulted in 14% more
adoptions on average than AUTOG. GFOCUS returned 35%
more useful suggestions on average when compared to
AUTOG. GFOCUS outperformed AUTOG in TPM by 16% on
average.
Varying the user-specified constraint k. Tab. 13 shows the
quality metrics with various k values (i.e., the number of
suggestions returned in each iteration). The results show
the qualities increased with k. The relative performances
of GFOCUS were better when k was small. This suggests
that user focuses were particularly vital when only a few
suggestions were allowed. GFOCUS resulted in 15% more
adoptions on average than AUTOG. GFOCUS returned 28%
more useful suggestions on average when compared to

TABLE 13
Quality metrics by varying k (PUBCHEM)

k #AUTOG #AUTOF UG UF TPMG TPMF TPM∆%

4 3.2 3.8 9 11 30 38 25
6 3.8 4.4 8 11 36 44 21
8 4.2 4.9 8 10 40 49 20

10 4.6 5.2 8 10 44 52 16

TABLE 14
Quality metrics by varying β or α (PUBCHEM)

β #AUTOF UF TPMF

0.00 3.3 3 32
0.02 5.0 8 50
0.04 5.1 8 51
0.06 5.1 9 51
0.08 5.1 9 51
0.10 5.2 10 52
0.20 5.1 10 51
0.40 5.1 10 51
0.60 5.1 10 51
0.80 5.1 10 51
1.00 4.9 10 49

α #AUTOG UG TPMG

0.00 4.0 4 39
0.02 4.7 7 45
0.04 4.8 7 46
0.06 4.7 7 45
0.08 4.5 7 44
0.10 4.6 8 44
0.20 4.4 8 43
0.40 4.4 9 43
0.60 4.3 9 41
0.80 4.4 9 42
1.00 4.4 9 42

TABLE 15
Quality metrics by varying |Dq| (PUBCHEM)

|Dmin
q | #AUTOG #AUTOF UG UF TPMG TPMF TPM∆%

1 4.2 5.0 7 10 41 50 22
10 4.6 5.2 8 10 44 52 16

100 5.0 5.5 8 11 48 55 14
1000 4.9 5.8 8 11 48 58 20

AUTOG. GFOCUS outperformed AUTOG in TPM by 21% on
average.
Varying ranking functions. In the absence of user provided
application-specific information, we ran the proposed addi-
tional ranking functions under the same default simulation
setting. All three additional functions achieved consistently
high quality, i.e., approximately 5.2, 10%, and 52% for the
quality metrics #AUTOF , UF , and TPMF .
Varying the parameter β and α in the ranking functions.
Tab. 14 shows the quality metrics of GFOCUS under various
β values. We ran a similar experiment on various α values
with AUTOG and reported the results in Tab. 14. The quali-
ties of GFOCUS are consistently high and stable. On average,
GFOCUS returned 12% more useful suggestions and saved
14% more mouse clicks when compared to AUTOG.
Varying the minimum result set size of the target queries
(|Dmin

q |). Tab. 15 shows the quality metrics of GFOCUS and
AUTOG on query sets of different minimum result set sizes.
The results show that both GFOCUS and AUTOG resulted in
higher quality suggestions when the target queries yielded
more answers (larger |Dmin

q |). These results are consistent to
query autocompletion in the context of web search, suggest-
ing that queries that yield many web pages are suggested,
whereas those with fewer web pages are often omitted.

