
Privacy-Preserving Reachability Query Services for

Sparse Graphs

1Peipei Yi 1Zhe Fan 2Shuxiang Yin
1Hong Kong Baptist University 2Fudan University

csppyi,zfan@comp.hkbu.edu.hk sxyin@fudan.edu.cn

Abstract—This paper studies privacy-preserving query services
for reachability queries under the paradigm of data outsourcing.
Specifically, graph data have been outsourced to a third-party
service provider (SP), query clients submit their queries to
the SP , and the SP returns the query answers. However, SP

may not always be trustworthy. Therefore, this paper considers
protecting the structural information of the graph data and
the query answers from the SP . This paper proposes simple
yet optimized privacy-preserving 2-hop labeling. In particular,
this paper proposes that the encrypted intermediate results of
encrypted query evaluation are indistinguishable. The proposed
technique is secure under chosen plaintext attack. We perform
an experimental study on the effectiveness of the proposed
techniques on both real-world and synthetic datasets.

I. INTRODUCTION

Graphs have been found in many emerging applications

including bioinformatics analysis, communication networks,

social networks, knowledge networks and semi-structured

databases. Due to the massive volume of graph data from

such a wide range of recent applications and the IT resources

required to evaluate numerous queries at large scale, it is

becoming economically appealing to outsource graph data to a

third-party service provider (SP) who provides query services.

Example. Suppose the police are at an early stage of identi-

fying a terrorism suspect who is studying in a university. The

police may issue numerous queries – ”who are reachable by

the suspect?” – on the communication network (e.g., email or

phone communications) owned by the university. While the

university is required by law to cooperate with the police, it

does not prefer its daily operations affected by the queries.

Hence, when needed, it may outsource its network to an SP
for processing such queries. At the meantime, the network

should be protected from the SP as it contains sensitive

information. Importantly, the police do not prefer to expose

both their queries and answers to the SP which in turn expose

their investigations. Therefore, it is imperative to propose a

scheme for privacy-preserving query services.

In this paper, we consider privacy-preserving reachability

query on sparse graphs, as the reachability query is one of

the most popular and fundamental queries and real graphs

are often sparse [1]. In our technical report [13], we realize

that there have been a large body of indexes on reachabaility

queries, e.g., [2], [4], [5], [12], we undertake a 2-hop approach

to address this problem as the main benefits of the 2-hop

are threefold. First, the 2-hop labels are simple: each vertex

is only associated with two sets of vertices. Second, the

query evaluation of 2-hop labeling is simply an intersection

between two sets. Such simple structure and algorithm make

the analysis of privacy simple as well. Third, the large body

of works for 2-hop labeling (e.g., [2], [4], [5]) can be readily

adopted.

In 2-hop labeling, the intermediate query results of a

pair of unreachable vertices and reachable vertices are an

empty set and a non-empty set, respectively. To make the

intermediate results of reachable/unreachable query vertices

indistinguishable to provide privacy, [13] proposes privacy-

preserving 2-hop (called pp-2-hop) and a heuristic to enlarge

2-hop labeling such that those result sizes always equal to a

constant Imax. In particular, this involves modifying the results

of unreachable query vertices from an empty set to a non-

empty one. In sparse graphs, most vertices of sparse graphs

are not reachable from each other. (From our experiment

shown in Table II, the number of reachable pairs of vertices

is only around 9% pair of the number of all possible pairs.)

The value of Imax that leads to the smallest privacy-preserving

2-hop is obviously 1. This paper therefore proposes 2-hop

labeling where the sizes of its intermediate results during query

evaluation of any pair of query vertices are always 1.

II. PROBLEM FORMULATION AND OVERVIEW

Data model. We consider directed node-labeled graphs. A

graph is denoted as G, and V (G) and E(G) are the vertex and

edge sets of G, respectively. Since the reachability information

of vertices in a strongly connected component is identical, we

assume directed acyclic graphs (DAG). A reachability query

takes two vertices u and v as input, denoted as Reach(u, v),
and returns true iff v is reachable from u, i.e., u v.

System model. In the literature of database outsourcing, query

services often involve three parties:

• Data owner: An owner owns the graph and precomputes

indexes offline once. It outsources (the encrypted version

of) them to an SP , and sends query clients secret keys

to encrypt queries and decrypt query results; and

• Service provider (SP): An SP is often equipped with

powerful computing utilities such as a cloud. The SP
processes massive query requests on encrypted data and

returns the encrypted results to clients; and

• Client: A client encrypts his/her query, sends it to the SP
and decrypts the result from the SP . We assume that the

clients and SP do not collude.

1

2

6

0 3

4

5

v Lin(v) Lout(v)
0
1
2
3
4
5
6

0 0, 1, 2, 3, 5, 6
1, 2, 3, 5, 6
2, 3, 5, 6
3, 4
4
5, 6
6

1
2
3

0, 1, 2, 4
4, 5
4, 6

Fig. 1. A small communication network (LHS) and its 2-hop labeling (RHS)

Attack model and privacy target. The attackers may be

the SP or another adversary hacking the SP . For simplicity,

we term the attackers as the SP . We assume the SPs are

honest-but-curious. We assume that the SP adopts the chosen

plaintext attack (CPA). Our privacy target is required to keep

the following two pieces of information private.

• Reachability of the query vertices a.k.a the query result.

In particular, given a reachability query Reach(u, v), the

SP cannot infer whether u v; and

• Graph structure a.k.a. the topology of the data graph,

e.g., the existence of an edge.

III. BACKGROUND OF PRIVACY-PRESERVING 2-HOP

2-hop labeling. We first briefly summarize 2-hop labeling,

which forms the basis of our approach. In 2-hop labeling,

each vertex u ∈ V (G) is associated with two sets of vertices,

denoted as Lout(u) and Lin(u), called 2-hop labels. Vertices

in Lout(u) (resp., Lin(u)) can be reachable from u (resp.,

can reach u), which are also called center nodes. Given two

vertices u and v, u v iff Lout(u) ∩ Lin(v) 6= ∅.

Example 3.1: Consider the simplified communication network

shown in the LHS of Fig. 1. The vertex ID represents the user

ID and the edge denotes a message from one user to another.

A possible 2-hop labeling of the graph is shown in the RHS

of Fig. 1. Consider two vertices 1 and 5. Vertex 1 can reach

Vertex 5, i.e., 1 5. Lout(1) ∩ Lin(5) = {5}. Vertex 0 is

not reachable from Vertex 6 as Lout(6) ∩ Lin(0) = ∅.

Privacy-preserving 2-hop labeling (pp-2-hop) [13]. The ma-

jority of existing works on 2-hop labeling focus on minimizing

the sizes of 2-hop labels. In comparison, as motivated in Sec. I,

pp-2-hop enlarges the 2-hop labels such that the intermediate

results of any queries indistinguishable, to provide privacy

preservation. Specifically, the intermediate result is the inter-

section of 2-hop labels: Lout(u)∩Lin(v), where u, v ∈ V (G).

In [13], we introduce surrogate nodes into 2-hop labels (Lins

and Louts) such that that the intersection sizes between the 2-

hop labels with surrogate nodes Louts(u) and Lins(v) (called

surrogate labels) always equal to a constant Imax. Surrogate

nodes are indicated by a flag, defined as follows.

Definition 3.1: Each center node of Louts(u) or Lins(v) is a

binary tuple (w,f), where f = true if w is a real center, and

a fake center, otherwise.

A heuristic algorithm is proposed to minimize the value of

Imax, and construct the pp-2-hop labels to meet the requirement

that |Lout(u) ∩ Lin(v)| = Imax, for all u and v in V (G).

Definition 3.2: The privacy preserving 2-hop (pp-2-hop) [13]

is a 2-hop labeling where each encrypted vertex ue, where

ue = hs2(u) and hs2 denotes a one-way collision-resistant

with a salt s2, is associated with two encrypted surrogate labels

v Lin
s(v) Lout

s(v)
0
1
2
3
4
5
6

0, 7, 8, 9 0,1,2,3,5,6, 7, 8
1,2,3,5,6, 7, 8, 9
2,3,5,6, 7, 8, 9, 10
3,4, 7, 8, 9, 10, 11
4, 7, 8, 9, 10, 11, 12

5,6, 7, 8, 9, 10, 11, 12, 13
6, 7, 8, 9, 10, 11, 12, 13, 14

1, 7, 8, 10
2, 7, 8, 11
3, 7, 8, 12

0,1,2,4, 9, 10, 13
4,5, 7, 8, 14
4,6, 7, 8

Fig. 2. The 2-hop labels of the network in Fig. 1 with surrogate nodes [13]

v Lin(v) Lout(v)
0
1
2
3
4
5
6 6, 7, 90,2,6

0,2, 9
0,5, 9, 12

0, 8, 11
1,4, 7, 11
1, 7, 8

3, 7, 8, 10

2, 7, 12
2,5, 7

0, 7
0,4, 8
0,1, 10
0,1,3

Fig. 3. The m-2-hop labels of the network in Fig. 1

Louts(u) and Lins(u), denoted as Loute(u) and Line(u), and

(w, f) in the surrogate labels is encrypted as (hs1(w), Enc(f)),
and Enc(·) is the Elgamal encryption scheme.

Example 3.2: Fig. 2 shows a possible pp-2-hop labeling, after

adding surrogate nodes. We do not encrypt the labels, for

discussion’s sake. The bold text indicates the real center nodes.

Imax is 3. Lins(4) ∩ Louts(0) is {0,1,2} and 0 4. However,

Lins(4) ∩ Lout(5) equals {9,10,13} and 56 4. Recall from

the 2-hop of Fig. 1 that Lin(4)∩Lout(5) is ∅. The sizes of 2-

hop labels in pp-2-hop may notably increase for sparse graphs

as most vertices are not reachable from each other.

IV. MINIMUM UNIFIED INTERSECTION 2-HOP (m-2-hop)

In this section, we define m-2-hop and present its construc-

tion. We show that the construction can be solved by adopting

algorithms for the minimum set cover problem.

Definition 4.1: The minimum unified intersection 2-hop (m-2-

hop) is a 2-hop labeling of a graph G, denoted as Lin and

Lout (defined as Def. 3.1), where

• ∀u, v ∈ V (G), Lin(v)∩ Lout(u) = {(w, true)} if u
v, and {(w′, false)} otherwise;

•
∑

u∈V (G)(|Lin(u)|+ |Lout(u)|) is minimized.

Def. 4.1 implies that the query processing of m-2-hop is

simply an intersection and its result is always a singleton.

Given a reachability query Reach(u, v), Lin(v) ∩ Lout(u) =
(w, true) indicates that u v, and (w′, false), otherwise.

Example 4.1: Following Fig. 2, we show a possible m-2-hop

of the graph (in Fig. 1) in Fig. 3. Imax is 1. Lin(4)∩Lout(0)

is {0} and 0 4. Lin(4)∩Lout(5) equals {12} and 5 6 4.

A. Analysis of MUI-2-Hop

To construct m-2-hop, two types of surrogate nodes are

required by Def. 4.1. (1) Real nodes are to cover those u v;

and (2) Fake nodes are to cover those u 6 v. It is apparent

that the problem of adding real nodes to cover all u v is

equivalent to that of fake nodes and these problems can be

considered independently. Then, the problem of constructing

m-2-hop becomes adding minimum real (resp. fake) nodes to

cover all u v (resp. u 6 v), s.t., |Lin(v)∩ Lout(u)| = 1.

Proposition 4.1: The problem of constructing the m-2-hop

labels of a graph is NP-hard.

The hardness is established by a simple reduction of the

minimum set cover problem (MSC).

We then illustrate that the construction of m-2-hop is closely

related to the MSC problem. Consider the reachable nodes of a

graph G. We model the transitive closure TC(G) as a bipartite

graph B = (V, L,R,E), where L(B) = R(B) = V (G).
Intuitively, L(B) and R(B) represent Lins and Louts, re-

spectively. ∀u ∈ R(B), v ∈ L(B), (u, v) ∈ E(B) if u v.

We consider the universe of the MSC instance is U = E(B),
which are all entries of TC(G). A set of subsets of U is

denoted as S , where S = {S|S = E(K), K is a subgraph

of B, and ∀u ∈ R(K), v ∈ L(K), (u, v) ∈ E(B)}. That

is, K represents the entries of TC(G), covered by E(K).
Further, we require to use bicliques (complete bipartite graphs)

to cover E(B), to ensure all edges E(B) will be covered

once. The weight attached to each S ∈ S is weight(S) =
|L(K)| + |R(K)| = |V (K)|, as E(K) is covered by adding

a center node to each Lin of L(K) and each Lout of R(K).
The objective of the MSC problem is to find a collection

S ′ ⊂ S such that (1) U is completely covered by S ′, and

correspondingly, each edge in E(B) is covered. For mini-

mum cover, an edge in E(B) is covered once, which means

|Lout(u)∩ Lin(v)| = 1 if u v; and (2)
∑

S∈S′ weight(S)
is minimized, which implies

∑
u∈V (G)(|Lin(u)|+ |Lout(u)|)

is minimized. It is obvious that finding such an S ′ is exactly

finding the m-2-hop cover with the minimum size.

A MSC-based solution. To address this problem, we apply the

classical greedy algorithm of MSC, whose approximation ratio

is (1+1/2+· · · +1/|U|)OPT. Initially, U ′ is defined to represent

the uncovered elements of U , i.e., U ′ = U = E(B). A set S of

S with the maximum value of
|S∩U ′|
w(S) is iteratively chosen to

cover U ′ and removed from U ′. It terminates until all elements

in U ′ are covered. Finding such a set S is equivalent to finding

the maximum biclique K from B due to the following.

(1) ∀u ∈ R(K), v ∈ L(K), (u, v) ∈ E(B); and

(2)
|S ∩ U ′|
weight(S) = |E(K)∩U ′|

|V (K)| = |E(K)|
|V (K)| is the maximum.

|S∩U ′| = |E(K)∩U ′| as S = E(K) by definition. |E(K)∩U ′|
= |E(K)|. This is to determine the densest subgraph. Since

the MSC construction requires to use bicliques to cover E(B),
it determines the densest biclique. Note that finding the

maximum biclique of a given bipartite graph is also NP-hard.

B. Heuristic MUI-2-Hop Construction

Next, we propose a greedy algorithm for finding maximal

bicliques incorporated into the MCS-based construction of m-

2-hop(presented in Algo. 1). The input is the data graph G.

The outputs are the Lin and Lout labels. Algo. 1 first initial-

izes Lins and Louts to empty sets and generates the transitive

closures TC(G) and its complement TC(G)− (Lines 1-2).1

Then, bipartite graphs B and B− are created from TC(G) and

TC(G)−, respectively. AddSurNode is invoked on B (resp.

B−) for adding real (resp. fake) nodes in Lin and Lout with

its flag set to true (resp. false) (Lines 3-4). Lastly, Lins

and Louts are returned (Line 5).

1We remark that there are existing works on constructing 2-hop labels
without generating the TC in advance, e.g., [4]. For presentation simplicity,
we discuss our algorithm with TC.

Algorithm 1 MUIS (G)

Input: A graph G.
Output: The m-2-hop label of G: Lin and Lout.
1: Initialize ∀u ∈ V (G), Lin(u) = Lout(u) = ∅
2: Generate TC(G) and TC(G)−

3: Generate B of TC(G), AddSurNode (B, Lin, Lout, true)
4: Generate B− of TC(G)−, AddSurNode (B−,Lin,Lout,false)
5: return Lin and Lout

Procedure 1.1 AddSurNode (B, Lin, Lout, f)
6: while E(B) 6= ∅ /* edges not yet covered. */
7: K ← GreedyFndMaxBiK (B)
8: ∀(u, v) ∈ E(K), add a new surrogate node w, i.e.,

Lin(v)← Lin(v) ∪ {(w, f)},
Lout(u)← Lout(u) ∪ {(w, f)}

9: E(B)← E(B)/E(K) /* remove edges in K from B*/

Procedure 1.2 GreedyFndMaxBiK (B)
10: Initialize an empty biclique K,
11: while T 6= ∅, where T={u|{u}∪V (K) forms a biclique in B}
12: Let umax = argmaxu∈T (Deg(u))
13: V (K)← V (K) ∪ {umax}
14: return K

AddSurNode (Lines 6-9) is the classical greedy algorithm

for MSC, as discussed, written in terms of bipartite graphs.

For each iteration, if E(B) is not yet completely covered,

i.e., E(B) 6= ∅ (Line 6), a maximal biclique K of B will be

chosen by GreedyFndMaxBiK (Line 7). One new surrogate

node w is created and added into Lin(v) and Lout(u) with

the corresponding flag value, where (u, v) ∈ E(K) (Line 8).

Then, E(K) is removed from E(B) (Line 9).

GreedyFndMaxBiK (Lines 10-14) finds a maximal biclique

K of B. The algorithm first initializes an empty K (Line 10).

If it can find a set of nodes T , s.t., each of the node u ∈ T
can form a biclique with K (Line 11), a node umax with

the largest degree is then selected from T (Line 12). umax

is added into V (K) to enlarge the biclique K (Line 13).

GreedyFndMaxBiK terminates until such T cannot be found

and returns the biclique K (Line 14). Such a K is the maximal

one. The benefit of GreedyFndMaxBiK is that its performance

guarantee is immediate: Finding the maximum biclique K in

B is equivalent to finding the maximum independent set M
in B−, where B− is a complement bipartite graph of B.

It is known that such a greedy algorithm for outputting the

maximum independent set is a 1/(1 + ∆)-approximation.

V. PRIVACY-PRESERVING 2-HOP QUERY PROCESSING

In this section, we define the encryption of m-2-hop and

introduce its private query processing. We then give a proof

on the privacy of m-2-hop.

Definition 5.1: A privacy-preserving m-2-hop (ppm-2-hop) a

graph G is an encrypted m-2-hop of G, denoted as Line and

Loute. A center (w, f) in m-2-hop labels is encrypted as

(hs1(w), Enc(f)), where hs1 is a one-way hash function with

a salt s1 and Enc is a randomized encryption scheme.

Private query processing. The query processing of ppm-2-

hop consists of three main steps: (1) The client hashes the

query Reach(u, v) as Reache(ue, ve), where ue = hs2(u) and

ve = hs2(v), and issues it to the SP ; (2) The SP performs

Line(ve)∩Lout
e(ue) and retrieves one encrypted binary tuple

(we, fe). It then returns such fe to the client; and (3) The client

decrypts query answer from fe using the secret key.

Privacy Analysis. The privacy offered by ppm-2-hop under

chosen plaintext attack (CPA) can then be established.

Proposition 5.1: The reachability of the query vertices

Reache(ue, ve) is preserved under CPA.

Proof: For each (we, fe) ∈ Line(u) (or Loute(u)), the

SP cannot determine if we is real or not since (1) different

salts are used to hash u and w, e.g., by exploiting SHA; and

(2) fe is encrypted by Enc. Enc can be readily implemented

by AES, which is secure under CPA. Therefore, the SP cannot

break both the vertices and the flags without the secret keys

under CPA.

By the above argument, given a query Reache(ue, ve),
SP cannot break Line(ve) and Loute(ue). Since Line(ve) ∩
Loute(ue)| of is always 1 and the result (we, fe) is encrypted,

the SP does not gain any knowledge during query processing.

Thus, the reachability of the query nodes is preserved.

Proposition 5.2: The edges of a graph are preserved under

CPA.
Proof: This is established by a proof by contradiction.

Suppose the SP can determine the existence of one edge

(u, v), the SP breaks the reachability of at least one query

Reache(ue, ve). This is a contradiction since the SP cannot

break ppm-2-hop under CPA (by Prop. 5.1).

VI. RELATED WORK

There have been related works on security of graph queries.

One stream of works addresses the authenticity of subgraph

data or query answers [7], [10], where the clients verify the

data/answers returned by an SP are not tampered with.

Regarding the confidentiality of graph queries or data, He

et al. [9] analyze the reachability of vertices and Gao et al.

[8] propose neighborhood-privacy protected shortest distance.

However, their privacy targets are different from our work.

Mouratidis et al. [11] determine the shortest path of the query

nodes with no information leakage by using PIR [6]. However,

the high computational cost of PIR is still a concern. Cao et

al. [3] consider subgraph queries but not reachability queries.

Our previous work [13] also studies reachability queries but a

different privacy target.

VII. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation to

verify the performance of m-2-hop.

Experimental setup. We conducted all our experiments on

a machine with a 3.40GHz CPU and 16GB memory. We

benchmarked our implementation with 7 real-world datasets
2 and 3 synthetic datasets [13]. Some statistics of the datasets

are reported in Table I. We recall that for each graph G, we

construct the m-2-hop labels after reducing it to a DAG.

Effectiveness of m-2-hop. Table II reports the effectiveness

of m-2-hop. It shows that the number of trues in TC(G)
(|TC(G)|) were around 9% of the |V (G)|2. We also note

that the sizes of m-2-hop of all real dataset were significantly

2Real-1: ERDOS was from [13]. Real-2 (Cit-HepPh), Real-3 (p2p-Gnutella31), Real-
4 (soc-Epinions1), Real-5 (soc-sign-Slashdot090221), Real-6 (soc-Slashdot0922) and

Real-7 (ego-Twitter) were from [1]

TABLE I
STATISTICS OF REAL-WORLD AND SYNTHETIC DATASETS

Graph G |V (G)| |E(G)| |V (G)|/|E(G)| |V (DAG(G))| |E(DAG(G)|)
Syn-1 3,073 37,615 0.08 3,073 37,615

Syn-2 5,651 15,968 0.35 5,651 15,968

Syn-3 4,880 27,946 0.17 4,880 27,946

Real-1 6,927 11,850 0.58 6,927 11,850

Real-2 34,546 421,578 0.08 21,608 281,030

Real-3 62,586 147,892 0.42 48,438 96,976

Real-4 75,879 508,837 0.15 42,176 61,995

Real-5 82,140 549,202 0.15 53,599 200,101

Real-6 82,168 948,464 0.09 10,559 28,331

Real-7 81,306 2,420,766 0.03 12,248 95,659

TABLE II
STATISTICS OF m-2-hop

Graph G |m-2-hop| |TC(DAG(G))| |V (DAG(G))|2 Constr. time

Syn-1 2.11M 2.91M 9.44M 11s

Syn-2 7.30M 0.29M 31.93M 1min25s

Syn-3 9.24M 2.44M 23.81M 1min35s

Real-1 1.49M 400K 47.98M 22s

Real-2 19.13M 84.25M 466.90M 16min43s

Real-3 11.34M 18.17M 2.35G 28min51s

Real-4 12.02M 348.83M 1.78G 28min20s

Real-5 20.33M 371.90M 2.87G 52min38s

Real-6 434.15K 21.18K 111.49M 18s

Real-7 606.77K 37.78K 150.01M 32s

smaller than |V (G)|2 (at most 4%). The construction times of

m-2-hop were at most 53min. We remark the construction can

be further optimized by adopting existing work (e.g., [5]).

Query performance. We randomly selected 1k pairs of ver-

tices as our queries. The total times at the SP side for running

all queries were small, in particular, at most 0.18s and 1.4s for

real datasets and synthetic datasets, respectively. Due to space

constraints, we did not elaborate them.

VIII. CONCLUSION AND FUTURE WORK

We proposed 2-hop labeling, namely m-2-hop, to provide

privacy-preserving query services for reachability queries un-

der the paradigm of data outsourcing. A MSC-based heuristic

construction algorithm for m-2-hop. We verify through an ex-

periment that m-2-hop is efficient for real-world and synthetic

datasets. In the future, we plan to investigate the approaches

for large graphs (e.g., social networks) that cannot fit in the

main memory. We also plan to integrate the large body of

optimizations for 2-hop labeling into m-2-hop.

REFERENCES

[1] Stanford large network dataset collection. http://snap.stanford.edu/data/.
[2] R. Bramandia et al. Incremental maintenance of 2-hop labeling of large

graphs. TKDE, 22(5):682–698, 2010.
[3] N. Cao et al. Privacy-preserving query over encrypted graph-structured

data in cloud computing. In ICDCS, pages 393–402, 2011.
[4] J. Cheng et al. Fast computation of reachability labeling for large graphs.

EDBT, pages 961–979, 2006.
[5] J. Cheng et al. Fast computing reachability labelings for large graphs

with high compression rate. EDBT, pages 193–204, 2008.
[6] B. Chor et al. Private information retrieval. J. ACM, 45:965–981, 1998.
[7] Z. Fan et al. Towards efficient authenticated subgraph query service in

outsourced graph databases. TSC, 99, 2013.
[8] J. Gao et al. Neighborhood-privacy protected shortest distance comput-

ing in cloud. SIGMOD, 2011.
[9] X. He et al. Reachability analysis in privacy-preserving perturbed

graphs. WI-IAT, pages 691–694, 2010.
[10] A. Kundu et al. Efficient leakage-free authentication of trees, graphs

and forests. IACR Cryptology ePrint Archive, page 36, 2012.
[11] K. Mouratidis et al. Shortest path computation with no information

leakage. PVLDB, 2012.
[12] H. Wang et al. Dual labeling: Answering graph reachability queries in

constant time. In ICDE, 2006.
[13] P. Yi et al. Privacy preserving reachability query services. Technical

report, 2013. http://www.comp.hkbu.edu.hk/∼zfan/2013-02.pdf.

