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ABSTRACT
This paper studies privacy-preserving reachability query ser-
vices under the paradigm of data outsourcing. Specifically,
graph data have been outsourced to a third-party service
provider (SP), query clients submit their queries to the SP,
and the SP returns the query answers to the clients. How-
ever, the SP may not always be trustworthy. Hence, this
paper investigates protecting the structural information of
the graph data and the query answers from the SP. Ex-
isting techniques are either insecure or not scalable. This
paper proposes a privacy-preserving labeling, called ppTopo.
To our knowledge, ppTopo is the first work that can pro-
duce reachability index on massive networks and is secure
against known plaintext attacks (KPA). Specifically, we pro-
pose a scalable index construction algorithm by employing
the idea of topological folding, recently proposed by Cheng
et al. We propose a novel asymmetric scalar product encryp-
tion in modulo 3 (ASPE3). It allows us to encrypt the index
labels and transforms the queries into scalar products of en-
crypted labels. We perform an experimental study of the
proposed technique on the SNAP networks. Compared with
the existing methods, our results show that our technique is
capable of producing the encrypted indexes at least 5 times
faster for massive networks and the client’s decryption time
is 2-3 times smaller for most graphs.

Keywords
Graph Databases; Data and Query Privacies; Reachability
Queries

1. INTRODUCTION
Graphs have been found in many emerging applications

including bioinformatics analysis, communication networks,
social networks, knowledge networks and semi-structured
databases. Due to the massive volume of graph data from
such a wide range of applications and the IT resources re-
quired to evaluate numerous queries at large scale, it is eco-
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nomically appealing to outsource the data to a third-party
service provider (SP) who provides query services.

An application scenario. Suppose the police are at an
early stage of identifying a terror suspect who is studying
in a university. The police may issue numerous queries –
“who are reachable by the suspect?” – on the communica-
tion network (e.g., email or phone communications) owned
by the university. While the university is required by law to
cooperate with the police, it does not prefer its daily oper-
ations affected by the queries. Hence, when needed, it may
outsource its network to an SP for processing such queries.
At the meantime, the network should be protected from the
SP as it contains sensitive information of its staff and stu-
dents. Importantly, the police do not prefer to expose their
query answers to the SP, which in turn expose their inves-
tigations. Therefore, it is imperative to propose a scheme
for privacy-preserving query services.

In this paper, we consider the service of privacy-preserving
reachability query, which is one of the most popular and fun-
damental queries on graphs [27, 9, 23, 14, 31, 25, 16, 2, 22,
7, 1, 29, 26, 15, 27] and their applications include pattern
matching in graphs, XML and Semantic Web, and analyz-
ing gene ontology and call graphs of computer programs.
This paper considers the well-received system model from
data outsourcing literature: In particular, the data owner
encrypts their data graphs and outsources to an SP. The
data owner sends the secret key to the query client to en-
crypt the queries. The client sends the encrypted queries to
the SP. The SP then processes the queries in the encrypted
domain and returns the encrypted query results for the client
to decrypt. We assume that the SP may be an attacker, and
he/she is honest but curious (a.k.a semi-honest).

Our private querying technique is proposed on top of the
2-hop labeling scheme. The main benefits of the 2-hop ap-
proach are threefold. First, the 2-hop labels (introduced
later) are simple: each vertex is only associated with two
sets of vertices. Second, the query evaluation of 2-hop label-
ing is simply an intersection between two sets. Such simple
structure and algorithm make the analysis of privacy simple
as well. Third, the large body of works for 2-hop labeling
(e.g., [7, 1]) can be adopted.

The technical challenges of such a privacy-preserving query
service are mainly twofold. Firstly, data graphs can be large
nowadays. It has been known that the more secure the pri-
vate query processing is, the less time-efficient it is. In par-
ticular, encrypting the data graph itself can be computa-
tionally costly. Thus, it has always been a design concern to
strike a balance between the security and efficiency of a pri-



vate query method. The second challenge is the index con-
struction (in this case, 2-hop construction) of large graphs
is time-consuming. While there have been scalable solutions
for 2-hop construction, it remains open how one may apply
(if ever possible) a scalable solution to privacy-preserving
query processing.

A recent attempt is a privacy-preserving 2-hop, called (pp-
2-hop) [32]. The encryption and querying algorithms are de-
rived from a partially homomorphic encryption, namely the
ElGamal encryption. Despite its privacy against ciphertext-
only attacks (COA), pp-2-hop suffers from its potentially
large size (due to privacy requirement), and the known prob-
lems of high 2-hop construction cost. A follow-up work [30]
enhances both time- and space-efficiencies of [32]. The se-
curity of this work is also COA, despite its claim on chosen-
plaintext attacks (CPA).

In this paper, we make several new contributions. We
propose privacy-preserving topological folding 2-hop label-
ing, called ppTopo. It includes an encoding and encryption
for private intersections, called asymmetric scalar-product
preserving encryption in modulo 3 (ASPE3). We propose
a 2-hop construction inspired by topological folding and it
optimizes private intersections, derived from private scalar
product [28]. As a result, we yield a 2-hop labeling that can
be run on massive networks and is private against known
plaintext attack (KPA). To our knowledge, this is the first
work that private reachability queries can be evaluated on
networks with 69 million edges.
Contributions. The contributions of this paper can be
summarized as follows:

• We propose a novel encryption scheme, adopted from
asymmetric scalar-product preserving encryption [28],
for private query processing. We propose a new heuris-
tic construction by employing the topological folding
idea that optimizes for the query performance;
• We analyze the privacies of our approach. Our finding

is that our approach is secure against KPA; and
• We present an experimental evaluation on the real net-

works. Compared with the existing methods, our tech-
nique is capable of producing the encrypted indexes
at least 5 times faster for massive networks and the
client’s decryption time is 2-3 times smaller for most
graphs.

2. BACKGROUND AND PROBLEM FORMU-
LATION

In this section, we provide the background of the paper
and formulate the problem being studied. The background
includes the data model, the system model, the attack mod-
els and the privacy targets.

Data model. In this paper, we consider a directed node-
labeled graph G = (V,E) where V and E are the vertex and
edge sets of G, respectively. We may use the terms vertex
and nodes interchangeably. For u, v ∈ V , u can reach v if
there exists a directed path from u to v. We use u ; v
to denote that. A strongly connected component (SCC) of
a graph G is a maximal set of vertices C ⊆ V such that
∀u, v ∈ C, v ; u and u ; v. Since the reachability in-
formation of vertices of an SCC is trivial, we assume an
arbitrary graph has been reduced to a directed acyclic graph
(DAG) GSCC , where each SCC is represented by a supern-
ode. GSCC can be constructed by classical algorithms such
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Figure 1: Overview of the system model

as Tarjan’s algorithm [24], that runs in O(|V |+ |E|). Since
the technical discussions always assume the reduced graph,
for notation simplicity, the subsequent discussion uses G in-
stead of GSCC , unless otherwise specified. A reachability
query on G takes two vertices u and v as input, denoted as
Reach(u, v), and returns true iff v is reachable from u.
System model. In the literature of database outsourcing,
the system model typically contains the following three par-
ties (Figure 1). We follow this model in the paper.

1. Data owner (DO): A data owner owns the graph data
and precomputes indexes offline once. It outsources
the encrypted data and indexes to a Service Provider
(SP), and sends query clients a secret key K, to en-
crypt queries and decrypt query results;

2. Service provider (SP): An SP is often equipped with
highly available, powerful computing utilities such as a
cloud. The SP processes voluminous encrypted query
requests like (uk, vk) on encrypted data and returns
the encrypted answers Rk to clients; and

3. Client: A client encrypts his/her query using the secret
key from the DO, sends it to the SP and decrypts the
answer Rk from the SP. We assume that the clients
and SP do not collude.

Attack model and privacy target. The attackers may
be the SP or another adversary hacking the SP. For sim-
plicity, we term the attackers as the SP. We assume the
SPs are honest-but-curious. That is, the SP performs com-
putations according to the system model, but the SP may
be interested in inferring private information.

There has been a well-known tradeoff between privacy
and utility of database outsourcing. The techniques that
are more secure can often be inefficient and hence have less
utility. This paper studies cryptographic attack models in-
cluding ciphertext only attack (COA) and known plaintext
attack (KPA), where KPA is known to be harder to execute
than COA. Under a cryptographic attack, our privacy target
is to keep the following three pieces of information private.

• Reachability of the query vertices a.k.a the query result.
In particular, given a reachability query Reach(u, v),
the SP cannot infer whether u ; v;

• Graph structure a.k.a the topology of the data graph.
The SP cannot infer the existence of an edge; and

• No structural information in addition to Reach(u, v) is
made known to the client.

Problem statement. With the background presented above,
we are ready to present the problem statement of this pa-
per: The client submits the reachability query to the SP side
and obtains the query answers from SP and meanwhile, the
privacy target is met against the SP’s attack model.
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Figure 2: A small network (LHS) and its 2-hop labels (RHS)

3. BACKGROUND OF 2-HOP LABELING
This section provides the background for 2-hop labeling,

which forms the basis of our discussion of privacy-preserving
techniques for efficient reachability queries. For the details
of 2-hop labeling, please refer to the seminal paper by Cohen
et al. [9] and its latest developments [6].

The 2-hop labels. Each vertex u ∈ V (G) is associated
with two sets of vertices, denoted as Lout(u) and Lin(u),
called 2-hop labels. Vertices in Lout(u) (resp., Lin(u)) can be
reachable from u (resp., can reach u), which are also called
center nodes. A reachability query can be evaluated by an
intersection of 2-hop labels as follows: Given two vertices u
and v, u ; v if and only if Lout(u) ∩ Lin(v) 6= ∅.

Example 3.1. Consider a small communication network
shown in the LHS of Figure 2. The vertex ID represents
the user ID and the edge denotes a message from one user
to another. A possible 2-hop labeling of the graph is shown
in the RHS of Figure 2. Vertex 1 can reach Vertex 5, i.e.,
1 ; 5. Lout(1) ∩ Lin(5) = {5}. Vertex 0 is not reachable
from Vertex 6 as Lout(6) ∩ Lin(0) = ∅.

It is apparent that when Lin(v) and Lout(v) contains all
nodes that can reach v and those v can reach, for all v ∈
V (G), such 2-hop labels are the transitive closure T (G) of G.
Since T (G) can be large, there has been a stream of work to
ensure that the 2-hop labels are small and meanwhile, cover
all the reachability (a.k.a connectivity) information of the
network, i.e., all elements in T (G). However, constructing
the 2-hop labels of the minimum size has known to be NP-
hard. There are various works that significantly optimize
the time and scalability of 2-hop construction (e.g., [7, 6]).

Outline of the 2-hop construction (offline process-
ing). As we shall present our techniques with reference
to 2-hop construction, we briefly outline the heuristic con-
struction approach [9]. Existing 2-hop constructions mainly
focus on minimizing the size of 2-hop labeling, defined as∑

u∈V (G)(|Lout(u)| + |Lin(u)|). Initially, a variable T ′ is de-

fined to represent the uncovered elements of T (G), i.e.,
T ′ = T (G). Elements of T (G) are iteratively covered and
removed from T ′. For each node w ∈ G, an undirected bi-
partite graph (a.k.a center graph) Gw(Lw, Rw, Ew) is built,
where Lw are nodes that can reach w and Rw are those w can
reach. (u, v) ∈ Ew iff (u, v) is in T ′. The heuristic algorithm
selects the center w whose induced subgraph Gi(Li, Ri, Ei)
of Gw has the largest ratio maxDensCover defined below.

maxDensCover(w) =
|Ei ∩ T ′|
|Li ∪Ri|

(1)

In each iteration, the node w with the largest
maxDensCover is selected as a center. For all u ∈ Li and
v ∈ Ri, the algorithm adds w into Lout(u) and Lin(v), and
removes (u,w), (w, v) and (u, v) from T ′. The iterations
terminate when T ′ is empty.

Existing privacy preserving 2-hop labeling. Since the
heuristic maxDensCover was not designed for privacy preser-
vation, the 2-hop labels may leak non-trivial graph struc-
tures. For example, if the size of Lin(v) ∩ Lout(u) is large,
it implies that there are a few distinct paths between u and
v. In addition, since Formula 1 iteratively determines the
center that covers the densest subgraph Gi, the center nodes
are likely to be highly connected nodes.

Two recent works ([32] and [30]) propose techniques to
protect the sensitive information. A summary of the ap-
proaches and this paper is presented in Table 1. Yin et al.
[32] propose pp-2-hop that optimizes the labels such that
all Lin labels (respectively, Lout labels), and meanwhile, all
intersection results of the same size. The node IDs of pp-
2-hop are hashed. The contents of the labels are encrypted
by the ElGamal encryption scheme. This is the main rea-
son why the SP does not learn any structural information
from the encrypted labels (input) and the query results. One
drawback of this technique is that the unification of label
(and respectively, the result) sizes may lead to a significant
increase in sizes. The other drawback is that the encrypted
node IDs are available to the SP. The SP analyzes the dis-
tributions of the encrypted ID. Yi et al. [30] observed that
real graphs are often sparse, most reachable queries return
negative answer, and the intersections of the 2-hop labels
of these queries are the empty set. To ensure the encrypted
outputs are of the same size, Yi et al. [30] propose mui-2-hop
that pre-processes the 2-hop labels such that the encrypted
result is always a singleton set. To enhance performance, it
does not unify the respective sizes of Lin and Lout labels.
mui-2-hop can only be secure against COA but not KPA.

The reason is that the SP has the encrypted 2-hop labels
and can enumerate the encrypted intersection results offline.
The intersection results of mui-2-hop are always a singleton
set containing either a true or false flag. If the SP can
simply check a pair of the plaintext and ciphertext of true
or false, the SP can determine the transitive closure of the
graph, and the SP obtains the answers of all queries. This
violates the privacy target of this paper.

4. ASYMMETRIC SCALAR-PRODUCT
PRESERVING ENCRYPTION IN MOD-
ULO 3 FOR PRIVATE INTERSECTION

In Section 4, we propose asymmetric scalar product pre-
serving encryption in modulo 3 (ASPE3), to efficiently sup-
port private intersection: “Lin(v)∩Lout(u) = ∅?”. ASPE3 is
based on the asymmetric scalar-product preserving encryp-
tion (ASPE) proposed for private kNN queries [28], that
facilitates private-preserving distance computation.

The overview of the application of ASPE3 to our prob-
lem is presented in Figure 3. The figure shows that it is
assumed the DO preprocesses the graphs into 2-hop labels
by topological folding. The DO then uses ASPE3 to en-
code 2-hop label sets as binary vectors. The vectors are
split and encrypted. The DO passes the secret keys (an
invertible-matrix pair and the splitting information) to the
client. The client encrypts a matrix for querying with the
secret keys. The SP performs the private intersections and
returns the encrypted answers to the client to decrypt. We
then elaborate the main procedures of ASPE3: (i) encoding
of labels and (ii) encrypting the encoded labels.



Table 1: A summary of approaches

Method Encryption Approach Strengths Weaknesses
pp-2-hop[32] ElGamal unify and encrypt respectively the sizes of encrypted Lin

labels, those of Lout labels, and the encrypted result sizes
secure against COA slow and not

scalable

mui-2-hop[30] AES determine the encrypted Lin and Lout s.t. their results are
always an encrypted singleton set

secure against COA not scalable

pp-tflabel ASPE3 process queries via private intersections secure against KPA & scalable none
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Figure 3: Overview of ppTopo

4.1 Encoding scheme
1a. Encoding 2-hop labels as vectors: Consider a query
Reach(u, v). For simplification, we remove v and u from
the notations of Lin(v) and Lout(u), when they are clear
from the context. We encode Lin into a vector Cin =
(c1, c2, . . . , c|W |), where W is the set of centers.

The value of ci is defined as:

ci =

{
1, if wi ∈ Lin

0, otherwise

Next, we encode Lout into a vector Cout = (c1, c2, . . . , c|W |).
The value of ci is:

ci =

{
2, if wi ∈ Lout

1, otherwise

In this encoding, the sum of ci in Cin and ci in Cout is
3 if and only if wi exists in both Lin and Lout. Cin may
be a long vector because the set of centers W may be large.

We decompose Cin into m = d |V |
d
e d-dimensional fragment

vectors for efficient manipulation of vectors. The i-th frag-
ment vector is Ci

in = (c1, c2, . . . , cd) where cj of Ci
in is equal

cd×(i−1)+j of Cin.

Example 4.1. Assume a 2-hop labeling where |W | = 8,
Lin(v) = {1, 2, 3, 6, 7} and Lout(u) = {3, 4}. Lin(v) is en-
coded into Cin(v) = (1, 1, 1, 0, 0, 1, 1, 0). Suppose d is 4.
Then Cin(v) is decomposed into fragment vectors C1

in =
(1, 1, 1, 0) and C2

in = (0, 1, 1, 0). Similarly, Lout(u) is en-
coded into (1, 1, 2, 2, 1, 1, 1, 1). Then, it is decomposed into
fragment vectors C1

out = (1, 1, 2, 2) and C2
out = (1, 1, 1, 1).

When we add Cin and Cout, only the entries at the 3rd po-
sition are added up to 3, which will be used to signify a
common center of Cin and Cout.

1b. Splitting the vectors to provide security. After encoding
labels as vectors, we split them based on a secret configu-
ration bit-vector Esplit. Since we apply the same splitting
to the vectors of Lin and Lout labels and their fragments,

we omit the superscript for indicating fragment ID and sub-
script for indicating Lin and Lout of C for a concise presen-
tation. Each fragment vector C = (c1, c2, . . . , cd) split into
two vectors Ca = (a1, a2, . . . , ad) and Cb = (b1, b2, . . . , bd),
such that

• aj = bj = cj , if Esplit[j] = 1; and

• aj + bj = cj , if Esplit[j] = 0,

1c. Encoding and splitting of a query permutation matrix.
The client generates a random d× d query permutation ma-
trix (denoted as P ) to hide the secret M−1 which is needed
for query processing. P is a binary matrix that has exactly
one entry of 1 in each row and each column and 0s elsewhere.
To resist KPA, the client multiples P by a random factor r.
The splitting of the permutation matrix is slightly different
from that of the labels’ vectors. Specifically, given Esplit, P
is split into two matrices Pa = (xi,j)d×d and Pb = (yi,j)d×d

as follows:

• xi,j = yi,j = Pi,j , if Esplit[i] = 0; and

• xi,j + yi,j = Pi,j , if Esplit[i] = 1.

Example 4.2. Consider the encoded and decomposed la-
bels C1

in(v) and C1
out(u) in Example 4.1. The DO gener-

ates the keys (Ma, Mb, M−1
a , M−1

b and Esplit) as showed
in the leftmost part of Figure 4. Then, C1

in(v) is split into
Cin,a(v) = (1, 3, 2, 0) and Cin,b(v) = (1,−2,−1, 0) accord-
ing to Esplit. Similarly, C1

out(u) is split into Cout,a(u) =
(1, 5, 4, 2) and Cout,b(u) = (1,−4,−2, 2), as shown in the
middle part of Figure 4. The splitting of the query permu-
tation matrix is shown in the middle lower part of Figure 4.
For presentation brevity, we omit the tedious operations that
yield Pa and Pb.

4.2 Encryption scheme
2a. Key generation: The DO generates two d × d in-
vertible matrices, Ma and Mb, and their inverse matri-
ces, M−1

a and M−1
b , and a secret configuration bit vector

Esplit = (e1, e2, . . . , ed) offline. Ma, Mb and Esplit are kept
by the DO, whereas M−1

a , M−1
b and Esplit are assigned to

the client.

2b. Encryption of labels’ vectors: To encrypt 2-hop labels,
the DO simply multiplies Ma by Ca and Mb by Cb, respec-
tively. The corresponding ciphertexts can be denoted as
Ce

a = MT
a Ca

T and Ce
b = MT

b Cb
T . The DO then outsources

the ciphertexts to the SP.

2c. Encryption of query requests: The client uses the query
permutation matrix (Pa and Pb) to encrypt the secrets M−1

a

and M−1
b . The corresponding ciphertexts are P e

a = M−1
a Pa

and P e
b = M−1

b Pb. The client then sends the query request
Reach(u, v) and the corresponding ciphertext to the SP.
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Figure 4: An example of ppTopo for a reachability query: u ; v = true, where Lin(v) ∩ Lout(u) = {3}

4.3 Private query processing
We first present the private query computation at the SP
and then the decryption at the client side. Their correctness
is presented in Theorem 4.1.

3a. Private intersection as vector computations at the SP:
The SP retrieves the corresponding encrypted labels (Ce

in,a,
Ce

in,b) for Lin(v) and (Ce
out,a(u), Ce

out,b) for Lout(u). The
SP does the addition operation (in the encrypted domain)
as the intersection operation of the plaintexts, Lin(v) and
Lout(u):

• Ce
a = Ce

in,a + Ce
out,a

• Ce
b = Ce

in,b + Ce
out,b

The SP then computes the scalar products of Ce
a and

P e
a , denoted as Sa = Ce

a
TP e

a , and similarly, computes Sb

as Ce
b
TP e

b . Recall that P e
a is a product of M−1

a and Pa.
Intuitively, while the secret M−1

a is used to compute Sa, the
matrix has been permuted by Pa, which is not accessible by
the SP.

To reduce the communication costs, the SP aggregates the
results so far into small messages. First, the SP computes
Z = Sa +Sb. Second, it computes the product of the values
of Zi, where Zi is the i-th fragment of the query result.

The product can be denoted as Zi =
d∏

j=1

Zi[j]. Then, the

SP multiplies the products of all fragments as the encrypted

query answer: Z =
m∏
i=1

Zi.

3b. Decryption at the client side: The client decrypts the
encrypted query answer Z as follows. The client eliminates
the random factor of P by a division D = Z/rdm (recall that
there are m d-dimensional vectors). The value of rdm can be
computed in O(log(dm)) and only one division of the large
numbers. Then, u ; v is true if and only if D is divisible by
3. Theorem 4.1 states the correctness of the private query
processing.

Example 4.3. Following up Example 4.2, the middle part
of Figure 4 show the encryptions of the labels and the query
matrices. The DO outsourced the encrypted labels to the
SP. The client sends the encrypted matrices to the SP for

query processing. Note that the secrets M−1
a and M−1

b are
not known to the SP as it has been encrypted with the query
matrices (Pa and Pb). At query processing time, the SP
retrieves the encrypted 2-hop labels of the query nodes Ce

a

and Ce
b . Following the processing discussed in this subsec-

tion, the RHS of Figure 4 shows the SP computes Sa, Sb, Z
and finally Z, which is 57624. Z is returned to the client as
an encrypted answer. The client simply eliminates the ran-
dom number r from Z and performs one modulo 3 operation.
Since the value is 0, there must be a common center in Cin

and Cout, whose encoded values add up to 3. Therefore, the
client obtains true as the answer.

Theorem 4.1. The value of D returned by private query
processing implies the following: D mod 3 = 0 if and only if
u ; v.

Proof. Recall from the definitions of the variables the
following:

D = Z/rdm = (
m∏
i=1

Zi)/r
dm = (

m∏
i=1

d∏
j=1

zi,j)/r
dm =

m∏
i=1

d∏
j=1

zi,j/r

Hence, the following statement holds.

D mod 3 = 0⇔ ∃i, j zi,j/r mod 3 = 0 (2)

Furthermore, we note that each fragment query result

Z = Sa + Sb = (Ce
a
TP e

a + Ce
b
TP e

b )

= (Ce
in,a + Ce

out,a)TP e
a + (Ce

in,b + Ce
out,b)

TP e
b

= ((MT
a (Cin,a + Cout,a)T )TM−1

a Pa+

(MT
b (Cin,b + Cout,b)

T )TM−1
b Pb)

= (Cin,a + Cout,a)Pa + (Cin,b + Cout,b)Pb

= (Cin,aPa + Cin,bPb) + (Cout,aPa + Cout,bPb)

= (CinP + CoutP )

= (Cin + Cout)P

Recall that P is a permutation matrix. Suppose Pk,j is non-
zero. zi,j/r of Formula 2 is (Cin +Cout)

TP:,j/r = (Cin(k) +
Cout(k)) ∗ r/r = (Cin(k) + Cout(k)).



According to the encoding scheme, Cin(k) ∈
{0, 1}, Cout(k) ∈ {1, 2} and Cin(k) + Cout(k) = 3 iff
Cin(k) = 1 and Cout(k) = 2, which indicates that Lin and
Lout have a common center (at the position k).

Proposition 4.1. The attacker breaks ASPE3 if and
only if he/she breaks ASPE.1

Proof. (Sketch) Case 1: Suppose the attacker can break
ASPE.

Since both ASPE and ASPE3 split the data by Esplit and
then encrypt the data by multiplying the plaintext by MT ,
in this case, the attacker is capable of recovering Ca and Cb

of the graph. Then, the attacker can determine the value of
each dimension of the labels, which indicates the existence
of centers in the labels. Consequently, the attacker can sim-
ply intersect the recovered Cin and Cout labels to yield the
reachability result.

Case 2: Suppose the attacker can break ASPE3. It implies
the following facts:

1. Given any corresponding ciphertext Ce
a and Ce

b of the
encoded label C, the attacker can infer C; and

2. Given any corresponding ciphertext P e
a and P e

b of
query matrix P , the attacker can recover P .

Next, we show how the attacker recovers each data point p
and a query point q and hence the answer of q under ASPE.

Consider an encrypted data point denoted as pea and peb
under ASPE. Both p of ASPE and C of ASPE3 are multi-
dimensional vectors. By the first fact, the attacker can re-
cover the corresponding plaintext p (data point).

Denote the ciphertext and plaintext of a query point of
ASPE to be (qea, qeb) and q, respectively. The attacker can
extend the ciphertext qea and qeb (by repeating qea and qeb)
to two square matrices, denoted as Qe

a and Qe
b. That is,

the resulting matrices are simply Qe
a = (qea, q

e
a, . . . , q

e
a) and

Qe
b = (qeb , q

e
b , . . . , q

e
b). Then, the dimensions of the encrypted

query of ASPE are identical to those of ASPE3. By the
second fact, the attacker can determine the plaintext: Q =
(q1, q2, . . . , q|W |). In addition, q1 = q2 = . . . = q|W | = q: If
∃i, j, qi 6= qj , then qi,a 6= qj,a or qi,b 6= qj,b, after splitting
using Esplit. W.l.o.g, we assume qi,a 6= qj,a. According to
ASPE3, M−1

a qi,a = qea. Since M−1
a is an invertible matrix,

there is exactly one qi,a. According to ASPE3, M−1
a qj,a =

qea. Hence, qi,a = qj,a. It is a contradiction. Therefore, the
attacker can recover the corresponding plaintext q (query
point).

Proposition 4.2. The reachability of the query is pro-
tected by APSE3 under KPA.

Proof. The proposition is a consequence of Proposition
4.1. By Proposition 4.1, ASPE3 and ASPE offer the same
level of security. ASPE is secure against KPA [28]. So is
APSE3. Therefore, Proposition 4.2 holds.

5. SCALABLE APSE3-AWARE 2HOP LA-
BELING – PPTFLABELING

Based on Section 4, it is easy to derive that the time
complexities of the ASPE3 encryption (Section 4.2) and pri-
vate query processing (Section 4.3) are dependent to the di-
mensions of the vectors and matrices, specifically, O(|W |2),
1The term “break”means that the attacker can obtain the plain-
text from the ciphertext of an encryption scheme.

where |W | is the number of distinct centers. When existing
work on 2-hop construction was directly adopted, our pre-
liminary experiments showed that W can be large for some
graphs. In this section, we present an algorithm which can
reduce the number of distinct centers up to 58% (from 7%
to 58%) for benchmarked real graphs. We first provide the
background of topological folding, which is the current state-
of-the art of scalable 2-hop construction (in Section 5.1), and
then exploit it to obtain a scalable 2-hop construction that
minimizes |W | for efficient ASPE3 (in Section 5.2).

5.1 Topological folding
In this subsection, we review topological folding [6], which

is employed for our algorithm. In a nutshell, the vertices of a
DAG G are assigned with their topological level numbers (or
simply levels). The main idea is to compute the topological
folding of G, which is a series of DAGs G obtained from a
series of foldings. In each folding step, the vertices of odd
(or even) levels are folded. The folding terminates when
there is only one level of vertices. Then, the labels are built
on the DAGs. We elaborate some crucial details below.
Step 1. Assigning the topological level number. Each vertex
v of a DAG G(V , E) has one and only one topological level
number (denoted as l(v,G)) defined as follows:

l(v,G) =

{
max{(l(u,G) + 1) : u ∈ nbin(v,G)}, if nbin(v,G) 6= ∅;
1, otherwise,

(3)

where nbin(v,G) is the in-neighbors of v, defined as
{u : (u, v) ∈ E}.

The topological level numbers of vertices can be evi-
dently derived from topological ordering of the vertices. As
in Formula (3), the topological level number of v is de-
termined by the maximum topological number of its in-
neighbors plus one (i.e., max{l(u,G) + 1}, where u ∈
nbin(v,G)). The topological number of G is defined as
l(G) = max{l(v,G) : v ∈ V }.
Step 2. Topological folding. After assigning each vertex a
topological level number, the DAG G can be separated into
a k-partite DAG where k is l(G), the topological number
of G. The ith partite node set is defined as Li(G) = {v :
v ∈ V, l(v,G) = i}. Recall that each node set Li(G) is an
independent set [6], i.e., the nodes in Li(G) are not reachable
between each other. In a folding step, G is folded up by
taking away half of the levels. More specifically, the folding
procedure produces a set of DAGs G = {G1, G2, . . . , Gf},
where f = blog2kc+ 1 and

1. G1 = G; and

2. Gi = (Vi, Ei) is defined with the DAG Gi−1 obtained
after (i− 1)-th folding, where 1 < i ≤ f and

(a) Vi = ∪1≤j≤bl(Gi−1)/2c L2j(Gi−1) and

(b) Ei = ∪1≤j≤bl(Gi−1)/2c{(u, v) : u ∈
nbin(vodd, Gi−1), v ∈ nbout(vodd, Gi−1)},
where vodd ∈ L2j−1(Gi−1), and nbin(v,G)
and nbout(v,G) are the in-neighbors and out-
neighbors of v in G.

A vertex u to-be-folded at level l may involve in cross
edges, i.e., the edges of u connecting to another vertex whose
level is larger than l+1; or connecting from another vertex
whose level is smaller than l-1. When u is folded, the reacha-
bility information of its cross-level edges must be preserved.
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Figure 5: Example of topological folding: (a) A small DAG;
(b) Adding dummy nodes to the cross-level edges of the
nodes at the odd levels; (c) The DAG after folding the odd
level nodes; and (d) The DAG when the folding terminates

Dummy nodes are introduced to encode such information be-
fore folding, as follows: Consider a cross edge (u, v) ∈ Ei−1

where u is at level j and it is being folded at the i-th folding.
A dummy node w is added to Lj+1(Gi−1), and (u,w) and
(w, v) are added to Ei−1. As a result, in the i-th folding,
the reachability information of (u,w) is folded and that of
(w, v) is preserved in Gi.

Example 5.1. Figures. 5a to 5d show some major struc-
tures during topological folding. Figure 5a is simply the DAG
on the LHS of Figure 2, by rearranging the nodes according
to their topological level numbers. Suppose the nodes at the
odd levels are being folded. Edges (0, 2), (0, 3), (1, 3), (2, 4),
(2, 5), (2, 6) are cross-level edges of the nodes at the odd lev-
els. For vertex 0, dummy vertices 7 and 8 are introduced.
Edges (0, 7), (7, 2), (0, 8) and (8, 3) are introduced. Then,
we remove the edges (0, 2) and (0, 3). Figure 5b shows the
DAG after the cross edges are processed. After one folding
step, the DAG is reduced to Figure 5c. The topological fold-
ing is recursively applied until the DAG contains only one
level, as shown in Figure 5d.

Step 3. Label generation. Topological folding (Step 2) pro-
duces a set of DAGs, G = {G1, G2, . . . , Gf}. The topological
folding numbers of vertices, defined as l(v) = max{i : v ∈
Vi}, are associated with the vertices. The 2-hop labels of
the DAGs are generated as follows. Initially, v is added to
Lin(v). Then, for any u ∈ Lin(v), labels are added such
that nbin(u, Gl(u)) ⊂ Lin(v). This step repeats if there still
exists some nodes that can be added to some Lins. The
labels Lout are generated similarly.

We remark that since the query Reach(v, v) is trivially
true, we assume that the trivial labels are not generated.
That is, if v only appears in Lin(v) or Lout(v), we can sim-
ply remove it. Another remark is that Step 2 introduces
dummy nodes due to cross edges. A postprocessing step is
introduced to remove them from the Lin and Lout labels [6].

We present the generated labels of Figure 5a in Table 2.

5.2 Heuristic topological folding
It is clear from Section 5.1 that topological folding was not

designed for optimizing |W |. In particular, each folding step
folds up half of the levels (e.g., the odd levels). While it leads
to unprecedented high efficiency and scalability, the levels to

Table 2: 2-hop labeling for the example in Figure 5a

Vertex Lout Lin

0 {0,1,2,3} {0}
1 {1,2,3} {1}
2 {2,3} {0,1,2}
3 {3} {3}
4 {5} {2,3}
5 {5} {2,3,5}
6 {} {2,3,5}

Table 3: 2-hop labels produced by ppTopo, where Vertex 1
is not used in the labels

Vertex Lout Lin

0 {0,2,3} {0}
1 {2,3} {0}
2 {2} {2}
3 {3} {2,3}
4 {5} {2,3}
5 {5} {2,3,5}
6 {} {2,3,5}

be folded do not relate to |W |. In this subsection, we present
the heuristic algorithm, namely ppTopoConstruction, in Al-
gorithm 1 that iteratively greedily selects the level to be
folded that leads to a small |W |.

Algorithm 1 first initializes Lin and Lout of each vertex to
empty sets (Line 1). Next, it iteratively generates the labels
of the nodes level by level via a heuristic function (Lines 3-7).
In each iteration (Line 3), Algorithm 1 picks the topological
level Li of the DAG with the maximum weight (Lines 8-11
and 12) defined as follows:

weight(Li) =

∑
v∈Li(G)(|nbin(v)|+ |nbout(v)|)

|Li(G)|
(4)

The numerator estimates the Lin and Lout labels that
the nodes in Li(G) to be added as new centers. (|nbin|
and |nbout|, as opposed to ancestors (anc) and descendants
(desc), are used because of efficiency.) The denominator is
favorable to the levels containing a small number of nodes
(i.e., new distinct centers). Hence, Formula 4 minimizes
|W |.

Then, in Lines 5-6, each v at the level L is added into
the Lin(u) such that u ∈ desc(v), and Lout(u) such that
u ∈ anc(v), respectively. After adding v to the related Lin

and Lout labels, the vertex v and the incident and outgoing
edges of v are removed from the G (Line 7) because their
reachability information have been recorded. The iteration
terminates when there is no edge left in G.

Example 5.2. Consider Fig. 5a, since weight(L3) = 6,
weight(L1) = weight(L2) = weight(L5) = weight(L6) = 3,
weight(L3) = 4 and weight(L7) = 2, the vertex 2 is picked
in the first iteration. L3 is selected. And Vertex 2 will
be added into Lout of vertices 0, 1, 2 and Lin of vertices
2, 3, 4, 5, 6. And the incident and outgoing edges of Vertex 2
are removed from G. The iteration terminates when there is
no edge left. The labels are showed in Table 3. In this ex-
ample, when compared to Table 2, the 2-hop labels produced
by Algorithm 1 require one few center node (i.e., Vertex 1 is
not needed in the labels). The value of |W | is 4.

The labels generated will be encoded and encrypted by
APSE3 as presented in Section 4.



Algorithm 1 Heuristics Topological Folding for Privacy-
Preserving 2-hop (ppTopoConstruction)

Input: DAG G
Output: 2-hop labeling
1: initialize Lout and Lin of each vertex to ∅
2: topologically sort G into t topological levels of vertices

L(G) = {Li(G)}
3: while L← PickLevel(G) do
4: for c ∈ L do
5: Lout(u)← Lout(u) ∪ {c}, for u ∈ anc(c)
6: Lin(v)← Lin(v) ∪ {c}, for v ∈ desc(c)
7: G← G\c . Remove c and incident edges of c

8: function PickLevel(G)
9: if E(G) == ∅ then return ∅ . Terminating cond.

10: maintain |nbin(v)| and |nbout(v)| for each v
11: return argmaxL∈L(G)(Util(L))

12: function Util(L)

13: return
∑

v∈L(|nbin(v)|+|nbout(v)|)
|L| . Formula 4

Table 4: Statistics of real-world and synthetic datasets

Graph G |V (G)| |E(G)| |V (GSCC )| |E(GSCC )|
p2p-30 36,682 88,328 28,193 56,622

p2p-31 62,586 147,892 48,438 96,976

Cit-HepPh 34,546 421,578 21,608 281,030

Amazon0302 262,111 1,234,877 6,594 30,785

Wiki-Vote 7,115 103,689 5,816 64,233

WikiTalk 2,394,385 5,021,410 2,281,879 2,311,570

LiveJournal 4,847,571 68,993,773 971,232 1,079,293

web-BerkStan 685,230 7,600,595 109,406 583,771

6. EXPERIMENTAL EVALUATION
In this section, we present a detailed experimental evalu-

ation to investigate the performance of our techniques, mui-
2-hop and ppTopo, on real world datasets.
Experimental setup. We obtained the implementations
of existing works from their authors [32] and [30] for experi-
mental comparisons. We implemented our method in JAVA.
The timings of our experiments were measured by running
our implementations on a machine with a 2.93GHz CPU and
8GB memory. We remark that the SP is often equipped
with powerful machines. For simplicity, we use the same
machine configuration for the SP and the client. We bench-
marked our implementations with 8 real-world datasets2 in-
cluding both small and massive graphs. Some important
statistics of the datasets are reported in Table 4.

6.1 Performance of existing work
In this subsection, we first report the performance of

existing work. We show the statistics and performance of
the state-of-art approach of mui-2-hop [30].

Table 5 reports the characteristics of mui-2-hop. It shows
that the number of trues in TC(GSCC) (|TC(GSCC)|) are
around 7% of |V (GSCC)|2. Thus, this is favorable to mui-2-
hop as it is designed for sparse graphs. We also note that the
sizes of mui-2-hop are significantly smaller than |V (GSCC)|2
(at most 3%). However, since mui-2-hop builds the transi-
tive closure of the graph in its construction procedure, the
implementation of mui-2-hop cannot run on networks larger
than those listed in Table 5 because the corresponding size
of the transitive closure exceeds the size of memory.

2The datasets are available at http://snap.stanford.edu/data/.

Table 5: Statistics of mui-2-hop

Graph G |mui-2-hop| |TC(GSCC )| |V (GSCC )|2 Cons. time

p2p-30 2.10M 7.02M 794.85M 6min12s

p2p-31 5.69M 18.17M 2.35G 28min12s

Cit-HepPh 17.73M 84.25M 466.91M 19min20s

Amazon0302 367.10K 28.075K 43.48M 15.21s

Wiki-Vote 927.44K 3.93M 33.83M 20.503s

Query performance of mui-2-hop. For the reachabil-
ity queries, we randomly selected 1,000 pairs of vertices as
queries. The time cost at the SP side for running all the
queries are small, in particular, at most 0.18s for real data
graphs.

We remark that while the query time is short, as discussed
in Section 3, it is less secure than our proposed method.

6.2 Performance of ppTopo

In this part, we show the statistics and performance for
ppTopo.
Distinct centers. Table 6 lists the number of distinct cen-
ters |W | of the proposed algorithm, ppTopoConstruction.
Table 6 shows that the distinct centers of TF-labeling are
almost one fifth of that of |V (GSCC)| for graphs with small
degree, e.g., p2p-30. For massive graphs, such as LiverJour-
nal, the size of the distinct centers is around 30% which is
much less than that of the nodes.

Encryption performance of ppTopo. Table 7 reports the
encryption performance with the two addition encryption
algorithms. The first one is a partially homomorphic en-
cryption called Paillier [21] and the second one is an efficient
encryption that supports partial matrix additions and mul-
tiplications called CGBE [10]. These encryption approaches
can work on graphs. We set the time limit of this experi-
ment as 48 hours. We cut the corresponding experiment if
it cannot finish in time and we use DNF in the results to
denote that. As the results shown in Table 7, Paillier is the
most time-consuming approach because additive homomor-
phic encryption is known to be inefficient. More specifically,
Paillier cannot finish encrypting on some massive graphs,
such as WikiTalk and LiveJournal, in limited time. When
compared to Paillier, the encryption time cost of CGBE is
almost 25-30 times faster than that of Paillier. Our results
show that the encryption time of our approach of ASPE3 is
even about 5 times faster than that of CGBE. The reason
is that, both Paillier and CGBE consider each individual
node separately and apply multiple operations on each node
to achieve the security requirement. Our approach outper-
forms them as we consider a d-dimensional vector at a time
with only several matrix operations on them.

Query performance of ppTopo. Regarding the query per-
formance, we randomly selected 1,000 pairs of vertices as
our queries. We measured the time cost of query processing
at the SP side and the decryption cost at the client side to
study the query performance. The results are shown in Ta-
ble 8 and Table 9, respectively. Table 8 shows that ASPE3
is about one order of magnitude slower than Paillier at the
SP. The reason is that Paillier requires multiplications of
|W | encrypted centers, which could be faster than the ma-
trix operations of ASPE3 when the graphs are small. Ta-
ble 9 shows that the decryption performance of ASPE3 is 3
orders of magnitude faster than Paillier, because ASPE3 re-



Table 6: Distinct centers of ppTopo

Graph G |V (GSCC )| ppTopo Cons. time

p2p-30 28,193 3,683 23.127s

p2p-31 48,438 7,112 22.988s

Cit-HepPh 21,608 13,039 22.346s

Amazon0302 6,594 1,273 834ms

Wiki-Vote 5,816 1,017 601ms

WikiTalk 2,281,879 31,161 7hours57min

LiveJournal 971,232 38,483 1hour23min

web-BerkStan 109,406 30,253 5min51s

Table 7: Encryption performance of TF-labeling

Graph G ASPE3 Paillier CGBE

p2p-30 33.17s 1hour37min 3min28s

p2p-31 1min51s 4hours52min 11min55s

Cit-HepPh 1min30s 4hours2min 9min43s

Amazon0302 2.83s 8min32s 16.74s

Wiki-Vote 1.95s 5min0s 11.78s

WikiTalk 6hours21min DNF 41hours29min

LiveJournal 3hours13min DNF 21hours21min

web-BerkStan 18min37s 47hours2min 1hour52min

quires essentially 1 division of two large numbers, while Pail-
lier requires essentially 1 exponentiation modulo for each of
O(|W |) encrypted messages. Importantly, ASPE3 finishes
on all graphs while the Paillier encryption did not finish
when graphs are massive (e.g., WikiTalk and LiverJournal).
Also, the performance bottleneck is the decryption at the
client side as the clients may not be always equipped with
powerful machines. Therefore, ASPE3 is more competitive
than Paillier for private reachability queries as it costs much
less at the client side. Similar arguments can be applied
to CGBE, as its decryption times are almost always signifi-
cantly slower than ASPE3’s.

Effectiveness of Algorithm 1. Table 10 and Table 11
report the encryption and decryption performance with
and without the heuristic algorithm optimizations in Algo-
rithm 1. The algorithm without the heuristic algorithm is
the original TF-labeling algorithm. Table 10 shows that Al-
gorithm 1 can reduce 60% distinct centers for some graphs
and 10% ∼ 40% of encryption times, e.g., p2p-30∼p2p-
31. Such optimizations perform well especially on massive
graphs because it can reduce the size of distinct centers
which will reduce the size of the vectors need to be con-
sidered. For the decryption performance at the client side,
Table 11 shows that the Algorithm 1 leads to similar im-
provement on query performance. It is obvious that the
smaller the number of distinct centers, the better the de-
cryption performance. Moreover, the heuristic algorithm
can reduce 60% query time at most, e.g., Wiki-Vote.

Table 8: Total times of 1,000 privacy intersections at the
SP side

Graph G ASPE3 Paillier CGBE

p2p-30 1.18s 152.2ms 11.97s
p2p-31 2.25s 266.6ms 23.16s

Cit-HepPh 4.26s 497.1ms 42.72s
Amazon0302 406ms 57.8ms 4.16s
Wiki-Vote 334ms 38ms 3.23s
WikiTalk 11.007s DNF 2min2s

LiveJournal 14.180s DNF 2min29s
web-BerkStan 11.072s 1.37s 1min55s

Table 9: Time cost of 1,000 decryptions at the client side

Graph G ASPE3 Paillier CGBE

p2p-30 18.9ms 3min27s 55.5ms

p2p-31 34.6ms 6min2ss 56.4ms

Cit-HepPh 61.1ms 11min16s 56.7ms

Amazon0302 2.7ms 1min18s 59.3ms

Wiki-Vote 2.6ms 51.68s 55.8ms

WikiTalk 129.5ms DNF 133ms

LiveJournal 174.4ms DNF 153ms

web-BerkStan 128.7ms 30min19s 116ms

Table 10: Encryption performance of opt. in ASPE3

Graph
none-optimized optimized

|W | Encrypt. time |W | Encrypt. time

p2p-30 4,721 42.84s 3,683 33.17s

p2p-31 8,309 2min10s 7,112 1min51s

Cit-HepPh 18,158 2min14s 13,039 1min30s

Amazon0302 844 1.84s 1,273 2.83s

Wiki-Vote 2,467 4.98s 1,017 1.95s

WikiTalk 56,934 14hours2min 31,161 6hours21min

LiveJournal 52,649 5hours30min 38,483 3hours13min

web-BerkStan 37,155 26min56s 30,253 18min37s

7. RELATED WORK
In addition to the privacy-preserving 2-hop labelings ([32]

and [30]) discussed in Section 3, there have been a few re-
lated research. (Due to space restrictions, we omit the dis-
cussions on other privacy-preserving works that are not di-
rectly relevant to graph data.)

There have been related works on security of graph
queries. One stream of works addresses the authenticity of
subgraph data or query answers [19, 18, 17, 11], where the
clients verify the data/answers returned by an SP are not
tampered with.

Regarding the confidentiality of graph queries or data, He
et al. [13] analyze the reachability of vertices and Gao et
al. [12] propose neighborhood-privacy protected shortest dis-
tance. However, their privacy targets are different from our
work. Mouratidis et al. [20] determine the shortest path
of the query nodes with no information leakage by using
PIR [8]. However, the high computational cost of PIR is still
a concern. Chang et al. [5] consider privacy model based on
k-automorphism for subgraph matching. Cao et al. [4] and
Fan et al [10] consider subgraph queries but not reachabil-
ity queries. Cao te al. [3] investigated patterns queries on
encrypted trees.

8. CONCLUSIONS
This paper studies privacy-preserving query services for

reachability queries under the paradigm of data outsourc-
ing. The paper is the first work that can construct privacy-
preserving index for large networks. Our main technique
relies on adopting the concept of topological folding for scal-
able index construction. Private reachability query process-
ing is done by private intersections. We propose a novel
asymmetric scalar product encryption modulo 3 (ASPE3)
for efficient private intersection. We have experimentally
compared with existing work and showed that our proposed
techniques are efficient and effective on large networks, and
APSE3 is efficient when compared related encryptions in-
cluding Paillier and CGBE. As for future work, we are
investigating the extension on label-constraint reachability
queries.



Table 11: Decryption performance of opt. at client side

Graph
none-optimized optimized
|W | Query time |W | Query time

p2p-30 4,721 20.3ms 3,683 18.9ms

p2p-31 8,309 33.3ms 7,112 34.6ms

Cit-HepPh 18,158 112.6ms 13,039 61.1ms

Amazon0302 844 2.2ms 1,273 2.7ms

Wiki-Vote 2,467 5.8ms 1,017 2.6ms

WikiTalk 56,934 350.0ms 31,161 129.5ms

LiveJournal 52,649 298.1ms 38,483 174.4ms

web-BerkStan 37,155 182.3ms 30,253 128.7ms
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