On the Optimality of Holistic Algorithms for
Twig Queries

Byron Choil, Malika Mahoui!, and Derick Wood?

! University of Pennsylvania
{kkchoi, mmahoui}@seas.upenn.edu
? HKUST
dwood@cs.ust.hk

Abstract. Streaming XML documents has many emerging applications.
However, in this paper, we show that the restrictions imposed by data
streaming are too restrictive for processing twig queries — the core opera-
tion for XML query processing. Previous proposed algorithm TwigStack
is an optimal algorithm for processing twig queries with only descen-
dent edges over streams of nodes. The cause of the suboptimality of the
TwigStack algorithm is the structurally recursions appearing in XML
documents. We show that without relaxing the data streaming model, it
is not possible to develop an optimal holistic algorithm for twig queries.
Also the computation of the twig queries is not memory bounded. This
motivates us to study two variations of the data streaming model: (1)
offline sorting is allowed and the algorithm is allowed to select the cor-
rect nodes to be streamed and (2) multiple scans on the data streams
are allowed. We show the lower bounds of the two variations.

1 Introduction

As much database research has shifted its focus from relational systems to the
extensions on semistructured data and XML [1], there is a growing need for
processing XML document streams efficiently. Recently, streaming XML docu-
ments has many emerging applications, e.g. in monitoring stock markets and in
managing the network traffic. In such applications, the systems do not know the
size of the XML document streams and do not have the access to sort the items
in the streams. Also, an item in a stream is either stored in the main memory or
discarded once it has been processed. As a key step in developing a data stream
management system, Arasu and his colleagues [2] study the theoretical issues of
some important classes of relational queries over data streams. However, none
of the previous work has studied some theoretical issues of the core operation —
the twig queries — for XML query processing over data streams.

Recently, efficient algorithms [6,10,9, 8] have been proposed to evaluate twig
queries in XML-enabled relational databases. These algorithms typically decom-
pose the queries into subqueries, evaluate the subqueries and combine the results
of the subqueries. One drawback of this approach is that intermediate results
can be large even though the results can be relatively small. In contrast, holistic



algorithms for twig queries evaluate a twig query as a whole. Hence, memory
is not used unwisely to store irrelevant nodes. Algorithms as such are useful in
data streaming since the sizes of the streams is usually not known in advance.

The holistic twig join algorithm called TwigStack was recently proposed by
Bruno and his co-researchers [4]. It evaluates twig queries as a whole over streams
of XML documents efficiently. Each node in the twig query is associated with a
stream of nodes. The algorithm scans the streams only once and assigns constant
memory only to the nodes that participate in at least one solution. Thus, the
algorithm is asymptotically optimal among all sequential algorithms that read
the entire input. However, the algorithm is suboptimal when the twig queries
contain child edges.

We demonstrate that it is not possible to develop an optimal holistic algo-
rithm for evaluating twig queries. This negative result implies that either the
data streaming model [3] or our assumptions about the streams are too restric-
tive for processing twig queries. We consider two variations of the data streaming
model. First, document preprocessing is allowed and the corresponding optimal
holistic algorithm is allowed selecting the correct nodes to be streamed. Second,
multiple scans of the data streams are allowed. We present some lower bounds
for the two computation models.

1.1 Background and the Problem Statement

We describe the node representation and the assumptions about the streams of
nodes that we use. We also briefly describe the syntax and the semantics of twig
queries. Finally, we describe the technical problem that we investigate.

(19,2) al
/ A
(2:7? b1 ®8,2C, B// \\C
@63 a,
/ 7N\
(4:4,2) b2 (55.4C; D, D,

Figure. 1. An example XML document. Figure. 2. Graphical representation of

[1A(/]B, []C (/]Dy, /D).

Twig queries are applied to the XML documents represented as follows. A
document is modeled as a label tree. Nodes are represented by (1) the preorder
number, (2) the postorder number and (3) the depth of the node. An example
is to be found in Fig. 1.

Assumptions. We assume that the preorder number, the postorder number,
the depth and the label are the only accessible information of a node. These
assumptions imply the followings:

1. Given any two nodes, one can compute the ancestor-descendent and parent-
child relationship of the two nodes in constant time.



2. One can compute the depth of a node in constant time.

Definition 1. The syntaz of a twig query, Twig, is defined as follows in Backus-
Naur Form:

Step ::= /| //

NodeTest ::= label

Path ::= Step NodeTest | Step NodeTest Path

Twig ::= Path | Path (Twig, Twig, ..., Twig)

We first give the syntax of twig queries in Definition 1. The steps ¢/’ and ‘//’
denote advancing one step from a parent node to its children nodes and from
an ancestor node to its descendent nodes, respectively. Given a set of nodes as
input, a NodeTest returns the subset of nodes that have the same label as the
NodeTest. A path is a sequence of alternating steps and node tests. A twig
is path possibly followed by branches, that are also twigs. Fig. 2 graphically
represents the twig query //A ( //B, //C (//D1, //D3)). The subscript of the
D-node test denotes its occurrence in the query. The solution of a twig query is
the set of all node combinations that satisfy the query.

Since a stream contains only nodes with the same label, the partial ordering
of two nodes in a stream is only defined if they have the same label. a; < as is
interpreted as node a; precedes node as in the A-stream.

Our computation model assumes that there is a stream of nodes associated
with a node test in the twig query such that the nodes satisfy the node test.
A stream can be viewed as a pop-only stack. For example, given the document
and the query shown in Fig. 1 and Fig. 2, respectively, A, B, C, D; and D, are
associated with a stream of A-, B-, C-, and D-nodes, denoted by T4, Tg, Tc,
Tp, and Tp, and defined by T4 = [a1,az], T = [b1,b2], Tc = [c1,¢2], Tp, = [
] and Tp, = [ ]. We will call the nodes that participate in at least one solution
the useful nodes and the remaining nodes useless nodes.

Definition 2. An algorithm for twig queries is asymptotically optimal if it re-
turns the solution of the query by using: (1) a single forward scan of the streams,
(2) constant memory for each useful nodes and (8) constant time processing each
of the nodes in the streams.

The problem statement is given as follows. Given a twig query and its asso-
ciated streams, is it possible to design an asymptotically optimal algorithm for
all twig queries.

1.2 The Suboptimality of the TwigStack Algorithm

The TwigStack algorithm [4] has been proved to be asymptotically optimal
for evaluating descendent-edge-only twig queries. We demonstrate the relevant
parts of the algorithm with two running examples. The first example show an
optimal evaluation of a twig query and the second example shows a suboptimal
evaluation of a twig query. In both cases, we use the TwigStack algorithm.



Ezxample 1. We demonstrate the evaluation of the descendent-edge-only queries
in this example. The query @1 = //A (//B, //C) is applied to the document
shown in Fig. 1. Nodes in a stream are given in preorder: T4 = [a1, a2], TB
= [b1, ba] and To = [c1, ¢o]. Initially, the nodes aq, by and ¢; are at the top
of Ty, T and T¢, respectively. Since b; and ¢; are descendents of aq, a; is a
useful node because of the implications of 1. The stream T4 is advanced. The
next A-node is az. We examine the node b; which is useful because of a;. Tg is
advanced and by is the next B-node. Similarly, as is also useful. Now there are
no further A-nodes in T'4. The B-node by is useful because of a». T'g is advanced.
The stream T is advanced and ¢» is useful because of a;. Hence the solution is
returned by using one forward scan, constant memory for each useful nodes and
constant time processing each of the nodes in the stream. We have skipped the
details of the reconstruction of the result from the encoding of the intermediate
results produced by the TwigStack algorithm.

Example 2. We demonstrate the evaluation of a twig query containing some child
edges [4]. The TwigStack algorithm is suboptimal in this case. The query Q2 =
//A (/B, /C) and the same streams as in the previous example. No algorithm
can determine if a; is useful without advancing T¢. If T is advanced, however,
c1 is discarded and as will be declared useless. If the A stream is advanced, a,
is discarded. To ensure that all useful nodes are reported, a; must be stored in
the main-memory. The TwigStack algorithm will process a2 and then a;. This
shows the suboptimality of the algorithm.

Definition 3. A labell is structurally recursive if | — «, where « is the content
model of | in the DTD, and there is at least one occurrence of l in « directly or
indirectly. A DTD is recursive if it contains a structurally recursive label.

There are two important observations about the TwigStack algorithm. First,
the nodes in a stream are sorted by the preorder numbering. Having this fact
and the assumptions in Section 1.1, before the query evaluation, we have enough
information answering the descendent-edge-only twig queries optimally. It is nat-
ural to order the nodes by some other sort keys. Second, the reason for sub-
optimality is that an A-node can have A-descendents; that is, the label A is
structurally recursive.

The organization of the rest of the paper is as follows. We show in Section 2
that the data streaming model is too restrictive for processing the twig queries
under the assumptions of Section 1.1. In Section 3, we show that when offline
processing is allowed, optimal holistic algorithms become possible but the lower
bound of offline processing is high. Section 4 shows that when multiple scans of
the streams are allowed, the optimality becomes possible but the lower bound
of the number of scans is high. We provide conclusions in Section 5.

2 First Few Questions on Optimality

Our first few questions on processing twig queries in the data streaming context
are: (1) is it possible to design such algorithms and (2) do they use bounded



memory. We argue that the answer to both questions is negative. In Theorem
1, we will show that the data streaming model is too restrictive for the holistic
evaluation of twig queries.

Proposition 1. To satisfy the memory requirement of data streaming, and to
allow one scan of the streams, without loss of generality, if a; < a; then for all
b; in N; and b; in N;, b; < b;, where N; = a;/p and N; = a;/p, p is a Path
with /" edges only.

Proof. Proof by a structural induction on Path and by contradiction. O

Theorem 1. Given the assumptions in Section 1.1, there is no ordering of nodes
such that the holistic evaluation of all twig queries is optimal.

Proof. Consider the complete binary tree with 15 A nodes shown in Appendix
A. Proposition 1 implies that if a; < a;, then the descendent nodes of a; <
the descendent nodes of a;. Consider the query //A (/A, /A). We have three
streams of A nodes, T'4,, T4, and T4,. Let the top node of the three streams
are pi1, p2 and ps, respectively.

The possible partial ordering of a; and some other A-nodes are determined
by performing a case analysis. Without loss of generality, assume that as < as.

Case 1. Assume that a; < as. It implies that there must be a configuration
(*) such that p; = a1, p2 = a2 and p3 = as. If the top of Ty, is a3, then as and
all of its descendents in T4, have been discarded. When p; is advanced to ag,
no solution is reported. Hence, the assumption is not valid.

Case 2. Assume that ag < a;. The configuration (*) must occur. If the top
of Ty, is ag, then az and all of its descendents in T4, are not seen yet. If the
top of Ty, is a;, then az and all of its descendents in T4, have been discarded.
Some solution is missed. Hence, the assumption is not valid.

Case 3. Assume that ay < a; < az. The configuration (*) must occur. De-
note the set of nodes that are a left and right child of some node Ar and Ag,
respectively. Among as and its descendents, ax must be the last node in Ay.
Otherwise, at least one solution will be missing. Similarly, a3 must be the first
node in Ap among a3 and its descendents. Without loss of generality, assume
that a4 < as and ag < ay. There must not be useful descendent nodes of as in
the rest of T4, since ps = a3. Therefore a;; is the only node which can follow
az. Similarly, a;2 is the only node which can precede a;.

The possible orderings are a11< a1< @12, a11< a12< a1 and a1< a11< azs.

Similarly, we argue about the position of as. The possible orderings are ag<
as< ajg, a9< a19< az and as< ag< ajg. Since ay is the last Ap node among as
and its descendents, and aj¢ is in Ay, ag< a10< az is the only possible ordering,.

However, this ordering causes the evaluation of some twig queries suboptimal.
Consider a similar complete binary tree with all B-nodes except for ayg, as and
as. And the query is //AJA. We have T4, = Ta, = [a10, a2, as] and initially, py
= a1 and p2 = a19. p2 cannot be advanced until p; is advanced to as. That is, as
is discarded. Thus, the assumption is wrong. We conclude that it is not possible
to have an ordering of nodes for optimal evaluation for all twig queries. O



Figure. 3. A complete binary tree with 15 A nodes. Figure. 4. Example used
in Lemma 1 in Sec. 4.

Proposition 2. Given the assumptions in Section 1.1, some twig queries are
not computable with bounded memory for all possible document streams.

Proof. The twig query //A (/A, /A) is reduced to a SPJ query over streams of
tuples. Assume a node is represented by a 3-ary tuple: <preorder, postorder,
depth>. The corresponding SPJ query is 7, (op(Ta, X Ta, X T4,)), where the
predicate L is all the attributes of the three streams and P is T4, .preorder <
Ts,.preorder N Tga,.postorder > Ty,.postorder A Ta,.depth = T4, .depth + 1
T4, .preorder < Ta,.preorder A T4, .postorder > T a,.postorder A Ta,.depth =
T4, .depth + 1 A Ty, .preorder # T4, .preorder. We claim that the twig query is
bounded memory computable if and only if the SPJ query is bounded memory
computable. Given arbitrary node streams, all the preorder, postorder and depth
attributes are not bounded [2]. Hence, there does not exist a constant M such
that the evaluation of the SPJ query over all possible stream instances requires
less than M. Therefore, the SPJ query is not memory bounded computable. 0O

3 Offline Sorting

In Theorem 1, we show that the data streaming model is too restrictive for
optimal holistic evaluation. We consider a realistic variation in this section. We
assume that a powerful server is available managing the XML documents. The
client sends the twig query to the server, the server analyzes the query and sends
the node streams to the client and the client evaluates the query.

Since we demonstrated that the suboptimality is caused by the structurally
recursive labels, we assume that recursions are “removed” by offline sorting on
the server side. We illustrate the idea by the following example. Consider the
query @ = //A (/B, /C). Now we sort the nodes by (1) the preorder number of
a node’s first A ancestor ® and (2) the preorder number of a node. The streams
become [a1, ag], [b1, b2] and [ca, ¢1]. Note that the subtree rooted at the a;
node is read before that at the as node. Locating the useful nodes of () becomes
straightforward. However, one can find a twig query which cannot be evaluated
optimally by using this ordering. The natural question is to ask the number of
necessary orderings for answering all twig queries optimally.

3 0 is assigned to the nodes that do not have an A ancestor.



We first define the smallest twig queries that may lead to the suboptimality
of the TwigStack algorithm. We will use the queries to show the lower bound of
the number of necessary orderings.

Definition 4. A twig query is a simple child-edge query if descendent edges
never follow child edges in the paths of the twig query.

| O A

@

J @

AN 1 ANS
) C C E
AN

Figure. 5. (1) a twig query which is not a simple child-edge query; (2) a simple child-
edge twig query; and (3) a twig query is a tree of simple child-edge twig queries con-
nected by descendent edges.

A twig query is a set of simple child-edge queries in which queries are con-
nected by descendent edges. (See Fig. 5.)

Theorem 2. Let m be the number of structurally recursive labels in the DTD,
d be the depth of the document and n is the number of nodes in the document.
Q(m™m(dm) x n) disk space is required to store the orderings of nodes for
answering all twig queries optimally.

Proof. Suppose a simple child-edge twig query @ (see Fig. 5 (1)) with the root
A, where A is a structurally recursive label. We sort the nodes by two sort keys:
(1) the preorder number of its first A-ancestor and (2) its preorder number. The
visualization of this sorting is shown in Fig. 6. For each structurally recursive
label X, one needs to spend n storing the nodes in which X-recursions are
removed. Suppose m labels are structurally recursive, m X n space is required.
These orderings produced by the sorting are all necessary because if one of these
orderings is missing, then we can use the proof of Theorem 1 to show that
optimality is not possible.

A twig query is a tree of simple child-edge queries. Hence, after sorting
the nodes by X, we need to remove other recursions in each X subtree. The
total number of orderings is m™(®™)  Therefore, if we store the nodes by
Q(m™min(dm) » ) optimal holistic algorithms become possible. O

3.1 A Restricted Case

In practice, the number of orderings of the nodes in a document is significantly
smaller than the one in the worst case. This is due to the fact that structurally



recursive labels are not always mutually recursive. Suppose some constraints
on the XML document is given, there are some guarantees on the number of
necessary orderings. The trivial case is that when the documents conform to a
non-recursive DTD, the TwigStack algorithm returns all solution optimally. We
also identify a restricted case in which the exponential blowup in the number of
orderings does not occur.

Figure. 6. Visualization of sorting nodes Figure. 7. The transformation described in
by (1) the preorder # of their first A an- the proof of Proposition 3
cestor and (2) their preorder #.

Definition 5. A label l is linearly recursive if and only if | — «, where « is the
content model of | in the DTD, and there is a single occurrence of l in a directly
or indirectly. A label | is non-linearly recursive if and only if | - o and there is
more than one occurrences of | in a directly or indirectly.

Proposition 3. There is an ordering of nodes such that all twig queries on the
documents conforming to a linearly recursive DTD can be evaluated asymptoti-
cally optimally.

Proof. By definition, if the label of a node (say A) is linearly recursive, there
is at most one child node which is an ancestor of its A-descendents. We cite a
property of the TwigStack algorithm [5]: it guarantees that the ancestor nodes of
a node n that uses a partial solution rooted at a are returned before a is returned
by the core iterative procedure of the TwigStack algorithm. Suppose a; is an
immediate A-ancestor of a;. Denote the descendents of a node n as desc(n). If
the document is transformed such that the nodes in desc(a;) - desc(a;) precedes
the nodes in desc(a;) (*), then the TwigStack algorithm returns all the solution
due to the property. Consider a transformation as such: for each X-node, the
child node that is an ancestor of some X-nodes is placed following other child
nodes. The transformation is illustrated by the example in Fig. 7. Then we assign
the numbers to the transformed document and sort the nodes by their preorder
number. The transformed document always satisfies (*). |

A survey on real world DTDs [7] shows that non-recursive DTDs and linearly
recursive DTDs are few in practice. In general, the optimal holistic evaluation
for all twig queries requires at least an exponential number of orderings.



4 Multiple Scans

The second attempt on supporting more twig queries optimally is to allow mul-
tiple scans on the streams. We show that it is possible to return the solution
by using the TwigStack algorithm repeatedly. However, the lower bound of the
number of scan is rather high 2(d t), where d and ¢ are the depth of the docu-
ment and the number of simple child-edge queries in the twig query, respectively.

Lemma 1. The number of scans required by the stream evaluation of a simple
child-edge query is £2(d), where d is the depth of the document.

Proof. We call an A subtree with k A ancestors an (A, k)-subtree. Assume the
document contains an (A, k)-subtree and only m scans are allowed, where m
< k. There must be a scan that processes some (A, i)-subtrees and some (A4,
j)-subtrees, where ¢ > j. We argue that one scan is not sufficient to find all
solution of these subtrees.

Consider the document shown in Fig. 4. Assume the a;-subtree is an (A,
i)-subtree and as-subtree and as-subtree are (A, j)-subtrees, where 1 < j and
az is an ancestor of a2 and az. Without loss of generality, assume that as < as.
By using Proposition 1, desc(as) precedes desc(az). Denote N to be nodes in
aj-subtree but not in as- and az-subtrees. (1) Nodes in N cannot follow desc(as)
and desc(as) since given the query //A//B//C, either (a1, b1, ¢1) (and ¢3) or
(as, ba, c2) is missed by using a scan. (2) Nodes in N cannot precede desc(as)
and desc(as) since given the query //A//D//E, either (a1, ds, €2) or (aa, da,
e1) is missed by using a scan. (3) Nodes in N cannot be in between desc(as)
and desc(ag) since given the query //A//D//C, c3 must precede ¢; since dy
precedes di. Consider another document in which z and y are swapped with
dy and e;, respectively. Since c3 precedes ¢; in the C-stream and (ay, di, ¢3) is
missed.

Since a document with the depth d contains at most (A, d)-subtrees, the
lower bound of the number of scans for simple child-edge query is 2(d). O

Theorem 3. Given the assumptions in Section 1.1, except that multiple scans
is allowed, the solution of a twig query is returned by using 2(d *) scans on the
data streams, where d is the depth of the document and t is the minimal number
of simple child-edge queries in the twig query.

Proof. Consider a twig query containing ¢ simple child-edge queries, ¢1, g2, ---,
g¢, with their root r1, ra, ..., 74, respectively. We use a t x 1 vector (vy, va, ...
v¢) to denote the subtrees that a scan is processing. For example, consider the
query //A /B [/C /D. g and ¢, are A /B and C /D and r; and r» are A and
C, respectively. V = (1, 1) means that the scan is processing the (A4, 1)-subtrees
and (C, 1)-subtrees. The number of possible values of V is O(d 2) although the
scan is useless when v1 + vy > d. In general, the number of possible values of V/
or the twig query containing ¢ simple child-edge queries is in O(d ?).

Suppose the (k1, ko, ..., kt)-th scan is not performed, there is a scan processing
some (r;, k;)-subtrees and some (r;, k)-subtrees for some k£ in one scan. By the



same argument used in the proof of Lemma 1, we can construct a case such that
some of the solution is not reported. Thus, all O(d !) scans are necessary. O

5 Conclusions

We studied processing twig queries — the core operation for XML query pro-
cessing — over streams of XML documents. We showed that it is not possible
to develop an asymptotically optimal holistic twig join algorithm in the con-
text of data streaming. We also show that the computation of twig queries is
not memory-bounded. These negative results indicate that the data streaming
model is too restrictive for twig query processing. We locate that the cause of
the suboptimality of the holistic evaluation of twig queries is the structurally
recursive labels in the document. Two alternative computation models for twig
query processing are presented: (1) offline sorting is allowed and the algorithm is
allowed selecting the correct ordering of nodes to be streamed and (2) multiple
scans is allowed. We show high lower bounds for the two models.

Acknowledgements

The work of Byron Choi was done while he was visiting HKUST. Byron Choi and
Derick Wood were supported under a Research Grants Council Earmarked Re-
search Grant. The authors owe Susan Davidson, Wilfred Ng and Jerome Simeon
a large debt of gratitude for insightful discussions.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, Los Altos, USA, 1999.

2. A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom. Characterizing
Memory Requirements for Queries over Continuous Data Streams. In PODS, pages
221-232, Jun. 2002.

3. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and Issues
in Data Stream Systems. In PODS, pages 1-16, Jun. 2002.

4. N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal XML
Pattern Matching. In SIGMOD, pages 310-321, Jun. 2002.

5. N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal XML
Pattern Matching. Technical Report. Columbia University, 2002.

6. S.-Y. Chien, Z. Vagena, D. Zhang, and V. J. Tsotras. Efficient Structural Joins on
Indexed XML Documents. In ICDE, pages 141-154, Feb. 2002.

7. B. Choi. What Are Real DTDs Like. In WebDB, pages 43-48, Jun. 2002.

8. M. L. Lee, B. C. Chua, W. Hsu, and K.-L. Tan. Efficient Evaluation of Multiple
Queries on Streaming XML Data. In CIKM, pages 118-125, Nov. 2002.

9. W. Wang, H. Jiang, H. Lu, and J. X. Yu. Containment Join Size Estimation:
Models and Methods. In SIGMOD, Jun. 2003.

10. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On Supporting Con-
tainment Queries in Relational Database Management Systems. ACM SIGMOD
Record, 30(2):425-436, 2001.



