Vectorizing and Querying Large XML Repositories

Peter Buneman Byron Choi Wenfei Fan Robert Hutchison Robert Mann Stratis D. Viglas
University of Edinburgh
{opb@inf.ed,vibchoi@inf.ed,wenfei@inf.ed,r.hutchison@sms.ed,rgm@roe,sviglas@inf.ed }.ac.uk

Abstract tiguously storing the columns of a table is almost as old as
relational databases [4]. The benefitis that queries that only
involve a small number of columns require le&3. More-
query performance in relational databases. An extreme form of over, there are dramatic performance improvements to be
this technique, which we call vectorization, is to store each col- made if main-memory vector manipulation techniques can
umn separately. We use a generalization of vectorization as thepq applied to all or parts of these columns. The idea has
basis for a native XML store. The idea is to decompose an XML re-emerged in various places: in [8, 14] for object-oriented
document into a set of vectors that contain the data values and agatabases and in [2] for speeding up transfer between main
compressed skeleton that describes the structure. In order to duememory caches. It has also been used commercially in
this representation and produce results in the same vectorized for’Sybase IQ [19] and recently in financial analysis software
mat, we consider a practical fragment of XQuery and introduce \yhere it is combined with vector processing language tech-
the notion of query graphs and a novel graph reduction algorithm nology and has been successfully used to support data inte-

that allows us to leverage relational optimization techniques as gration [10]. In order to extend the idea oL we make
well as to reduce the unnecessary loading of data vectors and de-;se of some ideas in two recent pieces of research:
compression of skeletons. A preliminary experimental study basedXM”_L The *

on some scientific and synthetic XML data repositories in the order
of gigabytes supports the claim that these techniques are scalabl
and have the potential to provide performance comparable with
established relational database technology.

Vertical partitioning is a well-known technique for optimizing

semantic compressor” developed by Liefke
and Suciu [20] extends the idea of vertical partitioning to
&ML. The “columns” — we shall call themectorsin this
case — are the sequences of data values appearing under all
paths bearing the same sequence of tag names. In addition
to storing these columns, one also needs to store the tree-
1 Introduction like structure of the document, thseleton In XmILL the
purpose of this decomposition was to compressXkie

This is a preliminary report on a method of storing large document. Here welo notcompress the columns, and we
XML datasets in a fashion that allows them to be queried use adifferent methodor compressing the skeleton.
with efficiency that is comparable with — and may even sur- Skeleton Compression We extend [9] in which the tree-
pass — that of conventional relational database technologylike structure of the skeleton is compressed intoaAsg by
The method is based on a combination of two ideas: thesharing common subtrees. In that paper the compressed
first is a generalization of a vertical or “vectorized” organi- skeleton was then expanded in order to represent the result
zation of tabular data t’mL documents; the second is the of XPath evaluation. In contrast, here we generate\s—
use of a compression technique that enables us to keep thgsually highly contracted skeletorto represent the result
tree-like structure of axmL document in main memory. of XQuerywithout decompression. In fact, query evaluation
As an example of what is achievable by this method, a sim- proceeds along the same general lines as that of relational
ple select/projeckQueryon an 80 gigabyte astrononxL algebra. Just as each evaluation step of the relational alge-
dataset tooR7 seconds, while the same quensQL on the brayields a new table, each evaluation step in our evaluation
same dataset stored in a relational database reportedly takeggrocess generates a new skeleton and a new set of vectors.
over200 seconds on a comparable machine [17]. The rea- Our claim is that it is possible to construct a natiseL
son for this speedup is simple: tkeiL query performed the store and query engine that will match or outperform con-
equivalent of reading only columns of é868-column table, ventional relational database systems on highly regular data
and thel/O was thus reduced; the same efficiency could be and will continue to work well on irregular data sets. We
achieved by conventional vertical partitioning of relational should temper this claim with a few observations. First,
data. The novelty we claim is that the same technique can beour results are highly preliminary and we can hope to do
applied to a nativecML store and will generalize to queries little more than convince the reader of the credibility of
on relatively complex hierarchical data. this claim. Second, while we support the claim that vector-

The idea of implementing a relational database by con- ized representations may provide better query performance,

bib

e A

book

—

book

—

book

—

publisher author title publisher author title publisher author title
SBP RH Curation SBP RH XML AW SB AXML

article

PN

author author

Lo

DD RH

article

PN

author author

!

RH BC

article

PN

author

l

BC

title

l

XStore

title

|

XPath

title

l

pP2pP

Figure 1. An XML tree T

this is something of a “cheap shot” at established relational
technology, which provides much more functionality than
efficient query languages. For example, updates and lock-
ing may cause grave problems in vectorized representations
Fortunately, XML documents are typically static, and if not
(see Sect. 6) there may be promising techniques for upd
ing vectorized XML data. Finally, we note thagrtical par-
titioning is already a well-understood and widely-used tech-
nigue in the relational context, anectorizationis simply
an extreme case of vertical partitioning in which each col-
umn is a partition.

In the following sections we describe how this decom-
position of XML can be used in efficient query processing.
The main contributions are as follows.

e graph reduction: we describe a useful fragment of
XQuery (Sect. 3) and an evaluation technique for vec-
torized data (Sect. 4);

e complexity results: lower and upper bounds for query
evaluation over vectorized data are given in Sect. 3;

e preliminary experimental results: the effectiveness of
this approach is demonstrated in Sect. 5.

Section 6 discusses related work and topics for future work.

2 A \Vectorized Representation of XML

In this section we extend techniques from [20] and [9]
for representingkML documents. These will be the basis
for our implementation okKQuery.

2.1 Vectorizing XML

Figure 2 illustrates the basic method of decomposing an
XML document. Consider the depth-first traversal (which
is equivalent to a linear scan of the document) of a node-

/bib/book/publisher: [SBP, SBP, AW]

/bib/book/author: [RH, RH, SB]

/bib/bookititle: [Curation, XML, AXML]

/bib/article/author: [BC, RH, BC, DD, RH]
- /bib/articleftitle: [P2P, XStore, XPath]

Each of these vectors corresponds to a path of labels that

at]eads to a non-empty text node.

Now suppose that during this traversal we also gener-
ate a tree in which each of the text nodes is replaced by a
mark ¢) indicating the presence of text in the original doc-
ument. This tree is called trekeletonand the pai(S, V)
consisting of the skeleton and the vectors is the basis for the
decomposition irkxmiLL [20].

The important observation is that the originahL tree
can be faithfully reconstructed fro(, V'). To see this con-
sider a depth-first traversal 6f As we traverses we keep
a note of the sequence of path tags (a stack) from the root.
When we first encounter a node, we emit its start tag; when
we leave it we emit its end tag; and when we encounter a
text marker), we emit the next text value from the appro-
priate vector (we keep a cursor or index into each vector).

This method is faithful in that it is an order-preserving
reconstruction of the originaimML document. It can also
handle — though we have not illustrated this — attributes and
nodes with mixed content. The ideaxafiiLL is to achieve
good compression of axmL document by separately com-
pressing the vectors andsarial representation of the skele-
ton using standard [31] text compression techniques. How-
ever, wedepart fromxmiLL in that we do not compress
the vectors, and we use an entirely different technique for
compressing the skeletbn Moreover, we study efficient
evaluation ofXQuery directly over compressed skeletons,
an challenging issue beyond the scope of [20].

2.2 Skeleton compression

labeled tree representation of the document as depicted Re€turning to Fig. 1, consider the thrémok nodes.

in Fig. 1. Each time we encounter a text node, we ap-

Once we have replaced the text by markers, these three

pend the text to a vector whose name is the sequence ofodes have identical structure. Therefore we can replace

tag values on the path to that node. For example, whenthem by a single structure and put three edges from the
we first encounter the text nodguration we are on a Pib node to the tofpook node in this structure. Moreover,

path /bib/bookititle so we appencuration to since these edges ocatwnsecutivelye can indicate this

the vector named by this path. As we proceed through with a single edge togeth.er with a note of the number of
the tree we subsequently encounter the text nocds occurrences. Thus, working bottom-up, we can compress
and AXML These values are appended, in order, to the
/bib/booki/title vector. At the end of the traversal
we have generated the vectors:

1There is some evidence [3] that vector compression in which the com-
ponents of a vector are individually compressed, can be used effectively in
conjunction with query evaluation.

bib/book/publist bib/book/author bib/book/title

3) bib0 2) SBP RH Curation
/ I SBP RH XML 107
1 2 3 AW SB AXML (107
book article” (2) article
l W l bib/article/author bib/article/title
BC P2P A
publisher4 author5 title6 RH XStore
| BC XPath 360
DD)
RH (c) A tiny XML skeleton

(a) (Compressed) Skeletan (b) Data vectors

Figure 2. An XML tree, its skeleton and storage

the skeleton into @AG as shown in Fig. 2(a). Multiple can be prohibitively large. Thus odQuery evaluation will
consecutive edges are indicated by an annotdtignand generate new skeletons, which will typically be smaller than
an edge without annotation occurs once (in thes). In the original compressed skeleton. Consigeg, the query
contrast to [20] theAG skeleton iscompressethy sharing that selects the books in Fig. 1 or a select-project query on
subtrees with the same structure. In the sequel we considethe astronomy table. In both cases the skeleton for the re-
compressed skeletons only, also referred to as skeletons. sult will be smaller. Moreover, we shall see that in many

We define thevectorized representatiofor vectorized cases the smaller output skeleton can be constructed from
tree) of an XML treeT’, denoted bywEeC(T), to be a pair the input skeleton without intermediate decompression.
(S,V), whereS is the skeleton of” andV is the collection We end this section with two straightforward results that
of all data vectors of". It is easy to verify that for anymL are central to the later development.
treeT, there exists a vectorized representati@ac(7’) of T'
that isuniqueup to isomorphism.

The compressed skeleton can be implemented as a main
memory data structure. It should be apparent that, with the o . o
addition of a counter for multiply-occurring edges, a depth- ~ The only nontrivial part of this observation is that the
first traversal of the compressed skeleton can be arrange&ompres_sed skeleton can be constructed in linear time. This
with exactly the same properties of the original skeleton. iS ssentially the folkloric *hash-cons” method.

Thus we still have a lossless reconstruction of the original Proposition 2.2: An xmL treeT can be reconstructed from
XML document from its vectorized representation. its vectors and compressed skeleton in linear timé&in O

Some statistics for compression are reported in [9] for a
range ofxML data sets. The compressed skeleton almost
always fits comfortably into main memory, and even when
this is not possible, there are techniques for recursively vec-
torizing the skeleton and paying the price of an additional
join in the query processor (we do not report on this here).

The advantages of this compression are twofold. First, 3
the skeleton of regularly structured data compresses very

well. In an extreme case, the astronomy data set that we |n this section we study the problemx®uery[12] eval-
use in Sect. 5 consists of a single table with roughly 360 yation over vectorized data, and show that this problem in-
columns and 07 rows. The compressed skeleton, as shown troduces new optimization issues. To simplify the discus-
in Fig. 2(c), is tiny. In fact any reasonableiL represen- sjon, we consider a fragment®Query, denoted bxq. Be-
tation of relational or array data will compress similarly. It |ow we first presenkq. We then state the query evaluation
should be noted that this compression is independent of anyproblem and establish complexity results for the problem.

type/schema information such as @D, and moreover, base Finally we introduce a graph representatiorxaf queries.
type information, such as that provided kyL -Schema, is

certainly of help in further improving representation of the 3-1 XPath and XQuery

vectors. XPath. We consider a fragment ofQuerydefined in terms
The second advantage is part of the basis for our resultsof simple XPath [13] expressions. This class sifple

Although the skeleton can compress extremely well, it is xpath expressions, denoted Byis defined by:

nontrivial to use its compressed form directly for querying. s— 1 | p/p | pld o | p=—c

In [9] the skeleton wasxpandednew nodes were added to N prp- 1 Pl ¢ == P 1ivPp

represent the set of nodes in the original tree that would bewhere! denotes arxmL tag, ‘/’ stands for thechild-axis,

selected by an XPath query. Unfortunately uncompressedandgq in p[q] is called aqualifier in which ¢ is a constant of

skeletons, even after doing the obvious of encoding the tagstext value PCDATA).

Proposition 2.1: The vectorized representation and com-
pressed skeleton of atmL tree T can be computed in lin-
ear time in|T|. O

Note that this is linear in the size of theutput (i.e.
the original document.) It is easy to construct pathologi-
cal cases in which the compression is exponential. Unfor-
tunately we have not encountered any practical that
compresses quite so well!

An XQuery Fragment

A query p of P is evaluated at @ontext nodey in an
XML treeT’, and its result is the set of nodesBieachable
via p from v, denoted by [p]. Qualifiers are interpreted as
follows: at a context node, [p] holds iff v[p] is nonempty,
i.e., there exists a node reachable yifom v; and[p = (]
is true iff v[p] contains a text node whose value equals

A path termp of P is an expression of the form/p,
wherew is either a document nandoc or a variable$z,
andp is a P expression. By treating as the context node,
p computes the set of nodes reachablepyige., v[p]. We
use[p] to denotev[p] whenv is clear from the context.

We shall also consider an extensionfoby allowing the
wildcard «" and thedescendant-or-selixis ‘//’. We use
Pl*//1to denote this extension.

XQuery. We consider a class ofQuery of the form:

<result>
for $x1 in p1,
$1’2 in P2,

$2,, in py
where oL = p{and...and p), = p}
return exp(01, 02y - -+ 10m)
</result>

where

e p; is a path term of;

e o (p7) is either a text-value constant or a path term;

e o' = p” holds iff the sets of nodes reachable yiand
p' are not disjoint; that is, the intersection [pf] and
[p"] is nonempty (assune] = ¢);

e o, is a path term of the forrfiy, /ps, where$y; is one
of the variable$z,. .., $z,.

e exp is a sequence ofML element templatesvhere
each template is the same as»aaL element except
that it may contairpy, .. ., 0,, as parameters; the tem-
plate yields anxmL element given a substitution of
concretexML elements/values far, . . ., om.

The semantics of such a quefyis standard as defined
by XQuery[12]. Posed over arML treeT’, @ returns an
XML tree rooted at aesult node with children defined
by exp(o1,-..,0m). More specifically, leto, be $y;/ps
for s € [1,m]. Then for each tuple of values computed
by thefor andwhere clauses for instantiating theari-
able tuple($y1, ..., 3ym), the path term;,...,p,, are
evaluated, their results are substituted or. . ., 0,,, and
with the substitution a sequence xfiL elements defined
by exp(o1, ..., 0m) are added to the tree as children of the
result node. Let us refer to such a value tuple asran
stantiationof the variable tupl€$y,, . .., $y..).

We usexq for XQuery of this form when the XPath ex-
pressions are in the class P. Similarly, we xg&//! to de-
note thexQuery fragment defined wittP!*://I expressions.

Example 3.1: Posed over thamL data of Fig. 1, the fol-
lowing XQ queryQ, finds all book and article titles by au-
thors who have written a book and an article, with the book
having been published bgBP.
<result>
for $d in doc("bib.xml")/bib
$b in $d/book
$a in S$d/article
where $b/author = $a/author and
$b/publisher = 'SBP’
return $bititle, $altitle
</result>

The result of the query is shown in Fig. 3(a). O

For anyxQq (or xQ*//1) query@, there is an equivalent
XQ (or xQ™//1) query@’ such that)’ does not contain any
qualifiers in its embedded XPath expressions. Indeed, the
XPath qualifiers inQ can be straightforwardly encoded in
Q' by introducing fresh variables and new conjuncts in the
where clause of@’. Thus, w.l.o.g., in the sequel we only
consider queries without XPath qualifiers.

The fragmentsxQ and xQ!*//! can express manymL
gueries commonly found in practice. One can easily verify
that even the small fragmeRt is capable of expressing all
relational conjunctive queries.

3.2 Query Evaluation over Vectorized Data

The problem ofXQuery evaluation over vectorizeximML
data can be stated as follows. Given the vectorized represen-
tationvec(T) of anxMmL treeT and anXQuery @, the prob-
lem is to compute theectorized representationec(7"”) of
anotherxmL treeT” such thatl” = Q(T'), whereQ(T)
stands for applying) to T'. Observe that both the input and
the output of the computation are vectorizadL data.

Example 3.2: The vectorized representation of the result of
Qo given in Fig. 3(a) i9.50, Vp) shown in Fig. 3(b). O

A naive evaluation algorithrfor XQueryover vectorized
XML trees works as follows. Given a vectorizesiL tree
VEC(T') and a queny,

1. decompressEc(T) to restore the original’;
2. computeQ(T);
3. vectorizeQ(T).

Note that steps (1) and (3) take linear tim¢dt and|Q(T)|
respectively. Thus the complexity for evaluating queries
over vectorizedkML trees does not exceed its counterpart
over the originalxmL trees. From this and the proposi-
tion below we obtain an upper bound for evaluatig*//’
queries over vectorizexiML data.

Proposition 3.1: For anyxQ*//1 query@ andxmL treeT,

Q(T) can be computed in at moSY|T|!9!) time.]
Proof sketch:The complexity can be verified by a straight-
forward induction on the structure @f. m|

result

/result/title result

°
- $d i
Curation /book article *
‘//r/ \\\ result XStore 3;)/ \K;;
title title title title title title title title Curation . Jauth Jauth $byitl Satit]
i i i i l l l l l (8) XPath /pubhsherl\au or auvjr/ title a/title
. . title XML LI
'Curation' 'XStore' 'Curation' 'XPath' 'XML' 'XStore' 'XML' 'XPath' XStore 'SBP' AN
() Qo result XML (c) Query graph title
XPath
(d) Result skeleton
(b) (S0, Vo)
Figure 3. Result and representation ofan xQ query

Can we do better than exponential time? Intuitively this

Query graph. The query graplt7, of anxQ queryQ is a

is possible under certain conditions: as mentioned in the lastrooted acyclic directed grapiv£G), derived from theor

section, vectorization can lead to an exponential reduction
in size. Furthermore, the proposition below gives us an up-
per bound for the size of the skeletons and the number of
data vectors in the vectorized query results.

Proposition 3.2: Let vec(T) = (5,V) be the vectorized
representation of armL treeT’, Q be an arbitraryxQt-//!
query, andvec(7") = (S’, V') be the vectorized represen-
tation of 77 = Q(T'). Then|S’| is at mostO(|S]| |Q|) and
the cardinality ofl”’, i.e.,the number of vectors iti’, is no
larger than the cardinality of/. O

Proof sketch:This is because the number distinct sub-
trees in7T” is bounded byO(|S] |Q]), and the number of
distinctpaths inT” is no larger than the cardinality &f. O

This suggests that if we can directly compute the vec-
torized representation @p(vec(7”)) without first decom-
pressing’ec(7”), we may be able to achieve an exponential
reduction in evaluation time. This presents new optimiza-
tion opportunities as well as new challenges given rise by
guery evaluation over vectorizediL data.

Unfortunately, in the worst case the lower bound for
query evaluation is exponential, and may be as bad as un
compressed evaluation, even fap queries.

Proposition 3.3: The lower bound for the time complex-
ity of evaluatingxQ queries@ over vectorizedkML trees
VvEC(T) is |T|!<!. m

Proof sketch:This can be shown by constructing a set of
XQ queries and a set ofmL trees such that for any query
@ and treeT in these sets, in the vectorized forifi’, V)

of Q(T), the size of a data vector W’ is |T|I?/. m

andwhere clauses of) as follows.

e Therootof G, is a unique node labelatbc indicating

a document root; to simplify the discussion we assume
that Q accesses a single document; this does not lose
generality since one can always create a single virtual
root for multiple documents.

For each distinct variablgx (and each constam) in
thefor andwhere clauses ofQ, there is a distinct
node inG,, labeled by$z (or c).

For each path termp = v/p, wherev is eitherdoc or

a variable$z, there exists a nodein G, representing
theend pointof p, and there exists see edgdabeled
pfromvtoe. If Q contains a clausr $x in p,
then the node representifig is the same as.

For each equality = p’ in thewhere clause, there

is anequality edgeindicated by a dotted line, between
the end point op and that ofy’.

For example, Fig. 3(c) depicts the query graph of e
qguery of Example 3.1. Here, circle nodes denote variable
nodes, and square nodes indicate end points.

Result skeleton. Abusing the notion of skeletons given
earlier, the result skeletor, of @ is a tree template
that characterizes theturn clause of@). For example,
Fig. 3(d) depicts the result skeleton of the query of Ex-
ample 3.1. Note that for each instantiation of the variable tu-
ple ($y1, ..., %y), a sequence of new children of the form
exp(o1, ..., 0m) are generated for the root; this is indicated
by the ' label tagging the edge below the root in Fig. 3(d).
The query graph and result skeleton of a query can be

Putting these together, despite the worst-case complex-automatically derived from the query at compile time. Note

ity (Prop. 3.3), one can often expect exponential reduction
in evaluation time by avoiding intermediate decompression
(Prop. 3.2). Moreover, as will be seen shortly, vectorization
allows lazy evaluation and thus reduc¢&s costs.

3.3 Query Graphs

An XQ query@ can be represented as a pa,, G,.) of
graphs, called thquery graphand theresult skeletorof @,
which characterize thior , where clauses and the result
template of@, respectively.

that for any meaningfukQ query,i.e., a query that is not
empty over alkML trees, its query graph and result skeleton
areDAGs. Moreover, each node has at most one incoming
tree edge. Thus we say that a nads theparentof w (and

w is achild of v) if there is a tree edge fromto w.

Conceptual evaluation. The result skeleton of a query

can be readily understood as a function that takes an in-
stantiation of its variables as input and constructs the re-
sultxmL tree by expanding the skeleton. Evaluation of the

query graph ofQ is to instantiate variables needed by the

result skeleton. We next present a conceptual strategy forevaluation of XPath queries, which was studied in [9]. An

evaluating the query graph &f overvectorizedxmL data

A query graph imposes a dependency relation on its vari-

ables: if$y is the parent ofz, then the value o$x cannot
be determined before the value®f is fixed. Furthermore,

XQ query needs to construct a new skeleton; moreover, each
instantiation of the variable tuple of its result skeleton incre-
ments its outpukML document, following a certain order;
furthermore, it can be verified that the skeleton of the vec-

if there is an equality edge associated with a variable, thentorized output document cannot be decided by the query and

the equality condition cannot be validated before the vari-
able is instantiated.

Given a vectorized treeec(T) = (S, V), the conceptual
evaluation strategy traverses the query grajtop-down,
mapping the nodes @f, to the nodes of or data values in
the vectors o¥/. It starts from the roodoc of G, and maps
doc to the root ofS. For each node encountered irf7,,
suppose that is mapped to a node in S. Then it picks
the leftmost childy’ of v whose evaluation does not violate
the dependency relation. Suppose that the tree edgedfrom
to v’ is labeled patlp. It traversesS from w to a nodew’
reachable vig. If v’ isin S, then it maps’ tow’, i.e., v’
is instantiated to be’, and it inductively evaluates the chil-
dren ofv’ in the same way. Ifv’ is a text node, then it loads
and scans the corresponding data vectoV adnd picks a
data value to instantiat¢. It moves upward to the parent
of v and proceeds to process the siblings cffter all the
children ofv have been processed, or when it cannot find
such a nodev’ (backtrack). It checks equality conditions
p' = p” by checking whethefy'] and[p"] are disjoint or

not, scanning data vectors if necessary. If all these condi-

source skeleton alone. These are not the concerns of [9].

This conceptual evaluation strategy is obviously ineffi-
cient. First, the same data vector is repeatedly scanned for
each variable instantiation; this overhead is evident when
the main memory has limited capacity to hold all the rele-
vant data vectors, which is typical in practice. Second, at
each node encountered during the evaluation, there are typ-
ically multiple children available to be processed, and these
children can be evaluated in different orderings; experience
from relational optimization tells us that different evalua-
tion orderings may lead to vastly different performance. We
shall study these optimization issues in the next section.

Another optimization issue concerns query graph mini-
mization. Similar to minimal tableau queries [1], a notion of
minimal query graphd.e., graphs with the least number of
nodes, can be defined faQ queries. Intuitively, a minimal
qguery graph can be evaluated more efficiently than query
graphs with redundant nodes. The problengoéry graph
minimizationis, given the query graph of axQ query, to
find a minimum query graph equivalent to the input graph.
Unfortunately, the problem is intractable.

tions are satisfied, an instantiation of the variable tuple is Proposition 3.4: The problem of query graph minimization

produced and passed to the skeleton function to incremenis NP-hard forxQ queries.

the resultxmL tree. The process terminates after all the in-

stantiations are exhaustively computed. Note that process;on which is intractable 1.

always terminates since the query graph isa.

Example 3.3: Consider evaluating the query graph of
Fig. 3(c) over the vectorizegML data(S, V') of Figs. 2(a)
and 2(b). The variabléd is first mapped to théib
node of S. It then traversess via the pathbook to in-
stantiate $b; similarly for $a. For each$b value, the
data vector fordoc/book/publisher is scanned and the
equality condition is checked; furthermore, the data vec-
tors doc/book/author and doc/article/author are
scanned to check whether or ritit and $a have a com-
mon author. An instantiatior$, $a) is passed to the result
skeleton if it satisfies all these conditions. Given these in-

stantiations, the result skeleton constructs the output tree

and vectorizes it, yielding Fig. 3(b). O

Several subtleties are worth mentioning. First, to sim-
plify the discussion, in a query graph we ignore the order
imposed by nestefibr loops in the query, which is easy to

O

Proof sketch:By reduction from tableau query minimiza-
O

4 Query Evaluation by Graph Reduction

We next present an algorithm for evaluating queries
over vectorizedkmML data. In light of the inherent difficulty
of the problem observed in the previous section, our opti-
mization algorithm is necessarily approximaite,, it does
not always find the optimum evaluation plan. Our key tech-
nical idea is to exploit lazy evaluation, to avoid unneces-
sary scanning of data vectors and to reduce decompression
of skeletons. To this end we propose a nayelph reduc-
tion framework that allows us to apply relational optimiza-
tion techniques to querying vectorizeaiL data. To sim-
plify the discussion we conside queries; but the tech-
nigue can be readily extendedxq!*//! and largeixQuery
classes.

4.1 An Evaluation Algorithm

incorporate. Note that the query graph Captures the depen- Consider the guery grapl’(}q of an XQ query,

dency relation on variables via tree edges, which is consis-

tent with the order of nestddr loops. Second, evaluation
of XQ queries over vectorized data is more intriguing than

e.g.,Fig. 3(c). Observe that each edgedy can be readily
understood as an extension of an operation in the relational
algebra:

Input: the vectorizedkmL representatiofS, V') of T';

e A tree edge from a variabl&y to $x labeled with an and anxQ queryQ represented a%+,, G-), which
XPath expressiom, denoted byp($y, $z), is like a are the query graph and result skeletorof
projection extracting they descendant of thgy node. Output: the vectorized representatiofi’, V') of Q(T').

e A tree edge from a variablgy to a constant, de- 1.8:=Gy; V' =0
noted byp($y, c), is reminiscent o§election checking 2. remove redundant variables fra;
whether$y has ap descendant with value 3. topologically sort operations i#, w.r.t. variable dependency

e An equality edge between nodesandv,, denoted by and by means of relational algebraic optimization rules;

eq(v1, v2), is similar to gjoin. . let L be the sequence of operations in the topological order;
. foreache € L do

reduce (Gq,e);
. letI be the instantiation of the query from the reduction;

To evaluate the query one needs to find an efficient plan
for processing these operations. The naive algorithm given
in Sect. 3 evaluatgs egch opera’gpneﬁmode at a timeFor ' foreacht ¢ I do
instance, for a projection operatidre.,a tree edge labelled S :=expand (', 1);

p from $y to $z, it repeatedly evaluatesfor each$y value, 10. V':=populate (V',¢);
and thus it repeatedly scans the same data vector for the11 return (87, V');
same operatiow.r.t. each variable instantiation. . -

To avoid scanning data vectors unnecessarily, we evalu- Figure 4. Algorithm eval
ate each operation farcollection at a timeReferringtothe single edge labelled/p’ from $y to $x. We use this sim-
projection operation above, we first compute the sequenceple strategy because it is beyond reach to find an efficient
of all values of$y, called theinstantiation of$y; we then algorithm to minimizexQ queries by Prop. 3.4.
evaluatep and compute all instantiations f@r: once for Putting these together, we outline our evaluation algo-
the entire collection o$y values, scanning the correspond- rithm, Algorithmeval , in Fig. 4. The algorithm takes as
ing data vector once. Reflected in the query graph, this caninput a vectorized representativec(7’) of anxmL treeT
be understood asiergingthe $y and$x nodes into a sin- and a graph representatit@,, G,.) of anxQ queryQ); it re-
gle node $y, $x), which holds the instantiations &, and turns as output the vectorized representati®n ') of the
$x. In other words, this is teeducethe graph by removing query resultQ(T). Specifically, it first simplifies7, and
one edge from it. Thus we refer to this ideagaaph re- then topologically sorts the operationsahy (steps 2-3) as
duction In a nutshell, we evaluate a query by reducing its described above. It then evaluatgg following the order-
graph one edge at a time; the reduction process terminateing (steps 4-6), reducing each operation by invoking a pro-
after the graph is reduced to a single node, which holds thecedurereduce , which will be given shortly. This graph re-
instantiation of the querynamely, a sequence of all value duction process yields an instantiatibof the query, which
tuples for the variable tuple of the result skeleton. At this is associated with the single node that has resulted from
point the query instantiation is passed to the result skeleton graph reduction, and consists of a sequence of value tuples
which constructs the resuttvL tree with the instantiation. for the variable tuple of the result skeleton. With each tu-

The next question is: in what order should we evaluate plet in I the result skeleton af is expanded to increment
the operations in a query graph? Certainly such an order-the skeletonS’ of the output tree, sharing subtrees when-
ing should observe the dependency relation on the variablesver possible (steps 7-9). Note that compression is con-
in the graph, as described in Sect. 3. But there are typi-ductedstepwise for each tuplg instead of first generating
cally multiple possible orderings. Leveraging on the con- the entire result tree and then compressing it. This leads to
nection between edges in a query graph and operations ofubstantial reduction in decompressiorZofSimilarly, the
the relational algebra, we use the well-developed techniqueglata vecto/’ of the query result is populated with eath
for relational query optimization. In particular, in our algo- (step 10). These are conducted by procedexpand and
rithm we topologically sort the operations in a query graph populate (due to the space constraint we defer the details
by using algebraic optimization rules [3®,g., perform- of these procedures and the full treatment of stepwise com-
ing selections before join. This sorting operation could be pression to the full version of the paper). The evaluation
cost/heuristics-based, by means of a mild generalization ofprocess always terminates since a query grapipisa

cost functions and heuristics for relational operations. Example 4.1: Given the queryG,, G,) of Figs. 3(c) and
A 0 Gr .

Another question concerns simplification of a query 3(d) and the vectorizedlML tree (S, V) of Figs. 2(a) and
graph at compile time. There are possibdglundant vari- 5 ajgorithmeval first sorts the,operations o,
ablesin a query graph. Considee,g.,a tree edge labelled ihqoc. a), book($d, $5), publisher($b, ‘SBS’),
p from $y to $z followed by a tree edge labelled from author($b,), article($d, $a), author(S$a,.),
$2 to $x, where$z is not used anywhere else in the query. ed($b/author, $a/author).
Since there is no need to instantidte at compile time we Hereauthor($b,.) only detects whether or n@b has an
shortcut the redundat by merging the two edges into a author, and* indicates an unnamed variable which is not

©o~N ouN

° ° ° $d | $b | value | card
sd A (54,) jarric $d.5b) $d | $b | card
ST TGS bt ey /author@ﬂe o] 1]® O] 1] RH @
$b $a /author $a $a
/publisheri\/amhor /a“th":/ /aumo:/ /a“‘h":/ (a) inst(/bib/$d/$b) (b) inst(/bib/$d/$b/author)
SBp sBp e e Figure 6. Sample extended vectors
step 1 step 2 step 3 i i . i i
o o o o has a unique id, denoted lyd(n), as shown in Fig. 2(a).
(5. $b. Sblauthor) (b, Sb/author, &) ($b, Sblauthor, $a, Sa/authon) (b $) For eachn in inst($x) , wheren is either a node in the
farticle : 4 author LSRR skeleton ofvEc(T) or a value in a data vector ofsc(7),
P4 : we encoden with anextended vectowhich is essentially
$ _ .a [. I .
* Jauthor a path invec(T) consisting of not onlynid(n) (or n for
step 4 step 5 step 6 step 7 a text valuen), but also the ids that are mapped to the an-
Figure 5. Reduction steps in Example 4.1 cestors offz in G,. Now inst($z) is a bag consisting

of extended vectors instead of nodes/values. Referring to
instantiated. Based on relational optimization heuristics, Example 4.1, at step 4 of the reductidnst($b) and
publisher($b, ‘SBP’) is scheduled before the equality inst($b/author) consist of extended vectors given in
testeq($b/author, $a/author) . Given this orderingthe op- Fig. 6, in whichcard indicates the cardinility of each ex-
erations are then conducted, reducfitginto a single node tended vector. As will be seen shortly, extended vectors al-
($b,8a) in seven steps, as depicted in Fig. 5 (the details Jow us to generate value tuples for the result skeleton while
of the reduction steps will be seen shortly). When the re- preserving the semantics of the query.

duction process is completed, the instantiation of the query Opserve the following. First, extended vectors are de-
is available ag(Curation , XStore), (Curation , XPath), fined for nodes in @uery graphin contrast to data vectors
(XML, Xstore), (XML XPath)). With each value tuple in for values in anxmL data tree. Second, extended vectors
the sequence, the algorithm expands the result skeleton angre Computed during query evaluation (graph reduction);
data vectors of the Output tree. F|na”y the algorithm returns |n|t|a||y On|y the instance of the root of the query graph is
the vectorized tree shown in Figs. 3(a) and 3(b). O available, which is the id of the root of thevL data tree.

Algorithm eval has several salient features. First, as We now move on to procedureduce (G, e), which
will be seen shortly from the procedureduce , itexploits ~ €valuates the operatianover a vectorized tregec(T) =
lazy evaluation: data vectors are scanned only when they ardS, V). Consider the following cases of= op(v;,vz).
needed; one does not have to load the emtire document Projection p($y,$xz). The procedure does the follow-
into memory. Second, its graph reduction strategy allows using: (1) computeinst($z); (2) filter inst($y)
to scan necessary data vectors once for each operation (an@.r.t. inst($z) ; (3) merge$y and$z into a new node
may further reduce scanning by grouping multiple opera- ($y, $z); and (4) modifyG,, in response to the merging.
tions using the same vector). Third, it allows seamless com- First, the instantiationinst($z) is computed by
bination with relational algebraic optimization techniques. traversing the skeletof of vec(T), following the pathp
Fourth, with stepwise compression it avoids unnecessaryand starting frony elements irinst($y) ; it may also
decompression of the input vectorizesiL tree. scan the data vector frofi identified by the pathy’/p,

. wherep’ is the path from document root to the instanti-
4.2 Graph Reduction ated$y elements, iy’ /p leads to text nodes. The extended

We next focus on graph reduction and provide more de- vectors are created farst($x) by concatenating the ex-
tails about the procedureeduce . The procedure pro- tended vectors dhst($y) and the nodes/values mapped
cesses an operatiop(vy, v2) in a query graph, wherep is to $2 during the evaluation. Note that by the variable depen-

either an XPath expressigr(for projection, selection) afq dency embedded in the topological orderimgst($y)

(for equality/join), andy, v, are either nodes i&, for pro- must be available when the operatip(fy, $x) is ready
jection and selection, or path terrfig/p1, $/p2 for join to be evaluated. It should be remarked that the evaluation
eq. If vy is a variable$z, its instantiationj.e., a sequence is lazy. only the needed data vector is scanned, and it is
of nodes (or values) ivec(T), is computed byeduce scanned once for computing the eniimst($x) .

(op(v1,v2)); the instantiation is denoted lyst($x) . Second, we decrease the cardinality of those extended

The key challenge for graph reduction is how to cor- vectors ininst($y) (and remove them if their cardinal-
rectly combine individual variable instantiations in order ity is 0) that are not a prefix of any vectorsimst($z),
to produce the final valutiple instantiation/. To do i.e.,removing thos&y elements that do not haveaescen-
so, we extend each variable instantiatiost($z) by dant. Note that this is not an issue for relational projection:
including paths from the document root to the document relational data is regular and thus there is no need to check
nodes invec(T') that are mapped tdz. More specifically, the existence of columns. FamL— typically semistruc-
w.l.0.g. we assume that each nodm the skeletorvec(T') tured —this is not only necessary for the correctness of query

evaluation, but also reduces the evaluation cost. We denoté

this process afilter (inst($y) ,inst($z)).

Third, $y and $x are merged into a single node =
($y,$x), which carries the instantiationdnét($y),
inst($x)) with it. In general, during graph reduction, a
node inG, is labeled with §, I), whereX is a sequence
of nodes inG, and! is their corresponding instantiations.
In a nutshell, X contains (1) variables that are in the vari-
able tuple of the result skeleton; or (2) nodes that indicate
unprocessed operations. We denote thimasge ($y, $z).

Fourth, the query graph is modified: the new neds
inserted intoG,, the nodes$y, $x are removed fronG,,
and edges to/frorfiy, $z are redirected to be to/from We
refer to this process amodify (G, v).

Examples of projection processing include reduction
steps 2, 4, 5 and 6 of Fig. 5. Note tHat is dropped from

the root node at step 5 since it no longer has outgoing edges 13

(i.e.,unprocessed operations) to the rest of the query graph

Selectionp($y, ¢). The procedure (1) computésst(«¢) ,
and (2) filtersinst($y) w.rt.inst(¢) to remove/adjust
those extended vectors that do not have descendant
reachable via. Note that all this selection operation does
is to filterinst($y) . The constant is removed fronG,,
if it no longer has unprocessed incoming edges.

For example, the step 3 of Fig. 5 filteirsst($b) by
decrementing the cardinality of the extended vecton)
from 3 to 2 since onébook node has NoSPB' publisher

Join eq($y/p1, $2/p2). Again by the variable dependency
in the topological ordering, when this operation is pro-
cessed botinst($y) andinst($x) are available. This
operation is processed as follows: (1) compute projec-
tionsp; ($y, $y1) andpa (3, $21), as well as instantiations
of new variablesnst($y;) andinst($x1); (2) com-
pute join ofinst($y,) andinst($z;), and (3) filter
inst($y) andinst($z) by adjusting/removing those
extended vectors that do not participate in the join. Note
that the join result is not materialized. The join is used as a
predicate to reduce the cardinality of participating instanti-
ationsinst($y) andinst($x) .

Input: the query grapliz, of anxQ queryQ,

and an operationp(vy, v2) in Gq.

Output: the reduced,; whenG, has a single node, it return
the instantiation! of the query, consisting of

value tuples for the result skeleton@f

1. casethe operatiore = op(v1, v2) Of

2. (1) projectionp($y, $x):

3. computanst($x) usinginst($y) andvec(T);
4, inst($y) :=filter (inst($y) ,inst($z));
5. v :=merge ($y, $z);

6. G4 :=modify (Ggq,v);

7. (2) selectionp(S$y, c):

8. computanst(¢) usinginst($y) andvec(T);
9. inst($y) :=filter (inst($y),inst(¢));
10. G4 = G4 with ¢ and its incoming edges removed,;
11. (3) joineq(Sy/p1,$z/p2):

12. compute projecttions: ($y, $y1) p2($z, $z1) and

instantiationsnst($y:) andinst($z1);
temp :=join ofinst($y1) andinst($x1);

14. inst($y) :=filter (inst($y),temp);
15. inst($x) :=filter (inst($z), temp);
16. G, := G4 with the equality edge removed;
17. if G4 has a single node carrying(I)

18.
19.

then return group (1);
return Gg;

Figure 7. Procedure reduce

to group these individual instantiations. This is where we
need extended vectors: grouping is conducted based on
the lowest common ancestor of the participating variables.
For our example above, we will mergast($b) and
inst($a) on the identifier of their ancestor, namedy].

It is fairly simple for this example since there is only one
$d node; but the usefulness of extended vectors is evident
for more complicated cases. The grouping for this example
yields the query instantiatiof(1, 3)) with card = 4. Note

that ancestor ids are dropped now since they are no longer
needed. This instantiation is passed to the result skeleton,
which extractsitles of these nodes and obtains the query
result: ((Curation , XStore), (Curation , XPath), (XML,
XStore), (XML, XPath)). The process of generating value

For example, the step 7 of Fig. 5 removes the extendedtuples from extended vectofss referred to agroup ().

vector(0, 2) frominst($a) (not shown in Fig. 5) since it
does not participate in the join withst($b/author)

Value tuples for the result skeleton. Finally, when the
query graphG, is reduced to a single node we need
to generate value tuples for the variable tuple of the result
skeleton. Observe that the nodaow carried X, I'), where

X is the sequence of all the variables in the result skeleton,

and/ consists of their corresponding instantiations. For ex-
ample, after step 7 in Fig. 5, the single nodedp carries

(X,I), whereX is ($b, $a) andI consists of
inst($b): (0, 1,card=2) inst($a) : (0, 3,card=2)

To generate valutuplesfor the result skeleton, we need

Putting these together, we outline proceduw@uce in
Fig. 7, which operates on a vectorizadL tree VEC(T).
For the lack of space we omit the detailgobup , merge,
modify andfilter , which have been described above.

5 Experimental Study

We next present a preliminary experimental evaluation of
our framework. We focus on query evaluation as the com-
pression aspects of our work have been addressed in [9, 20].

We implemented the vectorization schem&) on top of
the Shore [11] storage manager. Each vector was stored as a
separate clustered file. The hardware we used for our exper-

I Dataset [XMLSize [#Nodes [#Skel. Nodes] # Skel. Edges] # of Vectors | Vectors’ Size ||
XMark (S.F. =1)/(S.F. =10)XK) | 111MB/1.2GB | 1.7M/16.7M 73K/163K 381K/1.4M 410/410 79MB/782MB
Penn TreebanKi(B) 54MB 7.1M 475K 1.3M 221,545 7.1MB
MedLine (ML) 1.5GB 36M 586K 5.8M 75 627MB
SkyServer 89 80GB 5.2G 372 371 368 29GB

Table 1. Description of the datasets used in our experiments

iments was a Linux box running RedHat 9. The CPU was [[Query [Dataset [Failing system (reason) [

a 1.8Ghz Pentium 4, while the system had 2GB of physical[[KQ1 XK —

memory. The disk we used was a 200GB HDD; the oper- || KQ2 XK BDB (No XQuery support)
ating system was on a separate disk. The raw disk spee Egi ii S_ame as above

as measured by LinuxBdparam , was 32.5 MB/sec. We TO1 B —

also installed two additional systems for comparison: the [[" 702 B BDB (N0 XQuery suppor)
Galax [16] GX) XQuery interpreter, which is a main mem- TQ3 B same as above

ory implementation of XQuery, and Berkeley D&1L [5] MQ1 ML GX (OoM)

(8DB), which is a nativexmL document store while, at '\égi '\é'é :gz Egg j{?ﬁg{{gg’gggtgi éggm;
the same time, provides XPath 1.0 querying functionality. [—sgo3 S5 Same as above :
We used the optimizedx executable and turned off type SQ3 SS Same as above
checking to obtain better performance. For every query|| SQ4 SS | Same as above

evaluated omDB, the appropriate index was built on the re-
trieved path. We used a buffer pool size of 1GB for Shore.
GXx could use all available memory.

We experimented with four datasets: the XML bench- XQuery functionality is not available for that system. We
mark XMark [24] (XK), the Penn TreeBankTg) natural ~ Provide the reasons for system failures.
language processing dataset, the MedLiMé) biological A simple scalability experiment is described in Fig. 8.
dataset, and the SkyServ&q astronomical dataset. The The z-axis shows the XMark scaling factor for the XK
datasets and their properties are summarized in Table 1. Thélataset; thej-axis the query evaluation timevx scales
XK dataset is a recognizedvL benchmark; we chose the linearly as the input size increases. Intuitively, this makes
remaining three datasets to point out different aspects of oursense: a linear increase in document size and, hence, in the
framework. The TB dataset has a highly irregular structure. cardinality of the relevant vector(s) leads to a linear increase
Although the smallest in terms of raxwL size, itis decom- in query evaluation time. The cumulative results across all
posed into 221,545 data vectors. The SS dataset is a highlghirteen queries of the workload are presented in Table 3.
regular dataset. Though the largest in size, it is decomposed shaded cell denotes that the system failed to process the
into only 368 vectors. The ML dataset is somewhere in query for the reasons explained in Table 2. 'N/A" denotes
the middle. An interesting approximation of each dataset's that we could not use the system for the query.
complexity is the ratio between its number of nodes in the In [24] what is called an association-based mapping is
raw xML document and the number of skeleton nodes in its used.xML parent-child relationships are captured in binary
compressed representation. The lower the ratio, the higherrelations. A dataguide-like structure is then computed so
the complexity. For instance, this ratio for TB is 15, while that groupings of binary relations into paths are tracked.
the ratios for ML and SS are 61 and - 10° respectively. The result is that for each path in the query a single ta-

We use numbers reported in [24] and [17] for the %K ble will be scanned. Queries KQ1, KQ2 and KQ3 are all
and SS dataset comparisons. The systems used in these p¥alue-based filtering queries that do not return any complex
pers were the Monet [23] systéand an SQL Server setup, XML; by taking advantage of the “dataguide” each query is
respectively. Although our setup will differ, we use it to reduced to the equivalent relational operation on binary ta-
provide a rough comparison between the frameworks. bles. In contrastyx always has to scan and navigate the

The numbers we report are cold numbers. Each querySkeleton in addition to any data vectors. To be complete,
was run five times; the average of those five runs is reported & have put in parentheses the time spenvkyperform-
We calculated that all timings are withfi% of the average "9 the value-t_)asgd evaluation. Though the evaluat.lon time
value with99% confidence. The queries are summarized in fOr these queries is always comparable to Monet's, it can be
Table 2 (see Appendix A for the full list of queries). Notall S€en that the bulk ofx’s processing is in skeleton naviga-
systems were able to process all queries. For instance, TQ30N- Path indexes on the skeleton present an interesting ex-

was a join query thatps could not process simply because t€nsion of our system. In Query KQ4, on the other hand, the
dominance ofvx is evident. Query KQ4 is an entiveviL

subtree retrieval with a complex navigational component,
which cannot be mapped to a single table scan in Monet;

Table 2. Experimentation query workload;
‘OoM’ = out of memory

2The reported numbers are for an XMark scaling factor of 1.
3Available athttp://monetdb.cwi.nl

KO1 KQ2 KQ3 KQ4 | TQL | TQ2 | TQ3 | MQL | MQ2 | SQI | SQ2 | SQ3 | S04
VX 44(1) | 98(15) | 94(L.1) | 92(45)| 96 | 139.4| 1581 | 1334 | 385 | 369 | 61.4 | 32.7 | 30
BDB 83.9 477 | 512 6005
GX 894 | >50000 | >50000 | 671 | 4453 | 2870 | 2594

Monet 0.2 8.7 75 1500 | NI/A | NI/A | N/A | NJ/A | NI/A | N/A | N/A | NIA | N/A

SQL Server | N/A N/A N/A N/A N/A | N/A | N/A | NI/A | N/A | 2485 | 405 | 15 | 1703

Table 3. The timing results for the queries of Table 2; elapsed time is measured in seconds

ol —— returning only a small portion of the inner relation so the
B 1 S join is evaluated fast. The lack of indexing Wx means
§ KQ4 e that both vectors need to be scanned. There is nothing that
g 50 prevents efficient vector indexes to be incorporated into our
2 w0 system, and this is one of the enhancements we are currently
.E investigating.
s ¥ i S
g 0 o T 6 Concluding Remarks
T - - 1 We have proposed a new technique, vectorization, for
- — building a nativexmL store over which a practical subset
T . s 4 s s 7 8 ¢ 1 of XQuery can be evaluated efficiently using graph reduc-
XMark Scaling Factor tion and established relational database techniques. Our
preliminary experimental results indicate that this method
Figure 8. Scalability results provides an effective approach to storing and querying sub-

stantialxmL data repositories.
a reconstruction penalty has to be paid. As a consequence, There is a host of work on usingRDBMS to store and
vX outperforms Monet by almost 2.5 orders of magnitude. queryxmL data €.g.,[7, 15, 26]). Along the same lines [23]
GX is a native XQuery processor; however, it has to encodes parent-child edges (associations) in a binary re-
load the entire document before processingvik, on the lation, and it maps<Query to OQL. The key challenge to
other hand, accessed only the relevant vectors to evaluat¢he so-called “colonial” approach is how to convemL
the query. That gives it superior performance for the queriesqueries taSQL queries [27]. Furthermore, most of the colo-
that Gx could evaluate, even if the document loading time nial systems ignore the order &fL data (one exception
is ignored. For instance, the loading time of the TB datasetis [28]), which is often critical to the semantics of thkeiL
in GX was 439 seconds; even if that time is subtractzds data. Our work differs from the colonial approach in that
still outperformed byx. we do not require the availability of the relational infras-
A robust storage manager lilepB was not able to even tructure, and thusQuery-to-SQL translation is not an issue;
load documents whose textual representation was signifi-in addition, vectorization preserves the ordexofL data.
cantly smaller than available memory, which is wbais There has also been recent work on native systems
requires to have at load-time. In order to gather perfor- (e.g.,[21, 22, 25]). These systems typically support text
mance results we “chunked” each dataset and inserted isearch and value filtering only, and they adopt vastly differ-
into the sameBDB container BDB was then able to per- ent representations for the structure and the text values of
form XPath queries — after having built its special index xML data. As a result their query evaluator has to “switch”
structures. In all cases, however, it was significantly out- processing paradigms as it moves from the realm of trees to
performed byx. the realm of text values; this, at times, poses a high over-
The real “win” for vx comes when it is compared to a head. In contrast, our system supports a uniform interface
commercial relational database. We have to note here thafor querying both the structure and data values.
in [17] SQL Server was rigorously tuned for the SS dataset. We have remarked in Sect. 1 on the connection between
In Queries SQ1 and SQ¥x outperforms SQL Server by this work, XML compression [20] and skeleton compres-
almost a factor of six. In Query SQ2x is outperformed sion [9]. Skeletons in [20] were compressed, but not in a
by SQL Server though performance remains comparable.form suitable for query evalation; in [9] the skeleton was
The performance o¥x, however, is not always dominant expanded to represent the results of XPath evaluation. By
or even comparable to that of a commercial system; the rea-contrast the query evaluation technique we have developed
son is that we do not leverage all relational evaluation tech-here yields new, usually smaller, skeletons to represent the
nigues — indexing in particular. Query SQ3 is a join between result ofXQueryevaluation.
two relational tables. In [17] an index over one of the join There is an analogy between our graph reduction strat-
attributes is built and index-nested loops is employed as theegy and top-down datalog evaluation technique (in partic-
evaluation algorithm. The join predicate is highly selective ular, QSQ[1]). The major difference is that our technique

is for evaluatingKQueryover vectorizedkML data, whereas
QSQis for datalog queries over relational data. We plan
to improve our evaluation strategy by incorporating datalog
techniques such as magic sets [1]. Finally, the graph reducq{13]
tion technique we have described here differs fundamentally
from graph reduction used in functional programming [18] [1
in that with each reduction step, associated data — which is[15)
not manifest in the graph — is also evaluated.

There is naturally much more to be done. First, we have
not capitalized on all the technology that is present in rela-
tional query optimization. For example, we currently make [17)
no use of indexing, and there is no reason why we cannot
use it with the same effect as it is used in relational sys-
tems. It may also be that we can incorporate limited vec- [19] p, Krneta. A new data warehousing paradigm for user and
tor compression as suggested in [3] to further reduce 1/O data scalability. Technical report, Sybase, 2000.
costs. Second, there are interesting techniques for furthef20] H. Liefke and'D. Suciu. XMILL: An Efficient Compressor
decomposition of the skeleton and making use of both rela- (., " XML Data. In SIGMODR, 2000.

[11] M. Carey et al. Shoring up persistent applications. In
SIGMOD, 1994.

[12] D. Chamberlin et al. XQuery 1.0: An XML Query

Langfuage. W3C Working Draft, June 2001.

J. Clark'and S. DeRose. XML Path Language (XPath).

W3C Working Draft, Nov. 1999. N

4] G. P. Copeland and S. Khoshafian. A decomposition storage

model. In S. B. Navathe, editd8|GMOD, 1985.)

D. Florescu and D. Kossmann. Storing and Querying XML

Data using an RDMBSIEEE Data Eng. Bull,

22(3):27-34, 1999.)

[16] Galax: An implementation of XQuery, 2003.

http://db.bell-labs.com/galax/ .

J. Gray et al. Data mining the SDSS Skyserver database.

Technical Report MSR-TR-2002-01, Microsoft, 2002.

[18] S. L. P.JonesThe Implementation of Functional
Programming Language$rentice-Hall, 1987.

tional and vector operations for exploiting this decomposi-
tion. Third, we intend to extend our graph-reduction tech-
nigue to largeXQuery classes. Fourth, it is certain that we
can exploit base type informatiomyiL Schema [29]) and

[21] J. F. Naughton et al. The Niagara Internet Query System.
IEEE Data Eng. Bull. 24&2&:27—33, 2001.)

[22] S. Paparizos et al. TIMBER: A Native System for Querying
XML. In SIGMOD,_2003.))

[23] A. Schmidt et al. Efficient relational storage and retrieval of
XML documents. IrWwebDB 2002,

leverage structural and integrity constraints to develop bet-[24] A. Schmidt et al. XMark: A benchmark for XML data

ter compression. Finally, we recognize the challenges in-

troduced by updating vectorizediL data, and we are cur-

management. INLDB, 2002.
[25] H. Schbning and J. Viilsch. Tamino - An Internet Database

System. IREDBT, 2000.

rently studying incremental [6] and versioning techniques [26] J. Shanmugasundaram et al. Relational Databases for

for efficient maintenance of vectorized data.
mentioned that vectorization may simplify schema evolu-
tion, e.g.,adding/removing a column.

Acknowledgements The authors would like to thank

Christoph Koch for allowing us to use his skeleton construc-
tion and XPath evaluation code from [9] and the anonymous
referees for their comments. This work was supported in [30] J.
part by EPSRC grant GR/S13194/01 and a Royal Society[

Wolfson Merit Award.

References

[1] S. Abiteboul, R. Hull, and V. VianuFoundations of
Databases Addison-Wesley, 1995.

[2] A. Ailamaki et al. Weaving Relations for Cache
Performance. IWLDB, 2001.

[3] A. Arion et al. Efficient query evaluation over compressed
XML data. INnEDBT, 2004.

[4] D.S. Batory. On searching transposed fil€ODS
4(4):531-544, 1979.

[5] Berkeley DB XML v1.2, 2004 http://www.
sleepycat.com/products/xml.shtml .

[6] P.Bohannon, B. Choi, and W. Fan. Incremental evaluation
of schema-directed XML publishing. BIGMOD, 2004.

[7] P.Bohannon et al. From XML Schema to Relations: A
Cost-Based Approach to XML Storage. IRDE, 2002.

[8] P. A.Boncz, A. N. Wilschut, and M. L. Kersten. Flattening
an object algebra to ﬁrovide performancel@DE, 1998.

[9] P. Buneman, M. Grohe, and C. Koch. Path Queries on

Compressed XML. IVLDB, 2003.

[10] P. Buneman et al. Data integration in vector (vertically

partitioned) databasefEEE Data Eng. Bull.25(3):19-25,

2002.

It should be

Querying XML Documents: Limitations and Opportunities.

In VLDB, 1999. _ _
[27] J. Shanmugasundaram et al. Querying XML Views of

Relational Data. I'VLDB, 2001. .)
[28] I. Tatarinov et al. Storing and querying ordered XML using

a relational database system.3tGMOD, 2002.
[29] H. Thompson et al. XML Schema. W3C Working Dratft,

May 2001. http://www.w3.0rg/XML/Schema .
. Ullman.Database and Knowledge Base Systems

Computer Science Press, 1988.))
31] J. Zivand A. Lempel. A universal algorithm for sequential

data compressiodEEE Trans. of Information Theory
23(3):337-349, 1977.

A Queries of the Test Suite

QuerieskQ1,KQ2, KQ3, KQ4 renameQ5, Q11, Q12 and
Q13in [24], while SQ1, SQ2 SQ3 SQ4areQ3, Q6, SX6and
SX13in [17], respectively. The remaining queries are:

TQ1: /alltreebank/FILE/EMPTY/S/NP[JJ="Federal’]
TQ2: for $s in /alltreebank/FILE/EMPTY/S
for $nn in $s//NN
for $vb in $s//VB
where $nn = $vb return $s
TQ3: for $s in /alltreebank/FILE/EMPTY/S
for $nnl in $s/NP/NN
for $nn2 in $s//WHNP/NP/NN
where $nnl = $nn2 return $s
MQ1: /MedlineCitationSets/MedlineCitation/
[Language = "dut"][PubData/Year = 1999]
MQ2: for $x in /MedlineCitationSet/MedlineCitation
$y in /MedlineCitationSet/MedlineCitation/
CommentCorrection/CommentOn
where $x/PMID = $y/PMID return $x/MedlinelD

