Nanyang Technological University

[image: image92.jpg]Lls"““ -

getPoint |

findNodet  ¢ontains

getPoint

getPoint




SCE06-115

Visual XQuery Documentation
Submitted in Partial Fulfillment of the requirements for the Degree of Bachelor of Computer Engineering 

of the Nanyang Technological University

By

Kng Boon Chin

School of Computer Engineering

2007 

Abstract
XML (Extensible Markup Language) is used in many contexts of modern information technology to facilitate sharing of information between heterogeneous data sources and inter-platform applications. The prevalence of XML implementation in data storage and exchange necessitates a method to adequately query XML data. The World Wide Web Consortium (W3C) is proposing XQuery as the standard querying language for semistructured XML data. XQuery is designed for experienced database programmers, since its syntax and capabilities are analogous to the SQL relational query language. Therefore, the inherent complexity of formulating XQuery statements makes it an intimidating task for anyone, except an expert in the XQuery language, to construct queries. 
The development of Visual XQuery, a visual interface for creating XQuery in a graphical format, is motivated by the need to simplify the query formation for unskilled users who has minimal knowledge in XML data model. The implementation of Visual XQuery is mainly inspired by XQuery By Example (XQBE), and GXQL. A review of these two systems and many other systems has helped me understand the benefits and drawbacks of various system design approaches, and has assisted me in identifying a set of features for Visual XQuery that will successfully reduce the complexity of creating queries in the XQuery language. 
Visual XQuery offers users an interactive drag and drop control system and supports the ability to translate an XQuery into its corresponding graphical representation as long as the query’s syntax is supported.  Beside that, Visual XQuery also includes the ability to identify and re-write a limited set of reverse axis queries for efficiency.

Acknowledgements

I would like to take this opportunity to thank my FYP supervisor, Assistant Professor Bryon Choi Koon Kau for his invaluable advice and guidance during the term of the project. His advice and suggestions on the design and development of Visual XQuery have improved the functionality and user-friendliness of the program significantly. Without his stable support and continued encouragement, it would have been impossible for the project to be a fulfilling and enriching experience for me. 

Table of Contents
11
Introduction


11.1
Motivation


31.2
Purpose, Scope and Limitations


41.3
Report Organization


52
Literature Review


52.1
Overview of XML Technologies


62.1.1
XSLT


92.1.2
XQuery


122.1.3
XQuery Vs XSLT


183
Existing XQuery graphical languages


183.1
XQuery By Example (XQBE)


293.2
Graphical XQuery Language (GXQL)


363.3
Review of Existing Solutions


384
Visual XQuery Syntax


384.1
Basic Elements of Visual XQuery


404.2
Examples of Visual Query


414.2.1
Simple Query


414.2.2
Flattening and Cartesian Product


434.2.3
Query with value-based selection


434.2.4
Equality Join Query


444.2.5
Query with equality join and value-based selection


455
Query Processing


455.1
Translation of Visual XQuery into XQuery


465.1.1
Translation Function


475.1.2
Visual XQuery Constructs


505.1.3
Use Case


555.1.4
Forward Translation


635.1.5
Canonical Forward Translation


695.1.6
Further Enhancement


745.1.7
Time Complexity


755.2
Translation of XQuery into Visual XQuery


765.2.1
Pattern Matching


785.2.2
Layout Algorithm


795.2.3
Time Complexity


805.3
Complex Graph


826
Visual XQuery Design


826.1
User Interface Design


836.2
Overall Architecture


856.2.1
GUI Package


856.2.2
Graph Package


856.2.3
Translator Package


856.2.4
XQuery Parser Package


856.2.5
XML Viewer Package


866.3
Graph Package Design


876.3.1
Prototype Tools


886.3.2
Insert New Node


886.3.3
Insert New Edge


896.3.4
Delete Node and Edge


896.3.5
Edit Properties


906.4
Translator Package Design


917
Visual XQuery Functionalities


917.1
Main Window


917.2
Draw Panel


927.3
Toolbar


927.3.1
Select Tool


927.3.2
Document Node


927.3.3
Condition Node


927.3.4
Element Node


927.3.5
Return Node


937.3.6
Path Edge


937.3.7
Value Edge


937.3.8
Return Edge


937.4
XML Viewer


947.5
Translation


947.6
Menu Bar


947.6.1
File Menu


957.6.2
Edit Menu


957.6.3
Algorithm Menu


968
Conclusions and Recommendation


968.1
Conclusions


978.2
Recommendations


978.2.1
Source Document Linkage


978.2.2
Real-time Query Preview


978.2.3
Nested Expression Support


989
Appendices




List of Figures
5Figure 1: XML Example ("Reviews.xml")


8Figure 2: Example of XSLT


10Figure 3: Example of the Query Data Model


19Figure 4: XQBE Interface


22Figure 5: Basic Symbols of XQBE


23Figure 6: Graphical Constructs of XQBE


24Figure 7: Symbol set in XQBE


25Figure 8: XQBE version of Q1


26Figure 9: Advanced constructs of XQBE


26Figure 10: EBNF specification of the XQuery sub-range which can be represented with XQBE


29Figure 11: Query Interface of GXQL


30Figure 12: Rectangle Symbols used in GXQL


32Figure 13: GXQL diagram for Q1


33Figure 14: Predicate popup windows for Q1


34Figure 15: GXQL diagram for Q2


35Figure 16: XQBE equivalent for Q2


39Figure 17: Basic Elements


40Figure 18: Sample Document ("bib.xml")


42Figure 20: Flattening and Cartesian Product


43Figure 21: Query with value-based selection


43Figure 22: Join Query


44Figure 23:  Query with equality join and value-based selection


47Figure 26: Transverse Function


56Figure 27: XPath Reverse Axis Example


57Figure 28: Path processing Function


58Figure 29: Path Case 1 & 2


59Figure 30: Path Case 3 & 4


60Figure 31: Path Case 5 & 6


61Figure 32: Path Case 7 & 8


64Figure 16: Translator Design Pattern


64Figure 17: Sample Document ("Books.xml")


65Figure 18: Node Tree (Books.xml)


66Figure 19: Use Case Q2


67Figure 20: Subset Paths


67Figure 21: Pattern Matching


67Figure 22:  Subset Paths of Q2


68Figure 23: Canonical Forward Translation Algorithm


69Figure 24: Q2 Canonical Forward Translation


70Figure 25: Hierarchy Chart for Q2 reverse-axis path


71Figure 26: Enhanced Canonical Forward Translation


72Figure 27: Optimized Q2 Canonical Forward Translation


74Figure 33: Time Complexity of query 4


77Figure 34: Pattern Matching Routine


79Figure 35: Layout Algorithm


79Figure 36: Pattern Matching Time Complexity


80Figure 37: Layout Algorithm Time Complexity


80Figure 38: Example Query


81Figure 39: Complex Query


83Figure 40: Screen Layout Design


83Figure 41: System Architecture


84Figure 42: Interface Use Case


86Figure 43: Graph Package Design


87Figure 44: Prototype Pattern


88Figure 45: New Node Sequence Diagram


89Figure 46: New Edge Sequence Diagram


90Figure 47: Translator Design Pattern


91Figure 48: Main Window


92Figure 49: Toolbar


93Figure 50: XML Viewer


94Figure 51: Translation


95Figure 52: File Menu




List of Tables
21Table 1: Covered querying capabilities


45Table 2: EBNF specification of XML Query normal form for Visual XQuery


50Table 3: Visual XQuery Constructs


56Table 4: Supported XPath Axis Symbols


57Table 5: Reverse Axis Pattern


75Table 6: XQuery Patterns





1 Introduction

1.1 Motivation

The prevalence of XML has driven the need for a query language that appeals to a wide group of users including those with minimal or no programming skills.  Two textual languages XSLT [4] and XQuery [5] are provided by the W3C (World Wide Consortium) to express XML document transformation and to query XML data with the latter gaining fast popularity in the industry. However, these languages can be too complex for users, who might only be equipped with the basic data model of XML which should be adequate for users to perform simple queries and transformation. 

Therefore, a graphical query language can be potentially helpful whereby users do not need to remember the syntax of a textual of a language, all they need is to select options and draw diagrams. With this group of users in mind, two projects XQBE (Xquery by Example) [1] and GXQL (Graphical XQuery Language) [2] were developed, the former defines many abstract symbols e.g.,  trapezoids, circles of different colors to express queries. However, it is difficult to remember the representation and concept of each abstract symbol. Secondly, the tree-mapped representation is complicated and not visually obvious to first-time and occasional users. Thirdly, any extension to XQBE would require more abstract symbols, edges and labels which would make the representation even harder to understand and use. 

In contrast, the latter uses a nested window XML Query-based language with fewer symbols, which are more visually suggestive and easier to remember. Nested windows are used to represent parent-child relationships and each frame style has a specific meaning suggested by its visual design e.g., single line frames and shadowed frames. However, the different combination proves to be confusing to novice and gets more complicated with intricate queries. Compared to the former, its child elements and attributes are visually distinguished. However, the visualization of a document in GXQL resembles a real document in appearance and requires user to have in-depth knowledge of XQuery. In addition, both the projects use two different windows to contrast between the query and its output which makes visualization of the association difficult.

These inadequacies provided the motivation for developing Visual XQuery, another graphical language which targets users equipped with knowledge in XML basic data model and none or minimum understanding of XML Query. This software aims to be more intuitive than both XQBE and GXQL by introducing fewer symbols and a visually obvious association between the query and its output. And as a tradeoff, we do not attempt to represent the entire XQuery syntax visually and support only a subset of XQuery syntax.

1.2 Purpose, Scope and Limitations

The purpose of this project is to design and develop a graphical XQuery language software which requires user to have knowledge in basic XML data model and none or minimal understanding of XQuery. It aims to be a GUI capable of running on top of any XQuery engine e.g., Galax [6] offering users an intuitive and user-friendly graphical approach to expressing queries.

The scope of this project comprises the following:

· To study and design a simple graphical language to represent XQuery.

· To design and develop a user-friendly interface for expressing queries.

· To design and implement translation algorithms from graphical language to XQuery and vice versa.

Due to the extensive depth of the XQuery and time constraint, this project has the following limitations:

· The project supports only for, where, return clauses, document and element nodes and general and value comparison operators.

· Queries are restricted to single hierarchy level to reduce the complexity of the project.

1.3 Report Organization

This report is organized into 8 chapters:

Chapter 1 begins with the motivation for the project. It gives a detailed statement of the project objectives, scope and limitations.

Chapter 2 introduces and evaluates existing technology available prior to the design and implementation of the project. The chapter also explains the reason for choosing XQuery as the project language.
Chapter 3 reviews existing XQuery Graphical language application and evaluate each implementation’s pros and cons that motivate and influence the design of Visual XQuery.
Chapter 4 introduces the visual elements in Visual XQuery and highlights its query capabilities through examples.

Chapter 5 provides detailed descriptions and implementation of Visual XQuery’s query processing modules which includes the translation from graph to XQuery and vice-versa. 

Chapter 6 presents a high-level account of the design of Visual XQuery. It provides an overview of the user interface design, overall system architecture, the graph and translator package design.

Chapter 7 introduces the different functionalities available in Visual XQuery for query construction.  

Chapter 8 concludes the report with a summary of the work done and suggests a number of recommendations that can further enhance the user experience and extend the functionality of the program.

2 Literature Review
This chapter gives an overview of the various XML technologies available in the market and reviews two existing XQuery graphical software packages namely XQBE and GXQL. This chapter also explains the need for a graphical query language and why XQuery was chosen as the subject of this project.
2.1 Overview of XML Technologies
Extensible Markup Language (XML) is a subset based upon a mature markup language called Standard Generalized Markup Language (SGML). It was developed primary to separate the data from the presentation with its structural model of the data. Within a short period of time, XML has become one of the most popular formats for marking up contents from web content to data.

	<reviews>

    <entry>

        <title>Advanced Programming in the Unix environment</title>

        <price>65.95</price>

        <review>

               A clear and detailed discussion of UNIX programming.

        </review>

    </entry>

    <entry>

        <title>TCP/IP Illustrated</title>

        <price>65.95</price>

        <review>

               One of the best books on TCP/IP.

        </review>

    </entry>

</reviews>


Figure 1: XML Example ("Reviews.xml")
However complex the data stored in XML may be, the structure of XML itself is simple. An XML document is essentially an outline in which order and hierarchy are the two main structural units. Being plaintext, XML is both cross-platform and network-independent. This flexibility has lead to the growth of XML as a data exchange mechanism with databases to share data with clients across different levels of details, making the data more widely accessible. An example is shown in Figure 1.

This change has spanned a growth in development of XML query language such as XPath, XSLT and XQuery. XPath introduced the syntax for navigating parts of an XML document being used in XSLT and XQuery which is to be discussed in later sections. 

2.1.1 XSLT

XSLT was produced as a spin-off from the XSL (eXtensible Stylesheet Language) activity, whose primary focus was the rendition of information taking one or more XML documents as input and produce one or more XML documents as output. The language has been widely implemented for transforming XML to HTML by treating the result document as a well-formed XML tree, with the transformation being followed by a serialization phase that translates this tree into an HTML output file.  Throughout the process, the input will not have been preloaded into a database providing specialized indexing or access methods and the source document is not modified by the transformation process.

Although the concept of transformation was seen as having much more general applicability, and the language was clearly designed to be capable of performing a wide variety of transformation tasks, styling of XML remained the primary use case rejecting the inclusion of features that were considered outside this scope; for example, the inclusion of advanced mathematical or text-manipulation operators.

XSLT focused on the transformations that occur during document styling on the assumption that document-oriented XML would be encountered more often than data-oriented XML. The source documents might or might not be valid according to a DTD. Style sheets would typically be written to process a variety of source documents with differences in structure. The processing would most often be serial in nature: The order of elements in the result tree would usually be the same as the order of corresponding elements in the source. The language should probably be permissive in its error handling: Errors in the style sheet should result in as much of the source document as possible being displayed, rather than causing a run-time error message that would mean nothing to the end user.

Some of the key characteristics of XSLT as a language are listed below:

· XML-based syntax: An XSLT transformation program or stylesheet is itself an XML document containing XML elements and attributes to be written directly to the output. Therefore, we can regard the stylesheet as a template for the result document and can be used as the source or target of further transformations. 

· Declarative, functional programming model: A stylesheet describes a transformation of a source tree to a result tree and contains constructs such as conditionals and iterations that are familiar from procedural programming. However, nothing in the language prescribes a certain order of execution in the machine except individual expression compile-time type for tracking code efficiency which accounts for the poor performance that is sometimes reported.

· Rule-based: An XSLT stylesheet is expressed as a collection of rules, which consists of a pattern to be matched in the input, and instructions for generating nodes in the result tree when the pattern is matched. The rules perform a traversal of the input tree in any way the author chooses. The advantage of this rule-based approach is the resilience to changes in the details of the structure of the input document. It is particularly good at handling the recursive structures that occur in "document-oriented" XML but for "data-oriented" XML transformations, where the structures are more rigid, this style of processing has fewer advantages.

· Tree-to-tree transformation: The input and output of a transformation are modeled as trees, not as serial XML. The construction of a source tree (using an XML parser) and the serialization of a final result tree are separate operations from the transformation itself which can cause loss of visual details such as attributes during a transformation.

· Two-language models: XSLT instructions are used to produce nodes in the result tree and to control the sequence of processing whereas XPath expressions are used to select data from the source tree and always invoked from XSLT instructions.

	<xslt:template match="appendix">

   <h2>

      Appendix <xslt:number format="A">

      <xslt:text>&nbsp;</xslt:text>

      <a name="{@id}"/>

      <xslt:value-of select="@title"/>

   </h2>

</xslt:template>


	Input Document

<appendix id="bibl" title="Bibliography">

   <para>A reference</para>

</appendix>



	
	Output Document

<h2>AppendixC&nbsp;<a name="bibl"/>Bibliography</h2>




Figure 2: Example of XSLT
Figure 2 shows an example of a single template rule which illustrates the aforementioned features. The template rule match="appendix" matches element named appendix and its body containing instruction and XPath expression defines the nodes to be written to the output tree. This example demonstrates that XSLT capability in rendering of document-oriented XML. Although XSLT supports recursive matching which can cut query size and make it easier to maintain, it is difficult to visualize this feature. Therefore, many tend to write huge XSLT queries using a single rule instead of having functions called automatically when a match occurs.

2.1.2 XQuery
XQuery is defined in terms of the XQuery 1.0 and XPath 2.0 Data Model, which represents the parsed structure of an XML document as an ordered, labeled tree in which nodes have identity and may be associated with simple or complex types. The kinds of nodes that may occur are: document, element, attribute, text, namespace, processing instruction, and comment. Every node has a unique node identity that distinguishes it from other nodes—even from other nodes that are otherwise identical. In addition to nodes, the data model allows atomic values such as strings, Booleans, decimals, integers, floats and doubles, and dates.

An instance of the query data model may contain one or more XML documents or fragments of documents, each represented by its own tree of nodes. The root node of the tree that represents an XML document is a document node. Each element in the document is represented by an element node, which may be connected to attributes denote by attribute nodes and content denoted by text nodes and nested element nodes. The primitive data in the document is represented by text nodes, which form the leaves of the tree.

	[image: image2.emf]


	<?xml version="1.0" ?>

<procedure title="Removing a light bulb">

<time unit="sec">15</time>

<step>Grip bulb.</step>

<step>

Rotate it

<warning>slowly</warning>

counterclockwise.

</step>

</procedure>




Figure 3: Example of the Query Data Model

Figure 3 illustrates the Query data model representation of a simple XML document. Nodes are represented by circles labeled D for document nodes, E for element nodes, A for attribute nodes, and T for text nodes. 

All XML documents can be represented using the Query data model and XQuery is closed under this model, which means that the result of any valid XQuery expression can be represented in this model but not all instances of the Query data model are valid XML documents. For example, the result of a query might be a sequence of atomic values, or an attribute that is not attached to any element.

As a database query language, XQuery was concerned with the extraction of information from large collections of documents normally held on disk and from databases with physical storage structures, such as indexes, designed to enable rapid retrieval. Such collections of documents would often be subject to some kind of central design control, which means they would usually have a uniform schema, and they would typically be validated against this schema before being loaded into the database. 

And such documents were more likely to be data-oriented than document-oriented. Although the query language was supposed to be able to handle both, optimization of queries is essential if performance was to be acceptable. The optimization involves an analysis of the query against the schema of the target database, if only to discover what indexes might be available. 

Error handling would probably need to be strict: If a query was incorrect, it would be better to produce an error message as early as possible, rather than to execute a perhaps lengthy query and produce incorrect results. Like most modern compiled languages, XQuery uses static typing based on XML schema to detect common type errors during static analysis so that they can be handled instead of being discovered only when the program is run. 

Static type analysis implements XQuery's static semantics—it takes the parse tree in the core language and assigns types to expressions in the parse tree. Static analysis either raises a static type error or produces a parse tree where each expression has been assigned a type.

Although static typing allows us to detect all potential type errors, it cannot detect all potential errors of other kinds such as those that depend on the values of expressions at run-time and overflow error. Static typing is most effective for queries that use authoritative and stable schemas to describe their input and output data. 

XQuery is also finding other uses as a language for data integration, even with data sources that may not be XML but can be viewed through an XML lens. In today's enterprise business, relational databases are still the default choice for storing data and companies need to deal with a variety of other data sources. Therefore, building data integration logic in these contexts can be a complex, time-consuming, costly task. 

XML helps by providing a medium language for data integration and XQuery provides a higher level, more flexible and optimize way to manipulate XML. XQuery greatly simplifies XML querying and transformation by virtue of its simple, powerful and concise syntax. 

One of the most crucial factors is that XQuery is a functional language whereby instead of executing commands as procedural languages do, every query is an expression to be evaluated, and expressions can be combined quite flexibly with other expressions to create new expressions. There are 7 types of expressions in XQuery: path expressions, element constructors, FLWOR expressions, expressions involving operators and functions, conditional expressions, quantified expressions and expressions that test or modify data types.

In sum, XQuery can process any data that can be thought of as XML providing support for a much richer set of different data structures and is designed to create and return complex XML data structures. The ability to create library of functions and power of the XPath expression language on which it relies, all this makes XQuery a highly productive language for dealing with XML.

2.1.3 XQuery Vs XSLT 

Undertaking two different approaches, XSLT was introduced for document transformation whereas XQuery was for data processing such as selecting, projecting and joining data. Both languages are similar in querying capabilities; XSLT can be rewritten into XQuery and vice versa producing the similar results. 

With different answers to the same result, it is inevitably that they share some similarities. XSLT and XQuery shares XPath as a common core which introduces a convenient syntax for selecting parts of an XML document. However, it wasn't designed for any other purpose. XPath can't create new XML and because of its conciseness, it can be hard to read and understand. XPath also do not introduce variables or namespace bindings although it uses them and it has fairly a simple type system, essentially just string, boolean, double. 
Therefore, both languages have facilities for constructing new nodes in which the elements to be constructed are written directly in their XML form, and an indirect syntax in which the names of elements or attributes need to be computed at run-time. In addition, both allow declaration of read-only variables.

Another significant similarity is that both languages provide control structures for nested iterations or joins: the FLWOR expression in the case of XQuery, and nested xslt:for-each instructions in the case of XSLT.

XML-Based Syntax

XSLT uses the XML syntax, which can be both a strength and weakness. This is an advantage because XSLT can process itself. However, XML is also very verbose compared to plain text, and authoring an XML document is overkill for simple processing tasks.

Instead, XQuery has a syntax that mimics XML where necessary, particularly when constructing target elements. This makes it possible to nest expressions in XQuery in a way that is not possible in XSLT as it is not legal XML. XQuery thus achieves better composability than XSLT, but at a price: Because it is not pure XML, there are new rules to learn regarding how whitespace and character references are handled, and standard XML tools (such as editors) cannot be used to manipulate the query text. There's a good reason for this choice: XQuery is likely to be often used as an embedded language with programming languages such as Java and C#, or even within SQL, where XML tools would not be much use anyway.

Semantics of Element Construction

XQuery also supports a really important feature that was purposely disabled in XSLT 1.0, something commonly known as composition. Composition allows users to construct temporary XML results in the middle of a query, and then navigate into that. This is such an important feature that many vendors added extension functions, such as nodeset() to XSLT 1.0, to support it. But this restriction has disappeared in XSLT 2.0. This is a natural consequence of the two-language model, whereby XSLT instructions can call XPath expressions but not vice versa. 

Functions and Named Templates

XQuery and XSLT 2.0 both offer the ability to define functions. Again, at first sight the facilities are not very different. However, the fact that XSLT is a two-language system again creates differences. Because XSLT has one language for constructing nodes in the result tree and a different language (XPath) for selecting nodes from the source tree, it effectively has two mechanisms for defining what logically are functions: xslt:function for functions that can be called from XPath expressions and that return values; xslt:template for subroutines that can be called from the XSLT level and that write nodes to the result tree. 
However, most programmers today think procedurally and write large XSLT queries using a single function mechanism overlooking XSLT's recursive matching capabilities which could cut the query size in half and make it much easier to maintain.

XQuery only has a single language and takes a declarative and functional approach to query processing which makes it easier for writing user-defined function, including recursive ones but more difficult to perform pattern matching. It is especially great at expressing joins and sorts and can manipulate sequences of values and nodes in arbitrary order, not just document order

FLWOR Expressions

In the same way as the core construct of XPath is the path expression, at the center of the XQuery language lays the FLWOR expression. FLWOR expressions perform the same role in XQuery as SQL statements and its construct are heavily influenced by various relational languages. Nevertheless, a FLWOR expression contains nothing that does not translate directly into XSLT with very little difference in functionality. The for part translates directly into xslt:for-each, the let part into xslt:variable, the where part into xslt:if, and the order by clause into xslt:sort.

XSLT uses a nested loop approach for evaluating its nested expression. Whereas in XQuery, its FLWOR expressions evaluation is much more likely to use the repertoire of optimization techniques developed for relational databases, which can involve considerable rearrangement of the order of execution.
These differences arise because XQuery is used in a different environment: that of searching large persistent databases. In this environment, the efficiency of a query depends on finding pre-constructed indexes that give fast access to particular selections appearing in a query. A thrust of XQuery optimization is therefore to rewrite the query to make optimum use of indexes. 
In XSLT, the range of access paths available is much more limited; consequently, the opportunities for performance advantages from rewriting the query are also limited.
The difference in approach also arises because of XSLT's focus on handling document-oriented XML, whereas XQuery emphasizes data-oriented XML. When handling documents, the order of both the source document and the result document are significant, and they are often the same. Sequential processing is therefore usually the best strategy. When handling data, order is often unimportant, and strategies that change the order of execution can have a high payoff.
Template Rules

One of the few really significant differences between XSLT and XQuery is XSLT's use of template rules to decouple the element processing from its display. This enables the stylesheet to make fewer assumptions about the structure of the source document, and be more resilient to structural changes. This is beneficial for handling document-oriented XML. However, it makes optimization of the whole stylesheet hard as distinct from optimizing individual template rules, because so little is known statically about which rules will call which others.

 XQuery has no corresponding facility, although it is possible to prove that this does not reduce the expressive capability of the language: Any xslt:apply-templates instruction can in principle be translated into a conditional expression that makes direct calls on an explicit template depending on the properties of the selected node.

Type Strictness

In XSLT, the type system is very small compared to XQuery’s type system, in the sense that very few types were defined, and most operations accepted arguments of any type with the system doing its best to convert it to the required type. This was because the primary purpose of XSLT was for translating XML into display formats such as HTML and the validation and conversion is expected to be done on the client-side, in the browser. Another reason for this was the awareness that in the XML world, all data is ultimately text and any operations on data should implicitly convert what they are given into the datatype that they are designed to process.

XQuery was design with the idea that a rich type system should be at the core of the language in order to separate the data description, or schema, from the data-manipulation, or query language. The data description defines the types of objects that can be found in the database, and as such it naturally forms the type system for the query language, because a query that isn't expressed in terms of these types of objects doesn't make sense. The type information can be used for error detection in the query result and optimization whereby the more knowledge that the system has at compile-time will result in fewer runtime errors.

As time passes, XSLT has proved to be of significance in a great many roles other than client-side web browsing, and partly because of the emergence of XML Schema as a powerful influence on the adoption of XML by big business. And XQuery developers have recognized the need to handle semi-structured data. But XSLT still has more of a foot in the "loose typing" camp than XQuery does, because there is still more interest in processing schema-less documents, and also because the design of the language, with its event-based template rules, makes it much harder to use static type information effectively, either for error reporting or for optimization.

In all, XSLT is strong in recursively processing an XML document or translating XML into HTML but poor in working with user-defined functions, joins, and other common operations with its complex expression.

Therefore, XQuery based on path expression and FLWR (For Let Where Return) expressions was introduced. It is especially great at expressing naturally in XQuery syntax joins, projections, selections, sorts and it simplifies the writing of user-defined functions. Most importantly, it supports composition, the ability to construct temporary XML results in the middle of a query and then putting it to use.  
3 Existing XQuery graphical languages

The use of XQuery can sometimes be difficult for users without much training. Hence, a graphical query builder would be a potentially helpful tool. Through a graphical interface, users can construct queries through drawing diagrams with little knowledge. To date, two such applications has been designed namely, XQuery By Example (XQBE) [1] and Graphical XQuery Language (GXQL) [2].
3.1 XQuery By Example (XQBE)

XQBE (XQuery By Example) was inspired by QBE [3] and was designed as a GUI to map on top of any existing XQuery engine. The basic ideas and most of the syntax of XQBE was derived from XML-GL [10], an early and self-standing visual query language for XML, designed far before XQuery. However, the peculiarities of XQuery imposed the revision or pruning of some XML-GL constructs, while some other constructs have been introduced from scratch. Several queries, which are very easily expressible with XQuery (and with XQBE) are not expressible with XML-GL; in addition, the semantics has significantly changed in going from XML-GL to XQBE, in order to facilitate the equivalence with XQuery. 
The critical aim in the design is being intuitive whereby occasional or unskilled users who might only be aware of the data model or schema of the XML documents will be able to write queries and transformations with a simple graphical language. 
The targeted user of XQBE must at least be partially aware of the XML data model and has a query to be performed on a XML data source with a fixed schema and any programmers who need to write traditional queries over XML data rapidly with a GUI and refine it. 

[image: image3.emf]
Figure 4: XQBE Interface

The interface of XQBE is divided by a vertical line into its source part (on the left) and its construct part (on the right) creating a natural reading order from left to right as shown in Figure 4. Both parts contain labeled graphs that represent XML fragments and express properties such as conditions on values and structural properties. The source part describes the XML data to be matched to construct the result and the construct part specifies the data to be retained in the result and any new XML items to be inserted. The correspondence between the two parts is expressed through explicit binding edges that cross the vertical line and construct the nodes of the source part to the nodes of the construct part that will take their place in the result. 

All the XML elements in the source document are represented as black circles with the attribute name on the arc between the rectangle and the circle. Their PCDATA content is represented by an empty circle and can be labeled to express conditions.

XQBE is based on the use of trees so as to adhere to the hierarchical XML data model and although XQBE is capable of generating a visual representation of many XQuery statements that belongs to a subset of XQuery, use for extremely complex transformation is discouraged as the visual representation becomes unreadable as the number of nodes increases which would undermine the QBE paradigm that a visual interface to a query language is effective in supporting the intuitive formulation of queries when the basic graphical constructs are close to the visual abstraction of the underlying data model.
Therefore, XQBE supports a subset of XQuery due to the complexity that would result in failure to replace the textual language and in addressing usability requirements. XQBE supports nesting of FLWOR expression, construction of new XML elements, and restructuring existing documents. However, user-defined functions and disjunction are not supported. Table 1 lists the XQuery features supported in Visual XQuery.

	Feature
	XQuery
	XQBE

	Universal quantification
	yes
	No

	Existential quantification
	yes
	Yes

	Conjunction
	yes
	Yes

	Breath projection
	yes
	Yes

	Depth projection
	yes
	Yes

	Renaming
	yes
	Yes

	Filtering
	yes
	yes

	Disjunction
	yes
	no

	Creation of new elements
	yes
	yes

	Join
	yes
	yes

	Multiple documents
	yes
	yes

	Cartesian product
	yes
	yes

	Negation
	yes
	partially

	Union
	yes
	no

	Difference
	yes
	No

	Aggregates
	yes
	yes

	Arithmetic computations
	yes
	yes

	Grouping
	no
	No

	Sorting
	yes
	yes

	Querying schema order
	yes
	no

	Querying instance order
	yes
	no

	Nesting
	yes
	Partially

	Flattening
	yes
	Yes


Table 1: Covered querying capabilities

The visual representation of queries in XQBE uses a tree representation whose nodes represent the elements, attributes, and PCDATA content of given XML documents. The source part consists of one or more trees, possibly disjoint and connected by inter-tree and intra-tree connections. The former represent joins within a document and the latter between two documents. The basic symbols of XQBE are listed as follows:

(a) Element nodes are shaped as labeled rectangles and its label represents the element name.

(b) PCDATA nodes are represented as empty circles and denote the textual content of XML elements.

(c) Attribute nodes are represented as filled black circles and the label of the incoming arc represents the attribute name.

(d) The containment relationship between two XML items is represented by means of a directed arc from the container to the contained item. Arcs with a cross express the ascendant-descendant relationship.

The aforementioned symbols can be combined into structures pictured in Figure 5. The figure shows a direct containment (a), PCDATA content (b), attributes (c), and the transitive closure of the containment relationship (d) and an example that matches each structure as constructs of the source part of an XQBE query (e).  The query matches book elements having year of publication “2000” and publisher “Addison-Wesley” with the former condition built upon an attribute and the latter upon the PCDATA content of the publisher element.

[image: image4.jpg]A A

<A>
<B>..<B> | name.

B | <A

@ value ©

d‘;\‘""e B <B>..</B>
value i B 5
(b) SOy @

book
/N

[ ] publisher
2000 +

o

Addison-Wesley

<book year="2000">
<publisher> Addison-Wesley </publisher>

</book>
(e)





Figure 5: Basic Symbols of XQBE

The source part is used for expressing conditions on existing documents and adds a new symbol to XQBE, the root node. 

· Root node is associated with each distinct document in the source part. Root nodes are represented as gray squares, labeled with the location of the corresponding XML document. 

The construct part is used to build the query result by means of projection of the nodes extracted in the source part, possibly interleaved with newly generated items and adds two new symbols to XQBE, the trapezoidal node and fragment node.

· The trapezoidal node represent newly generated elements to be included in the result of the query and are only allowed in the construct part. Two kinds of trapezoidal nodes are available to represent two kind of new tags.

a. A single-tag trapezoidal node with the shorter edge on the bottom denotes a new tag enclosing each instance of the concepts placed immediately below the node.

b. A set-tag trapezoidal node with the shorter edge on the top denotes a unique new tag enclosing all the instances of the concepts placed immediately below the node.

· The Fragment node denotes the inclusion of entire fragment: a grey triangle placed below an Element node states that the corresponding element has to be included in the result with all its content which includes sub-elements, PCDATA and attributes.

Some possible construct configurations of the source and construct parts are shown in Figure 6a and Figure 6b respectively. 

[image: image5.jpg][0}
A | A contins L
DN wewsoone 7 Ve eon
* subelemer B B descendant
2) e 3
@ § O A mercoans
e ro contenof A
Pl e ates condiion
XML document ® pleg>10)
R et
B A
) E Element E has. 4
an st "o

au that satifies
pleg:>10)

(A) Components of the source part

B €
Bex e
» At on B andone €

(subelements of the same A)
satisfy pl AND p2

ar A T ZA A | Nesthe
B “ZA B | exmctedAs
° +_allits B subelements 9 attributes, no text)
" o
B Construct b) onstruct as.
D only one A . Congitio
oz g | fraimens g gty At By
3 (4) &)
@ A |Retain A @ A ] reuina € A Retin

(B) Components of the construct part

m @

A B [ D

T

Join of PCDATA and atributes

(C) Join connections

Aund B have
an identical C
as subelement
(decp cquality)

[0} @

T+

Construct as
many Bs a5 A

Binding edges between V-Nodes

(D) Binding edges





Figure 6: Graphical Constructs of XQBE

The join connections express either value-based comparison between atomic values (PCDATA content or attribute values) or object-based equality of two XML fragments.

· Value-based join is visually represented by a rhomboidal node with two or more incoming arcs as in Figure 6c, case 1. This node maybe labeled to denote the join predicate and by default, it is assumed to an equi-join. Incoming arcs can only originate from PCDATA and attribute nodes.

· Object-based join is visually represented as confluence into an Element node as in Figure 6c, case 2 and the incoming arcs can only originate from Element nodes. The condition of the join is that the entire fragments being joined must identical. 

The binding edges shown in Figure 6d, case 2 that bind the source and construct parts are visually represented as piece-wise linear curves that connect a node in source part to a node in the construct part, crossing the vertical line. The restriction on this join is that an Element node in source part can only be connected to another Element node in the construct part. And the PCDATA and Attribute node can be connected to each other or another node of similar type. The final rule is that a node in the construct part maybe bound by at most one edge whereas, a node in the source part can be bound by more than one edge.

[image: image6.jpg]label

Elements

b) omedoczml

i

<)

Tabel \\\\label

label

Root elements

Newly generated
elements

dy

\l{v

Containment
relationship

)

label

A

Entire
fragments

n % 2 \{me

Ulabel|

PCDATA
content

[
Auributes

Binding
edges





Figure 7: Symbol set in XQBE

A summary of the set of symbols in XQBE is shown in Figure 7 and an example query taken from [1] will be discussed to exemplify XQBE features and querying capabilities. 

Q1 – “List books published by Addison-Wesley after 1991, including their year and title”, on the data in Figure 8. Its XQuery version is as follows:
<bib>
{
for $b in document("bib.xml")/bib/book

where $b/pub="Addison-Wesley" and $b/@year>1991

return
<book year="{ $b/@year }">

{ $b/title }

</book>

}
</bib>

[image: image7.jpg]Bibxml

bib

!

book

v N

/

1901

book

publisher

Addison-Wesley

:

year \

title





Figure 8: XQBE version of Q1

The source part of Q1 matches the book elements with a year attribute greater than 1991 and a publisher sub-element equal to .Addison-Wesley. As in the bib node, nodes can be labeled with URLs to locate the target XML documents.

In the construct part, the paths that branch out of a bound node indicate which of its contents are to be retained. The binding edge between the book nodes states that the query result shall contain as many book elements as those matched in the source part. The trapezoidal bib node means that all the generated books are to be contained into one bib element.

[image: image8.jpg]—— b N\ © @ 9

el ] Y \ =N\ “1
\ S [ o®

op by [i] desc

Aggregate functions  Computation nodes  Conditional constructs  Sorting

Dashed consiructs
(negated/ghost nodes)





Figure 9: Advanced constructs of XQBE

Besides the aforementioned symbols, XQBE has introduced a wide set of other symbols in Figure 9 to support the rest of the supported capabilities. These capabilities include negation, aggregates, arithmetic computations, sorting and etc.  

[image: image1.jpg]TECHNOLOGICAL
UNIVERSITY



Figure 10: EBNF specification of the XQuery sub-range which can be represented with XQBE
Translation 
The translation process takes as input an XQBE query and produces as output its XQuery translation, defined by the XQuery subset grammar in Figure 10. The translation starts with a preprocessing of the source part, to compute variable bindings and predicative terms. The query is then generated by processing the construct part with a recursive visit. For the sake of readability, the previous example is not generated by XQBE grammar but taken from the W3C Use Cases. XQBE generates the canonical form of a query which is of equivalent meaning but different.
· Preprocessing

The graphs in the source part are parsed to detect the graphical configurations, which map to variable associated to a path expression, which is derived from the path that reaches the node. Each node reached by a binding edge causes the instantiation of a variable which are used to construct the predicative terms that express the selection criteria. 

Variables are also instantiated in correspondence to bifurcations (nodes with multiple outgoing arcs). These variables help in enforcing that the items in the branching paths do belong to the same ancestor. 

Join nodes (those with confluences) originate as many variables as their incoming arcs. The predicative terms are generated taking into account the comparator associated to the node. 

Leaf nodes with filtering labels cause the instantiation of variables to express the selection conditions. Negated branches are visited in the same way, with the only restriction that the visit does not begin until all the positive nodes have been visited, so as to guarantee that the scope constraints are not violated for the variables in the two-level clauses that will be generated.

· Processing

A recursive visit of the construct part generates a FLWR expression for each node connected by a binding edge. The for clause defines the variable instantiated in the node on the other side of the binding. Trapezoidal nodes are translated into node constructors. This recursive visit of the construct part results in an XQuery statement composed of nested FLWR expressions. The  where clause of each nested internal FLWR expression is assembled with the predicative terms pre-computed in the preprocessing phase. These terms are collected out of the source part, according to criteria dictated by the variables already bound in the for clauses of the external FLWR expressions. 

· Translation Example

[image: image9.jpg]S b con

book

i

[ Jack-s-book

irpubllslwr} author
i I oy
Q first FullName | | title
“Addison-Wesley” [ 1
3 b

“Jack”





The XQuery for the example is as follows:

<list>

{ 
for $b in document (“www.bn.com/bib.xml”) //book


where some $a in $b/author satisfies


some $f in $a/first/text () satisfies


($f = “Jack” and

not(some $p in $b/publisher/text () satisfies 

( $p = “Addison-Wesley” ) ) )


return <Jack-s-book>

{for $a in $b/author

 where some $f in $a/first/text() satisfies


( $f = “Jack” )

 return <FullName> { $a/* } <FullName> }

{$b/title}

</Jack-s-book> }

</list>

Pre-processing finds four variables:

$b in doc (“www.bn.com”)//book
$a in $b/author

$f in $a/first/text()


$p in $b/publisher/text()

The processing starts its recursive visit of the construct part from the trapezium, and generates a couple of list tags to contain the reminder of the query. The recursive visit then moves to the Jack-s-book node, which is the vertex of a binding edge and thus originates a FLWR expression. 

The clauses of such expressions are built as follows: The for clause binds only variable $b, associated to the other vertex of the binding edge. The return clause is built according to [14] in the grammar where production [15] intervenes to generate <Jack-s-book> tags with its first disjunct and then a nested FLWR expression with its second disjunct. The decision to generate a nested FLWR expression depends on the fact that the <FullName> is bound by an edge. 

The algorithm recursively generates the nested FLWR expression binding $a and extracting only a subset of the conditions, and precisely that about $f. Besides the nested FLWR expression, the algorithm inserts a path expression that concludes the “breadth” projection with the title, thus completing the translation.
3.2 Graphical XQuery Language (GXQL)
GXQL was inspired by BBQ [9] extending on its visual notation of dragging windows and icons to construct nodes or copy nodes. GXQL has fewer symbols than XQBE and some queries hard to express or impossible to be expressed in XQBE can be express in GXQL, possibly easier. 

[image: image10.jpg]e ——————— <
Fie Edt U Toos Wrvhws Help

BE BE

ook Seck

Year Year

Fublisher Tille

Title Fublcher

Retrieval Panel | Construction Pane

{ Near and [Publcher |

O e e P [ |

| oo | o]





Figure 11: Query Interface of GXQL

GXQL separates the interface shown in Figure 11 into three parts. On the left, the retrieval pane represents the schema or input document structure which is generated by GXQL when users select a document or its schema. This pane allows user to select the subset of the input they want to query. In the middle, the construction pane allows users to structure the query results and finally on the right, a symbol bar containing all the symbols in GXQL to create new elements from scratch in the construction pane.

GXQL represents elements and attributes as rectangles known in GXQL as nodes and the parent-child relationship through enclosing the child rectangle in the parent rectangle. Users can expand and zoom nodes inline by double-clicking. When an attribute is expanded, information about the attribute will be added to the representation. When an element is expanded, its attributes and children will be drawn nested inside it and allow further zooming whereby the element corresponding rectangle and all its children will zoom out to fill the window. The borders of these rectangles can be drawn in various styles to represent different relationship shown in Figure 12 with its representative XQuery expression. 

[image: image11.jpg]| A's immediate
| single chila B

| xauery: AB

‘Some descendant
BsofA

some AIB

A's immediate 3
‘multiple children Bs

forall AB

A's descendants Bs 7
forall AMB

8|

Some children 4 A's descendants Bs

BsofA
for all AUB

some AIB

negation of B's
predicate

not...

Some descendant 8 [ 5
BsofA

some AMB





Figure 12: Rectangle Symbols used in GXQL

Case 1. It indicates that node B is the single immediate child of node A 
Case 2. It indicates that there are multiple B sub-elements wrapped within one A node and all Bs are immediate children of A.

Case 3. This has the same meaning as case 2, except when users set up predicates for B, only some elements B satisfy the predicates.

Case 4. It indicates that the B sub-elements are descendents of A. There may be multiple Bs that are descendents of A. They do not have to be immediate children of A.

Case 5. This has the same meanings as case 4, except that when users set up predicates for B, only some elements B satisfy the predicates.

Case 6. It indicates that the B sub-elements are descendents of A with only one intermediate path in between. There maybe multiple Bs that is descendents of A.

Case 7. This has the same meanings as case 6, except that when users set up predicates for B, only some elements B satisfy the predicates.

Case 8. This has the same meaning as symbol 1, except that when users set up predicates for B, they want the complement of the results. Any symbol from case 1 to 7 can be complemented similar to case 8.

Case 9. This is used to indicate actions in the user interface and is not a visual symbol in GXQL.
When users want to input predicates for nodes, they just need to right-click on a node and complete the predicate fields. The predicate will be shown in the predicate panel below as an object and both retrieval pane and construction pane have their own predicate panel.

In the construction pane, two ways are available to construct a node, either by dragging a symbol from the symbol bar creating a new node, or by dragging a node from the retrieval pane. When nodes are dragged from the left part, their frame border can also be changed via a right click menu item. Users can select the nodes they want or delete the ones not needed through a right click menu selection. Users can also drag the nodes around switching their order and the query results will be given based on this order. 

The translation of a GXQL diagram to its corresponding XQuery FLWOR expression is through analyzing the construction pane first to find out which nodes are new and which nodes are copied from retrieved nodes. The next step is to analyze the retrieval pane going from the outer-most rectangle to the innermost rectangle and binding variables to expressions according to how they are going to be used in the “return” clause. The last step is to construct complete FLWOR expressions based on the elements in the construction pane. Two examples taken from [2] are discussed to exemplify GXQL query capabilities. 

Query 1: List books published by Addison-Wesley after 1991, including their year and title.
<bib>

{
for $b in document("www.bn.com/bib.xml")/bib/book

where $b/publisher="Addison-Wesley" and $b/@year>1991

return <book year="{$b/@year}">

 { $b/title }

 </book>

 }</bib>

[image: image12.jpg]



Figure 13: GXQL diagram for Q1

Query 1 is represented by GXQL as in Figure 13. In the retrieval pane, users first zoom into element <book>, so the attribute year and all sub-elements will show up. Right clicking on year and <publisher> will pop up the predicate edit windows as in Figure 14 for user’s editing.

[image: image13.jpg]‘Wi b comibibibookipublisher : sting

[y |

| publicher |

] [

2ot | | group | [ungroup|





Figure 14: Predicate popup windows for Q1
Predicates can be combined together by all boolean operations such as and, or and not. Predicates can be grouped together (represented by the parenthesis around them) or ungrouped so that the grouped object can participate in further boolean operations. The predicate objects can be dragged around to switch orders, which support arbitrary combinations of the predicates. This cannot be done in XQBE, which can only represent and relation.

To express the example query, in the construction pane users first drag an icon with a single frame from the symbol bar to create a new element <bib>, then drag an icon with shadowed frame for element <book>. Then users can drag year and <title> from the retrieval pane to the construction pane.

On start of translation, elements <bib> and <book> at the outermost level in the retrieval pane are interpreted as “for each <book> element in <bib>”. The predicates for year and <publisher> are interpreted to mean “the year has to be later than 1991 and the <publisher> has to equal Addison-Wesley”. 

In the construction pane, elements <bib> and <book> are interpreted to mean “construct new nodes <bib> and <book>, with multiple <book> elements wrapped inside a single <bib> element.” The attribute year and element <title> are copied from the retrieved results.
Query 2: List all the books not published by Addison-Wesley and with an author whose first name is “Jack”. Rename each of these books in <Jack-s-book>, and only remain the title and the full name of the authors whose first name is Jack. 
<list>

{ for $b in document ("www.bn.com/bib.xml")//book

where some $a in $b/author satisfies

some $f in $a/first/text() satisfies

( $f = "Jack" and

not ( some $p in $b/publisher/text() satisfies

 ($p = "Addison-Wesley" ) ) )

return <Jack-s-book>

{ for $a in $b/author
where some $f in $a/first/text() satisfies ( $f = "Jack")

return <FullName> { $a/* } </FullName> }

{ $b/title }

</Jack-s-book>

</list>

[image: image14.jpg](5] and [Cpbier ) [ ]

[ana] [Cor ] [not | [group | [ungroup| | [[and | [[or | [not ] [‘group | [ ungroup]





Figure 15: GXQL diagram for Q2

Query 2 is represented by GXQL as in Figure 15. Users can read the query from the diagram as followings: In the retrieval pane, the <book> element has double-line frame, which means we are looking for all book elements in path “//book”. The <author> element has both a dashed and a shadowed frame, which means multiple author elements are inside each book element, and we need only some of them to satisfy their predicates. 

The <first> rectangle is also shadowed, which means there are multiple <first> elements (to represent multiple given names) in each author element, and we need only some of them to satisfy the predicate. The <publisher> elements are set up similarly, except that we want the negation of a predicate, i.e. “not (some publisher elements satisfy the predicate)”. In the construction pane, <list>, <Jack-s-book>, and <FullName> are new elements. The <FullName> element is pink, which means for the authors’ name of each book retrieved from the document; we only want to list the names that have at least one first element that is equal to “Jack”. 

In XQBE, they use the graph in Figure 16 to represent the same query. Here the dashed line indicates negation. From the way the <author> and <first> nodes are drawn, it is really hard to tell whether it means all of them have to satisfy the predicates or only some of them have to.

[image: image15.jpg]www.bn.com

book B

e / \\

| publisher | author
g
il

oy first
"Addison-Wesley" })
"Jack"

g ‘Z\
FullName

C :





Figure 16: XQBE equivalent for Q2

3.3 Review of Existing Solutions

In the design of a graphical query language, user interaction is the most critical support and it is known that usability runs in contradict with the language support. This area of research has been heavily influenced by the QBE paradigm that a visual interface to a query language is effective in supporting the intuitive formulation of queries when the basic graphical constructs are close to the visual abstraction of the underlying data model.
XQBE was designed based on the QBE paradigm and supports most of the XQuery syntax. Its query capabilities have exceeded the needs of its targeted user who might only be aware of the data model or schema of the XML documents they worked with to write basic queries and transformations with a simple graphical language and would serve them well. However, the amount of symbols would constitute to a lengthy learning curve which does not appeal well to occasional users. In addition, XQBE extends its capabilities through adding more abstract symbols which might further lengthen the user’s learning curve.

Secondly, although it is modeled based on trees so as to adhere to the hierarchical XML data model, there is still distinctness between the two which requires some transformation adjustment for the user but not severe. But the binding between the source part and construct part still requires the user to have understanding of the XQuery language and the representation gets more complicated as the query complexes and is not visually obvious to first-time and occasional users.

Thirdly, XQBE translation algorithm when applied to a corresponding XQBE queries, generates automatically the query in their equivalent canonical form as aforementioned which maybe longer and therefore, tedious for error checking but as an XQuery learning tool, it is excellent except for its learning curve. Another doubt is the optimization of the generated query that may not run as fast as the original one.

GXQL takes another graphical approach using nested windows to express its query and its advantage is in its query capabilities in expressing queries hard or impossible to be expressed in XQBE, possibly easier. Its interface is much cleaner and do not face the problem of visual representation becoming unreadable as the number of elements and attributes increase which is a problem to XQBE. However, comparing the XQBE to GXQL query representation, GXQL adopts a nested window representation whereas XQBE adopts a tree representation that adheres to the hierarchical XML data model which would likely appeal more to present existing XML users. 

In addition, elements and attributes in GXQL are represented by a common rectangle shape with various styles to represent the many different type of relation. This means users are prone to confusion especially novice users.  And taking into consideration the possibility of extension restricted to rectangle shape with different styles would likely intensify this issue. Another issue is the binding of the source to the result whereby it requires selection of nodes to identify the binding compared to the outstanding binding edge in XQBE.

From this review, it can be seen that a compromise decision has to be made between usability and language syntax support. After some careful considerations, it has been decided to select usability as the priority and adhere to the QBE paradigm in the design with a reasonable language syntax support as no user would utilize a program with excellent user interaction but little functions.

4 Visual XQuery Syntax

This chapter will introduce the visual elements and query capabilities of Visual XQuery through query examples.

4.1 Basic Elements of Visual XQuery

The visual presentation of queries in Visual XQuery uses a tree representation to support a subset of XQuery syntax. Each tree is made up of a mixture of Document, Element, Condition and Return nodes and interconnected by Path, Value or Return edges. The aforementioned elements and connections are shown in Figure 17.

a. Document nodes are shaped as labeled rectangles labeled with the location of the source XML documents and optional path expressions can be inserted.

b. Element nodes are represented by black colored circles and denote those elements of the source documents selected. A child – parent relationship is imposed by an incoming binding edge from an ancestor Document or Element nodes or vice versa.  The selected XML elements are identified by the incoming edge label.

c. Condition nodes are shaped as labeled rectangles used to express selection based on values comparison or equality joins between two incoming edges. The label contains the comparison operator (=, >, <, >=, <=) and equality is assumed as default if not specified. Visual XQuery only supports conjunction predicates and not disjunctive predicates.

· In the case of a value-based selection, the condition node is connected to a Value edge and a Path edge labeled with the selected comparison elements.

· In the case of an equality join, the condition node is connected to two Path edge labeled with the selected comparison elements.

d. Return nodes are represented by red colored circles and denotes those elements retained in the query result. The selected elements are identified by an incoming Return edge labeled with the path expression.

e. Path edges are black colored arrows used to bind two nodes in a parent – child relationship with the child denoted by the arrowhead. The label contains the path expression for selection.

f. Value edges are used jointly with a Condition node and the labels contains the constant for comparison.

g. Return edges are red colored arrows joined at the arrowhead to a Return node and its label specifies the selected path expression for the query result.

	[image: image70.png]52

bibaxml

ftleauthoi

nibibook



(a) Document node connected to a Condition node with a Path edge
	[image: image71.png]Svar | Filename |Path

EdgePath
Svart




(b) Document node connected to an Element node with a Path edge

	[image: image72.png]§var |Filename |Path

EdgePath




(c) Element node connected to an Element node with a Path edge
	[image: image73.png]Svar [Filename |Path

Path



(d) Document node connected to a Return node with a Return edge

	[image: image74.png]var

EdgePain




(e) Element node connected to a Return node with a Return edge
	[image: image75.png]Joe



(f) An equality join using the Condition node connected to two Element node through Path edges

	[image: image76.png]Svar

EdgePal



 (f) Value-based selection using the Condition node connected to an Element node through Path edge and bind to a Value edge
	


Figure 17: Basic Elements

4.2 Examples of Visual Query
The set of visual symbols introduced in the previous section allows the formulation of a large variety of queries. In this section, modified examples queries from the XML Query Use Cases published by the W3C [7] are shown and discussed and the sample data is taken from “bib.xml” in Figure 18.

	<bib>

    <book year="1994">

        <title>TCP/IP Illustrated</title>

        <author><last>Stevens</last><first>W.</first></author>

        <publisher>Addison-Wesley</publisher>

        <price> 65.95</price>

    </book>

    <book year="1992">

        <title>Advanced Programming in the Unix environment</title>

        <author><last>Stevens</last><first>W.</first></author>

        <publisher>Addison-Wesley</publisher>

        <price>65.95</price>

    </book>

    <book year="2000">

        <title>Data on the Web</title>

        <author><last>Abiteboul</last><first>Serge</first></author>

        <author><last>Buneman</last><first>Peter</first></author>

        <author><last>Suciu</last><first>Dan</first></author>

        <publisher>Morgan Kaufmann Publishers</publisher>

        <price>39.95</price>

    </book>

    <book year="1999">

        <title>The Economics of Technology</title>

        <editor>

               <last>Gerbarg</last><first>Darcy</first>

                <affiliation>CITI</affiliation>

        </editor>

            <publisher>Kluwer Academic Publishers</publisher>

        <price>129.95</price>

    </book>

</bib>


Figure 18: Sample Document ("bib.xml")

4.2.1 [image: image77.png]Svar

EdgePal
Svart



Simple Query

Q1: Return all books in the source document.


for $a in doc("bib.xml")//bib/book

[image: image78.jpg]“biboxmr

title

it



return $a

The graph for query 1 can be found in Figure 19.

4.2.2 Flattening and Cartesian Product

Q2: Create a flat list of all the title-author pairs.


for $a in doc("bib.xml")/bib/book, 

$b in $a/title, 

$c in $a/author

return $b, $c

The graph illustrated in Figure 20a return title-author pairs that have written a book. The cardinality of these elements is determined by the number of book elements that are extracted by the query.

Q3: Build a Cartesian product of all possible pairs of authors and titles.

for $a in doc("bib.xml")/bib/book/author, 

$b in doc("bib.xml")/bib/book/title

return $a, $b
This query illustrated in Figure 20b returns the Cartesian product of all titles and authors appearing in the source document. The cardinality of these elements is determined by the product of the number of different titles and authors retrieved from two independent copies of the sample document. 

	[image: image16.jpg]“bibmt” |foibhook

e auth




(a) Q2
	[image: image17.jpg]“bibomr

bibookiauthor

“bibmr

bibimookitile




(b) Q3


Figure 20: Flattening and Cartesian Product
4.2.3 Query with value-based selection

Q4: List books published by Addison-Wesley after 1991, including their title.

for $a in doc("bib.xml")/bib/book

where $a/publisher = "Addison-Wesley"

return $a/title
In this query illustrated in Figure 21, it matches the entire book element from the source document “bib.xml” to see if it contains a publisher element whose PCDATA content equals “Addison-Wesley”. 

4.2.4 Equality Join Query

Q5: For each book found in “bib.xml” and “review.xml”, list the title of the book and its list price from each source.

for $a in doc("bib.xml")//book, 

$b in doc("review.xml")//entry

where $a/title = $b/title

return $a/price, $b/price

The equality join is expressed by means of binding the title element of both sources to a Condition node for comparison. Then for each entry and book that gets bound after the join, its price and its corresponding price of the book are extracted from the two documents and returned. The graph is illustrated in Figure 22. 

	[image: image18.jpg]“bibmt” |bibfbook

4 Publisher

fite

“addison-Wesley'

-




Figure 21: Query with value-based selection
	[image: image19.jpg]b |ihook  [EvEwsm ety

price price.




Figure 22: Join Query


4.2.5 Query with equality join and value-based selection

Q6: List the titles of the book or article where the author has written at least a book and an article and the book is publish by “Wiley”.

for $a in doc("bib.xml")/bib, 

$b in $a/article, 

$c in $a/book

where $b/author = $c/author

and $c/publisher = "Wiley"

return $b/title, $c/title

In this query illustrated in Figure 23, the cardinality of this query is determined by the number of book and article elements extracted. This query includes both value-based and selection equality join and both must be satisfied in order for output as Visual XQuery only supports conjunction predicates(and). 

The equality join is expressed by means of binding the author elements to a Condition node for comparison. Then for each article and book that gets bound after the join, it checks that the book element contains a publisher element whose PCDATA content equals “Addison-Wesley”. Once matched, the title of the book and the article are extracted and returned.

[image: image20.jpg]"Wiley

bt |bib





Figure 23:  Query with equality join and value-based selection

5 Query Processing
5.1 Translation of Visual XQuery into XQuery

The subset of XML Query adopted for the translation of Visual XQuery queries is defined in Table 2 by means of an EBNF grammar: 

	[1]  <query> 
	::= <for_clause> <where_clause>? <return_clause>

	[2]  <for_clause> 
	::= ‘for’ <var_binding>+

	[3]  <var_binding>
	::= ‘$’<var_name> ‘in’ <path_expr>

	[4]  <where_clause>
	::= ‘where' < pro_func > ('and' < pro_func >)*

	[5]  <pro_func>
	::= <expression> <comparator> <expression>

	[6]  <expression>
	::= <const> | <variable> | <path_expr>

	[7]  <comparator>
	::= '=' | '<' | '>' | '<=' | '>=' | '!='

	[8]  <return_clause>
	::= 'return' (<variable> | <path_expr>)+

	[9]  <path_expr>
	::= XPath expression

	[10] <variable>
	::= any variable that has been already bound in an <var_binding>

	[11] <const>
	::= a text constant to be interpreted as a string or a numeric value

	[12] <var_name>
	::= a valid, automatically generated, unique name for a variable


Table 2: EBNF specification of XML Query normal form for Visual XQuery

In Visual XQuery, a query ([1]) consists of three clauses: for, where, return. A for clause must be present for any translation to take place. The for clause ([2]) contains a list of variable bindings ([3]) and variables are bound to a path expression ([9]). 

The where clause ([4]) is built by composing several propositional functions ([5]) consisting of comparisons of values or arithmetic expressions corresponding to a part of the graph. The return clause ([8]) consists of a list of path expression ([9]) and variables ([10]) and projects a list of elements extracted from the for clause. 

The translation algorithm adopts a depth-first search tree pattern whose nodes are labeled by variable names and whose edges denotes the parent and child axes of XPath by means of an arrow direction. 

The algorithm is based upon the use of two functions: FindEdge() and FindNode() which works recursively together to visit the graph edges and nodes starting from Document Nodes. Next, I will give a general structure of the two functions, then define the different graph constructs and cite graph translation example cases.

5.1.1 Translation Function

The findNode function in Figure 24 takes the last edge being traversed as input and identifies the node types connected to the edge end and computes the relevant clauses.

[image: image79.jpg]bt |t

book




[image: image80.jpg]author





The findEdge function in Figure 25 takes as input the last query node being constructed in traversing of the tree and search for outgoing edges bind to it. If outgoing edges exists, it calls the findNode function taking the found edge as an argument.
	findEdge (Node N)  


IF N has outgoing edges THEN



FOR each edge E in outgoing edges DO



findNode(E)



Next edge


ENDIF

[image: image81.jpg]“wir o

book



STOP


5.1.2 Visual XQuery Constructs

Table 3 lists down all valid Visual XQuery constructs with its applicatory pseudo code by the side. Due to the recursive behavior, the pseudo code is a combination of the two functions mentioned earlier. To simplify the reading, a traverse function in Figure 26 is available to help join up the individual constructs into a complete graph:
	traverse (Node N)


CASE OF N


Element Node
: Let O store a Node object




  O = N's child 




  CASE OF O




  
Condition Node
: goto Construct 4




  
Return Node

: goto Construct 6




  
Element Node

: goto Construct 7




  ENDCASE


Condition Node
: goto Construct 5


ENDCASE

STOP


Figure 26: Transverse Function

Every graph must have at least one root node to start translation and the translation will start off by traversing the root nodes as in construct 1, 2 and 3.

	Declared Variables

String forStr = “for”            // store “for” expression

String whereStr = “where” // store “where” expression

String returnStr = “return”  // store “return” expression

String partExp[cNode] // store partial expression for a Condition Node(cNode)

	[image: image82.jpg]fitle



Construct 1

IF Document Node found THEN

    forStr += “ $var in doc(Filename)/Path”;

    IF edge connected to Element Node THEN

          forStr +=  “$var1 in $var/EdgePath ”

          WHILE exist Element Node connected edges not traverse DO

                     traverse(Element Node)

          ENDWHILE          

    ENDIF

ENDIF

	Construct 2
IF Document Node found THEN

    forStr += “ $var in doc(Filename)/Path”;

    WHILE exists connected edges not traverse DO

         IF edge connected to Condition Node THEN

            IF partExp[cNode] = null THEN

               partExp[cNode] = “$var/EdgePath = ”

[image: image83.jpg]publisher

"Wiley



               IF Condition Node has outgoing edge THEN

                  traverse (Condition Node)

               ENDIF 

            ELSE 

               whereStr += partExp[cNode] +“ $var/EdgePath”

            ENDIF

         ENDIF

    ENDWHILE

ENDIF


	Construct 3
IF Document Node found THEN

    forStr += “ $var in doc(Filename)/Path”;

    WHILE exists connected edges not traverse DO

        IF edge connected to return node THEN

           returnStr += “ $var/EdgePath”

        ENDIF

     ENDWHILE

[image: image84.jpg]auth ihor




ENDIF

	Construct 4
[image: image85.jpg]“bibomr

bibibook



IF edge connected to Condition Node THEN

    IF partExp[cNode] = null THEN

        partExp[cNode] = “$var/EdgePath = ”

        IF Condition Node has outgoing edge THEN

               traverse (Condition Node)

        ENDIF 

    ELSE 

        IF whereStr = “where” Then

               whereStr += partExp[cNode] + “ Value”

        ELSE 

                whereStr += “and ” + partExp[cNode] + “ Value”

         ENDIF 

    ENDIF

ENDIF

RETURN

	[image: image86.png]52

bibaxml {ibibibook

3t

4 XQuery Guide



Construct 5
IF outgoing edge is Value Edge THEN

   IF whereStr = “where” Then

      whereStr += partExp[cNode] + “ Value”

   ELSE 

      whereStr += “and ” + partExp[cNode] + “ Value”

   ENDIF

ENDIF

RETURN


	[image: image87.png]


Construct 6
IF edge connected to Return Node THEN

        returnStr += “ $var/EdgePath” 

    ENDIF

RETURN



	Construct 7
IF edge connected to Element Node THEN

    forStr +=  “$var1 in $var/EdgePath ”

        WHILE exists connected edges not traverse DO

               traverse (Element Node)

    ENDWHILE

ENDIF

[image: image88.jpg]<query>
£lur_expr>
<for_clause>
<var_binding>

wr_expr> |  <start_tag> ‘(' <query> '}’ <end_tag> [matching tags]
r_clauses <whers_clause> <retarn clause»

r <var_binding> ( ' <var_binding> )*

ltered expr>

er>* <quant

‘uhere’ <ex_quanti Sea>

“some’ <var_binding> ‘satisfies’

(' <atom_list ')° |’ ( catom_list> ‘and’ <neg_clause> ’
<atom> ( land’ <atom> )t
<pred_term> | fexists(’ <filtersd expr> /)'

<pred_term>
compazator>

pression> <comparator> <expression>
<constant
Yo

variable> | <computed value> falready bound variables only]
| ‘le’ | ‘ge’ | ‘me’

eq_clause> ‘(not (" <ex_guantifier>t (' <atom_list> /)))’
<return_clause> ‘return’ cstart_tag> <projection_list> <end_tag> [matching tags]
<projection_list> <start_tag> <projection_list> <end tag> <projection_list> | [matching tags]

(' <filtersd_expr> '}’ <projection_list> |
{' <flyr_expr> '}’ <projection_list> |

xPath expression withou ring (predicative) steps
tesing (predicat
ble>s and <constan

<name> >/ [<name> is a valid idestifier for KML elemeats]




RETURN


Table 3: Visual XQuery Constructs

5.1.3 Use Case
	[image: image89.jpg]ToolBar

AbstractEdge

<<abstract>>
A
Edge
<cinterface>> [
Node
interface
A
Graph <>
XQueryGraph sy CircleNode PointNode LineEdge
Py
RootNode ConditionNode | | SquareNode





Query 1

<result>

for $a in doc(“bib.xml”)/bib/book

return $a/title $a/author

</result>

	Step 1: Traverse graph from rootnode

Partial results:

forStr

for $a in doc(“bib.xml”)/bib/book

returnStr

return $a/title 


	[image: image21.png]52

bibaxml

tle

nibibook





	Step2: Traverse remaining edge

Partial results:

forStr

for $a in doc(“bib.xml”)/bib/book

returnStr

return $a/title $a/author


	[image: image22.png]52

bibaxml

authol

nibibook






	[image: image90.jpg]AbstractEdge

<<abstract>>
A
Edge
<cinterface>>
[Drawo
Clone()
Node
<<interface>>
{ Prototype ‘I,‘l““%
: Clone
SraphPanel Frototype
p-~draw(position) RectanguluNode | | CircleNode LineEdge
i i 2 <<abstract>>
insext p into graph Brn oG
Yy Clone() Clone)
% Return Copy of
Self
RootNode ConditionNode | | Roun Copy of
Self
[Drawo Drawo
Clone) Clone()

Return Copy of

Return Copy of
Self

Self




 

Query 2

<result>

for $a in doc(“bib.xml”)/bib/book

where $a/title = “XQuery Guide”

return $a/title

</result>

	Step 1: Traverse graph from RootNode $a

Partial results:

forStr

for $a in doc(“bib.xml”)/bib/book

partExp

[cNode]

$a/title = 


	[image: image23.png]52

bibaxml

l Jitle

hibibook





	Step 2: Traverse condition node

Partial results:

forStr

for $a in doc(“bib.xml”)/bib/book

partExp

[cNode]

$a/title = 

whereStr

where $a/title = “XQuery Guide”


	[image: image24.png]




	Step 3: Return to rootnode $a to traverse edges

Partial results:

forStr

for $a in doc(“bib.xml”)/bib/book

whereStr

where $a/title = “XQuery Guide”

returnStr

return $a/title 


	[image: image25.png]$a

biboxml

pibhook

it






	[image: image91.jpg]getSelectedTool

clone




Query 3

<result>

for $a in doc(“bib.xml”)/bib

     $b in $a/book

     $c in $a/article

where $b/author = $c/author

return $b/title $c/title

</result>

	Step 1: Traverse graph from rootnode $a

Partial results:

forStr

for $a in doc(“bib.xml”)/bib

      $b in $a/book


	[image: image26.png]a

bibaxml

ook

ioio





	Step 2: Traverse edges of node $b

Partial results:

forStr

for $a in doc(“bib.xml”)/bib

      $b in $a/book

returnStr

return $b/title


	[image: image27.png]),

flle





	Step 3: Traverse remaining edges of node $b

Partial results:

forStr

for $a in doc(“bib.xml”)/bib

      $b in $a/book

partExp

[cNode]

$b/author = 

returnStr

return $b/title


	[image: image28.png]





	Step 4: return to traverse remaining edges of rootnode $a

Partial results:

forStr

for $a in doc(“bib.xml”)/bib

      $b in $a/book

      $c in $a/article

partExp

[cNode]

$b/author = 

returnStr

return $b/title


	[image: image29.png]bibaxml

ity

Jatticle

s





	Step 5: Traverse edges of node $c

Partial results:

forStr

for $a in doc(“bib.xml”)/bib

      $b in $a/book

      $c in $a/article

partExp

[cNode]

$b/author = 

whereStr

where $b/author = $c/author 

returnStr

return $b/title


	[image: image30.png]




	Step 6: Traverse remaining edges of node $c

Partial results:

forStr

for $a in doc(“bib.xml”)/bib

      $b in $a/book

      $c in $a/article

partExp

[cNode]

$b/author = 

whereStr

where $b/author = $c/author 

returnStr

return $b/title $c/title


	[image: image31.png]$ol
it






	Query 4

[image: image32.png]sa| bl o

ook
$b

Jauthor
5,

fame




<result>

for $a in doc(“bib.xml”)/bib

     $b in $a/book

     $c in $b/author

return $c/surname

</result>
	Step 1: Traverse graph from rootnode $a

[image: image33.png]52

biboml |

ook
b




Partial results:

forStr

for $a in doc(“bib.xml”)/bib

      $b in $a/book

Step 2: Traverse edges of node $b

[image: image34.png]0

Jauthar
5,




Partial results:

forStr

for $a in doc(“bib.xml”)/bib

      $b in $a/book

      $c in $b/author

Step 3: Traverse edges of node $c

[image: image35.png]by

fame




Partial results:

forStr

for $a in doc(“bib.xml”)/bib

      $b in $a/book

      $c in $b/author

returnStr

Return $c/surname




5.1.4 Forward Translation

The exponential growth in the size of XML documents queried over the net, in particular from slow sources has driven the need for progressive processing; stream-based processing of XML whereby partial result are generated as soon as they are available for a more efficient evaluation. A particular concern in such processing is the reverse axes of the XPath such as parent, preceding. Three principle options are available to evaluate reverse axes in a stream-based context:

· Storing sufficient data from past event in memory to evaluate a reverse axis.

· Evaluating an XPath expression in more than one run which requires storing additional information to be used in successive runs. However, the information is smaller than what is in the first approach.

· Replacing XPath expressions by equivalent one without reverse approach.

XPath: Looking Forward [13] has proven that the third approach is possible and it is less time consuming than the second approach and does not require the in-memory storage as in the first approach. Although the equivalent paths might remain expensive to evaluate but by restricting location paths with reverse axes, this would enable efficient stream-based processing of XML data where evaluation can be done in one run and no memory storage needed to keep past data. 

Figure 27 illustrates an example of an XPath reverse axis extracted from [13]. Let p and s be relative location paths, n and m node tests, am a reverse axis, an a forward axis, and bm the symmetrical axis of am. Instead of looking back from the context node specified by path p for matching a certain node am:m, one can look forward from the beginning of the document for matching the node /descendant::m and then, still forward, for reaching the initial context node bm::node(). The selected node is the same for both location paths.

[image: image36.jpg]—— navigatonn bft-hand sic ofquivance

- navigation insight-hand side of guivaence

o ootonte

context ode

. e pods

Pl ::m]

[/descendant: :m/by,

node() == selt: :node()]




Figure 27: XPath Reverse Axis Example

In Visual XQuery, forward translation adopts the third approach to develop a concept rewriting algorithm to transform location paths with reverse axes into equivalent reverse-axis-free ones. Four types of axis is covered namely, parent, child, ancestor or self and descendent or self. The eight combination of reverse axis from this four supported axis is identified in with its equivalent forward path. Throughout this discussion, the current context is assumed to be $z and the source document denoted by RootDoc. And the four types of axis are represented in Visual XQuery by the path patterns in Table 4.
	Pattern
	Representation

	^x
	Parent of $z which is of type x

	^^x
	Ancestor or self of $z which is of type x

	/x
	Child of $z which is of type x

	//x
	Descendent or self of $z which is of type x

	*x denotes any char or word  


Table 4: Supported XPath Axis Symbols

Instances of the reverse axes are only found in labels of Path and Return edges. The implementation of this feature is added on to the pseudo-code discussed in section 5.1.2. Whenever an edge label is encountered, the string will be put through a pattern matching function to verify if it is a reverse path that needs conversion. The pattern is given in Table 5 and the process path function pseudo-code is shown in Figure 28. 

	Pattern Name
	Pattern in java syntax
	Example

	Edge Path 1
	/\\w+\\^\\w+
	/a^b

	Edge Path 2
	/\\w+\\^\\^\\w+
	/a^^b

	Edge Path 3
	//\\w+\\^\\w+
	//a^b

	Edge Path 4
	//\\w+\\^\\^\\w+
	//a^^b

	Edge Path 5
	\\^\\w+/\\w+
	^b/a

	Edge Path 6
	\\^\\w+//\\w+
	^^b/a

	Edge Path 7
	\\^\\^\\w+/\\w+
	^b//a

	Edge Path 8
	\\^\\^\\w+//\\w+
	^^b//a

	Predefined Character sets

\w   This represents any word character. 


Table 5: Reverse Axis Pattern
On a pattern match, the function will pass the edge label to the relevant path case in Figure 29 to  Figure 32 for computing the result else it will just return the original label back.

	processPath (String edgePath, Filename sourceDoc)


Let String result


CASE OF edgePath



Edge Path 1:
RETURN with result = goto Path Case 1



Edge Path 2:
RETURN with result = goto Path Case 2

Edge Path 3:
RETURN with result = goto Path Case 3

Edge Path 4:
RETURN with result = goto Path Case 4

Edge Path 5:
RETURN with result = goto Path Case 5

Edge Path 6:
RETURN with result = goto Path Case 6

Edge Path 7:
RETURN with result = goto Path Case 7

Edge Path 8:   RETURN with result = goto Path Case 8

Default: RETURN with edgePath
STOP


Figure 28: Path processing Function

	Path Case 1: /a^b

[image: image37.jpg]$z




	Get parent b of current context $z ‘s child a

[image: image38.jpg]/a"b






	
	Rewritten path:

for $y in $z[/a and label() = ‘b’]



	Path Case 2 : /a^^b

[image: image39.jpg]/\/\b

$z




	Get ancestor b of current context $z ‘s child a

[image: image40.jpg]




	
	Rewritten path:


for $ya in doc(“RootDoc”)//b


      $yb in $ya//*


where $yb = $z and not empty($z/a)


return $ya




Figure 29: Path Case 1 & 2

	Path Case 3: //a^b

[image: image41.jpg]//a

$z





	Get parent b of current context $z ‘s descendent a

[image: image42.jpg]





	
	Rewritten path:

for $ya in doc(“RootDoc”)//b

      $yb in $ya/*

where $yb = $z//a and not empty($z//a)

return $ya


	Path Case 4: //a^^b
[image: image43.jpg]/\/\b

$z




	Get ancestor b of current context $z ‘s descendent a

[image: image44.jpg]





	
	Rewritten path:


for $ya in doc(“RootDoc”)//b


      $yb in $ya//*


where $yb = $z//a and not empty($z//a)


return $ya


Figure 30: Path Case 3 & 4

	Path Case 5: ^b/a

[image: image45.jpg]



	Get child a of current context $z ‘s parent b

[image: image46.jpg]




	
	Rewritten path:


for $ya in doc(“RootDoc”)//b


      $yb in $ya/* 


where $yb = $z 


return $ya/a



	Path Case 6: ^^b/a

[image: image47.jpg]/\/\b

/a

$z




	Get child a of current context $z ‘s ancestor b

[image: image48.jpg]




	
	Rewritten path:


for $ya in doc(“RootDoc”)//b


      $yb in $ya//*


where $yb = $z 


return $ya/a




Figure 31: Path Case 5 & 6
	Path Case 7: ^b//a

[image: image49.jpg]//a

$z





	Get descendent a of current context $z ‘s parent b

[image: image50.jpg]




	
	Rewritten path:


for $ya in doc(“RootDoc”)//b


      $yb in $ya/*


where $yb = $z 


return $ya.//a



	Path Case 8: ^^b//a

[image: image51.jpg]//a





	Get descendent a of current context $z ‘s ancestor b

[image: image52.jpg]




	
	Rewritten path:


for $ya in doc(“RootDoc”)//b


      $yb in $ya//*


where $yb = $z 


return $ya//a


Figure 32: Path Case 7 & 8
Example Forward Translation Use Case

Q1: List title of book whose author has written the title “Breakout”.
	[image: image53.jpg]“wibont® it

“Breakout'
o




	In simple translation algorithm, the query generated will be as follows:

for $a in doc("bib.xml")/bib, 

$b in $a/book

where $b//author^^title = "BreakOut"

return $b/title

This query would require reverse axis navigation which would take up memory and evaluation takes more than one run. Using the forward translation logic, the re-written query is as follows:

for $a in doc("bib.xml")/bib, 

$b in $a/book

where 

          for $ca in doc(“bib.xml”)//title

                $cb in $ca//*

          where $cb = $b//author and 

                 not empty($b//author)

           return $ca

      = "BreakOut"

return $b/title

 


5.1.5 Canonical Forward Translation

The forward translation algorithm in Visual XQuery only supports a maximum of two axes. In addition, the translation is fixed making further expansion difficult. Therefore, canonical forward translation algorithm is introduced to tackle these two issues. It supports paths with multiple axes but is also restricted to the four supported axis as in the original algorithm to reduce the complexity. 

As suggestive from its name, the canonical forward translation algorithm rewrites a reverse-axis path into a reverse-axis free path in its canonical form. This means that quantifiers as seen in the original algorithm are not allowed. Although the result may not be optimal as compared to the previous, it solves the two issues aforementioned and in addition, the target users of Visual XQuery are believed to have little or no knowledge in XQuery to start with. Therefore, having the result in canonical form would allow easier understanding.

In Visual XQuery, the implementation interface remains the same except the addition of the canonical forward translation algorithm to the translator package. Figure 33 illustrates the translator design pattern in Visual XQuery built based on the strategy pattern with the addition of the canonical forward translation algorithm.

[image: image54.jpg]AbstractTranslation
<<abstract>>

translate()

[ 2
Translation

translate() translate() translate()




 

Figure 33: Translator Design Pattern
Throughout this discussion on the canonical forward translation, books.xml and its node tree shown on Figure 34 and Figure 35 respectively will be used as the source document for examples.

	<bookstore>

    <book>

        <title>The Autobiography of Benjamin Franklin</title>

        <author>

            <name>

                <first-name>Benjamin</first-name>

                <last-name>Franklin</last-name>

            </name>

            <email>benfranklin@mail.com</email>

        </author>

        <price>8.99</price>

        <publisher>Abet Publishers</publisher>

    </book>

    <book>

        <title>The Confidence Man</title>

        <author>

            <name>

            
 <first-name>Herman</first-name>

           
 <last-name>Melville</last-name>

            </name>

        </author>

        <price>11.99</price>

        <publisher>Brother Publishers</publisher>

    </book>

    <book>

        <title>The Gorgias</title>

        <author>

            <name>Plato</name>

            <email>plato@mail.com</email>

        </author>

        <price>9.99</price>

        <publisher>Penguins Publishers</publisher>

    </book>

</bookstore>


Figure 34: Sample Document ("Books.xml")

	[image: image55.jpg]bookstore

book

tiﬂe author price | publisher

name







Figure 35: Node Tree (Books.xml)

Figure 36 shows example query Q2 and its two translations result based on direct rewriting and the simple translation algorithm in Visual XQuery. As observed, the graph contains a complex reverse-axis path that contains more than two axes which is not supported by the forward translation algorithm. Direct rewriting is an optimal solution but it opposes the motivation of Visual XQuery as a graphical query language to allow users with little or no knowledge in XQuery to write queries and is costly as it requires knowledge of the source document schema. This example query Q2 will serve as the use case throughout this discussion on canonical forward translation. 

	Q2: List title of book whose author has a valid first_name bounded by a ‘name’ tag which belongs to a book whose price <= $10

	[image: image56.jpg][Bonksxmilimoakstore

book

flle

4 Jauthorfrst_namesname hookiprice

o
&





	Direct Rewriting
for $a in doc("Books.xml")//bookstore/book[/author/name/first_name],
where $a/price <= “10”
return $a/title

	Simple Translation

for $a in doc("Books.xml")//bookstore, 

$b in $a/book

where $b/author//first_name^name^^book/price <= "10"

return $b/title


Figure 36: Use Case Q2

As mentioned earlier, canonical forward translation was introduced to support paths with multiple axes. The translation is executed firstly by putting the path through a regular expression to identify the subset paths in the full path. Four types of subset paths are identified based on the four supported axes; parent, child, ancestor-or-self, and descendent-or-self. Figure 37 shows the subset paths with their canonical translation respectively with the source document assumed to be RootDoc. 

	Subset Path
	Axis
	XQuery Translation

	a^b
	Parent
	For newVarA in doc(RootDoc)//b
For newVarB in newVarA/a

	a^^b
	Ancestor-or-Self
	For newVarA in doc(RootDoc)//b
For newVarB in newVarA//a

	a/b
	Child
	For newVarA in doc(RootDoc)//a
For newVarB in newVarA//b

	a//b
	Descendent-or-Self
	For newVarA in doc(RootDoc)//b
For newVarB in newVarA//a

	newVarX is freshly generated from a variable generator. 


Figure 37: Subset Paths

A new data structure groupPath is introduced to store the subset path and all the subset paths are stored in an array groupArray. The pseudocode for the pattern matching is shown in Figure 38. Figure 39 shows the matched subset paths from example query Q2.

	detectAxis(path): groupPath

STRUCT groupArray 


VAR pattern = "(\\$)?(\\w+)?(?<=\\w+)((/)|(//)|(\\^)|(\\^\\^))(\\w+)"


WHILE exists matches to pattern in path



create and add groupPath to groupArray


END WHILE
RETURN with groupArray


Figure 38: Pattern Matching

	Example Path:     $b/author//first_name^name^^book/price

	Generated Subsets:


	$b/author

author//first_name 

first_name^name

name^^book

book/price


Figure 39:  Subset Paths of Q2

After detecting and storing each subset path, each subset path is translated using the computeQuery function in Figure 40 starting from the last groupPath in the groupArray.

	computeQuery(groupArray) : string


var linkVar : string
//variable for connecting groupPaths


FOR each groupPath in groupList from last to first



IF groupPath contains context path THEN



IF groupPath axis contains forward axis THEN




compute where clause to join linkVar with context path




ELSE IF groupPath axis contains reverse axis THEN




compute reverse axis for clause and





compute where clause to join groupPath with context path




ENDIF



ELSE 




IF groupPath contains forward axis THEN




compute forward axis for clause 




ELSE IF groupPath contains reverse axis THEN




compute reverse axis for clause 




ENDIF




IF linkVar is empty THEN




set linkVar to variable generated for current groupPath




ELSE  compute where clause to join groupPath with linkVar




ENDIF




IF groupPath is last node THEN compute return clause




ENDIF



ENDIF


END FOR

RETURN with computed clauses


Figure 40: Canonical Forward Translation Algorithm

	for $a in doc("Books.xml")//bookstore, 

$b in $a/book

where 


for $ci in doc("Books.xml")//book


$cj in $ci/price


$ch in doc("Books.xml")//book


$cg in $ch//name


$cf in doc("Books.xml")//name


$ce in $cf/first_name


$cc in doc("Books.xml")//author


$cd in $cc//first_name


where  $ci = $ch  and  $cg = $cf  and  $ce = $cd  and  $b/author = $cc 


return $cj <= "10"

return $b/title


Figure 41: Q2 Canonical Forward Translation
Figure 41 shows the canonical forward translation result from example query Q2. It offers a systematic way to process reverse-axis path with multiple axes. However, the result is not optimal with its introduction of more for loops, joins and document accesses as compared to a direct rewriting algorithm with quantifiers shown in Figure 36. 

5.1.6 Further Enhancement

As discussed earlier, canonical forward translation is not optimal as it introduces more for loops, joins and document accesses. Therefore, to approach the optimization based on these aspects, identifying and understanding of the bond between the nodes are required.
Figure 42 shows the hierarchy chart of the use case Q2. By identifying the relationship between the nodes, it is possible to work from nodes with higher precedence which concurs with the workings of reverse-axis free translation. Hence, we can reduce the number of for loops. For example, for $a in book/author instead of for $a in book, for $b in $a/author. Indirectly, this optimization also reduces the number of joins and document accesses.

[image: image57.jpg]bookstore

book($b)
book

author’

name price

first_name

Legend

‘\.cma /. Parent
L
\1\. Descendent-or-Self Ancestor-or-Self





Figure 42: Hierarchy Chart for Q2 reverse-axis path

The pattern matching function and the data structure for the algorithm remains unchanged from the original algorithm. Figure 43 shows the pseudocode for the enhanced canonical forward translation algorithm. The traverse function collects sequential groupPaths of same relationship for translation by the process function.

	VAR index=0 : integer //index for groupArray
VAR forClause, whereClause, returnClause : string 
transverse(index, lastIndex)


VAR currPath, nextPath: groupPath


currPath = groupList[index]


nextPath = groupList[index+1]


IF nextPath not null THEN


IF currPath and nextPath has similar relationship THEN



transverse(index+1,lastIndex)



ELSE 




process(lastIndex, index)




transverse(index+1,lastIndex)




ENDIF


ELSE process(lastIndex, index)


ENDIF

STOP

process(start, end)


IF groupList[index] direction is up THEN


FOR each groupPath in groupList from index end to start 




compute for and where clause




IF groupList[end] is last node THEN




compute return clause




ENDIF



END FOR

ELSE IF groupList[index] direction is down THEN


FOR each groupPath in groupList from index start to end




compute for and where clause




IF groupList[end] is last node THEN




compute return clause




ENDIF



END FOR

ENDIF

STOP


Figure 43: Enhanced Canonical Forward Translation

Using the enhanced canonical forward translation algorithm, the resultant query of use case Q2 is shown in Figure 44. Compared to the original translation, the complexity of the query is greatly reduced with less for loops, joins and document accesses.

	for $a in doc("Books.xml")//bookstore, 

$b in $a/book

where 


for $ca in doc("Books.xml")//book


$cb in $ca//name/first_name


$cc in $ca/price


where $b/author//first_name = $cb 


return $cc <= "10"

return $b/title


Figure 44: Optimized Q2 Canonical Forward Translation
Although this query is not as optimize as direct rewriting, it meets the requirements well and provides a query that is more optimize or of equivalent complexity using the canonical forward translation algorithm and  the query created is simpler to understand for Visual XQuery targeted users with little or no XQuery knowledge.

5.1.7 Time Complexity

As mentioned in the previous sections, Visual XQuery uses a recursive algorithm involving two functions: findNode and findEdge for translation of graph to XQuery. Citing query 4 in section 5.1.3 as an example, the time complexity is computed as follow:

	[image: image58.png]sa| bl o

ook
$b

Jauthor
5,

fame




	<result>

for $a in doc(“bib.xml”)/bib

     $b in $a/book

     $c in $b/author

return $c/surname

</result>


	Time Complexity of query 4 
	O(n + e)

	Select root node as initial selected node
	O(n)

	Compute root node expression
for $a in doc(“bib.xml”)/bib
	O(1)

	For each found edge’s start node is selected node
	O(e)

	     Compute found edge’s end node expression
     $b in $a/book
	O(1)

	     For each outgoing edge from end node
	O(e)

	          Compute found edge’s end node expression
          $c in $b/author
	O(1)

	           For each outgoing edge from end node
	O(e)

	               Compute found edge’s end node expression
                return $c/surname
	O(1)


Figure 45: Time Complexity of query 4
As demonstrated through the example above, the time complexity of any graph can be concluded to be bounded by O(n + e) as characterized by  the recursive translation.

5.2 Translation of XQuery into Visual XQuery

Importing XQuery file into Visual XQuery requires the XQuery file to comply with the supported syntax specified in Table 2 and query pattern specified in Table 6 to be recognizable. In the following sections, I will discuss about pattern matching which is adopted to translate the XQuery language for display graphically and the recursive algorithm to layout the graph respectively. 
	Pattern Name
	Pattern in java syntax
	Example

	For 
	\\Afor
	for

	Where 
	\\Awhere
	where

	Return 
	\\Areturn
	Return

	In 
	in
	in

	And 
	and
	And

	Variable
	\\$\\D\\b
	$a

	Document 
	doc\\(\”\\S+\”\\)?\\S+
	doc(“filename”)\path

	Condition
	\\W+
	>=

	Path
	\\$\\D/\\S+
	$a/book

	Value1
	\”\\w+\”
	”Wiley”

	Value2
	\"\\w+
	“Wiley

	Value3
	\\w+
	Brothers

	Value4
	\\w+\"
	Books”

	Predefined Character sets

\D   This represents any character that is not a digit.

\w   This represents a word character.

\S   This represents any non-whitespace character. 

\A   Specifies the beginning of the string being searched.

\b   Specifies a word boundary.


Table 6: XQuery Patterns
5.2.1 Pattern Matching

In the import function, XQuery codes are process line by line in sequential. Therefore, the binding and usage of variable must be in sequence spilt into fundamental expression using ‘,‘ and ‘\n’ delimiter and finally put through a pattern matching routine. The fundamental expressions are further tokenized using white space as the delimiter and then process through the routine listed in Figure 46. The routine does pattern matching and create the relevant graph nodes and edges in the query. 

However, the graph nodes and edges positions are not oriented for viewing. Therefore, the completed graph will be put through a layout algorithm to be discussed in the next section for graphical display. 

	processLine (String inputLine, int status)


Let Char nodeLabel


Let Boolean isNodeLabel = true


Let clauseType = status


Let scanner = tokenize inputLine by whitespace delimiter


WHILE scanner contains tokens DO


CASE OF token



For
: clauseType = 1 //detecting for clause



Where
: clauseType = 2 //detecting where clause



Return
: clauseType = 3 //detecting return clause



And
: clauseType = 4 //detecting and clause



In
: isFreshEntry = false



Variable: IF clauseType = 1 && isNodeLabel = true THEN



  
nodeLabel = token




  ELSE IF clauseType = 1 && isNodeLabel = false THEN



  
create Element Node using token




create Path Edge between Element Node and ancestor





add Element Node and edge to graph




  
isNodeLabel = true




  ELSE IF clauseType = 3 THEN



  
create Return Node using token



  
create Return Edge between Return Node and ancestor




  
add Return Node and Edge to graph




  ENDIF



Document: IF clauseType = 1 THEN



  
create Root Node using token and add to graph




      ENDIF



Path
: IF clauseType = 1 THEN



  
create Element Node using token





create Path Edge between Element Node and ancestor




  
add Element Node and Edge to graph




  
isNodeLabel = true




  ELSE IF clauseType = 2 || clauseType = 4 THEN



  
create Path Edge to Condition Node




  ELSE IF clauseType = 3 THEN




  
create Return Node using token




  
create Return Edge between Return Node and ancestor




  
add Return Node and Edge to graph




  ENDIF



Condition: IF clauseType = 2 || clauseType = 4 THEN



  
create Condition Node using token and add to graph




     ENDIF



Value1 or Value2: IF clauseType = 2 || clauseType = 4 THEN



  
              create Value Node and Edge using token 
                                                             add Value Node and Edge to graph




                  ENDIF



Value3 or Value4 : IF clauseType = 2 || clauseType = 4 THEN




                update Value Node




                   ENDIF


ENDWHILE


RETURN with clauseType

STOP


Figure 46: Pattern Matching Routine
5.2.2 Layout Algorithm

After the graph is created through pattern matching, the nodes and edges will need to be oriented for graphical display. The layout algorithm in Figure 47 uses a depth first recursive approach to traverse the graph and set the default width spacing between each node. Each node’s Y location will be fixed according to its level starting from the root node at level 1 and increases as the algorithm traverse downwards.   

	Let Integer xWidth = default width interval

Let Integer yHeight = default level height interval

Let Integer graphMaxX = graph width

layoutGraph ()  {


FOR each node N in graph DO


IF N is not visited THEN setLayoutDFS(N, 1) END IF

NEXT node

STOP

setLayoutDFS (Node N, Integer level)  { 


set N visited


IF N has connected Node THEN


Let Integer minX = 0



Let Integer maxX = 0



FOR each Node M in connected Nodes 




Let lastNodeX = setLayout(M, level++)




IF minX = 0 THEN 





minX = lastNodeX




ENDIF




IF lastNodeX > maxX THEN




maxX = lastNodeX




ENDIF


NEXT Node



translate N along X axis by middle(minX,maxX)



translate N along Y axis by level * yHeight



RETURN with N.xPosition


ELSE




translate N along X axis by graphMaxX + xWidth



translate N along Y axis by level * yHeight



RETURN with N.xPosition


ENDIF


STOP


Figure 47: Layout Algorithm
5.2.3 Time Complexity

The translation of XQuery into Visual Xquery relies on pattern matching to identify the nodes and edges and lastly, a recursive layout algorithm to orientate the nodes and edges for graphical display. We will evaluate these two steps individually.

The pattern matching process involves tokenizing the input document and then matching the tokens to the patterns. The complexity evaluation is shown in Figure 48 and the complexity from tokenizing is ignored to simplify the evaluation. The evaluated result shows that pattern matching is upper-bounded by O(n). 

	Pattern Matching Time Complexity
	O(n)

	While exists token
	

	      If token matches pattern
	O(1)

	            Create node

	O(1)

	            If token exists ancestor axis
	O(1)

	                   Find ancestor node
	O(n)

	                   Create edge
	O(1)


Figure 48: Pattern Matching Time Complexity

The layout algorithm involves traversing the graph nodes to set its relevant X and Y co-ordinates in a hierarchy order; from its parent to its child. The evaluation is shown in Figure 49 and the evaluated result shows that the layout algorithm is bounded by O(n). 

	Layout Algorithm Time Complexity
	O(n)

	For each node not visited in graph
	O(n)

	       Set X and Y co-ordinate
	O(1)

	             For each connected node
	O(n)

	
        Set X and Y co-ordinate
	O(1)

	                    Mark connected node visited
	O(1)


Figure 49: Layout Algorithm Time Complexity
5.3 Complex Graph

Visual XQuery has the capability to translate graph into XQuery and from XQuery back to graph. However, as the graph gets more complex, it gets more complicated for user to visualize the output or edit the graph due to the overcrowded workspace. Therefore, a user-friendly grouping feature has been introduced which do not have impact on the Visual XQuery syntax. 

The feature works similar to an element node except that it is connected to an incoming edge that has no edge label which symbolizes that the node is a group node. An example query is shown in Figure 50 and the query is translated from both graphs in Figure 51. The difference between both graphs is that the graph in Figure 51b has a node circled in blue which is evaluated as a group node and any outgoing edges connected to it will take on its parent context. In this case, the group node takes on the context “$a”. 

	for $a in doc("bib.xml")/bib, 

$b in $a/article, 

$c in $a/book

where $b/publisher = "Morf mann"

and $b/author = $c/author

return $b/title, $c/title


Figure 50: Example Query

The implementation detects the group node incoming edge’s label and if it’s label is found empty, the group node will inherit its parent context as its current context. In the reverse translation from XQuery to graph, this feature is not available due to the complexity and the example query will produce the graph in Figure 51a.  

	[image: image59.jpg]“wibont” | bib

‘ublisherauthol

“Morfmann"

i}




a. Normal Query Graph 
	[image: image60.jpg]“wibont” | it

Group Node.

‘ublisherauthol

“Morfmann"

o




b. Query Graph with Group Node


Figure 51: Complex Query

6 Visual XQuery Design
The objective of Visual XQuery is to design and develop a graphical XQuery language software which requires user to have knowledge in basic XML data model and none or minimal understanding of XQuery. Therefore, interaction with users is heavily dependence on the interface, the only access to the program’s functionalities and capabilities.

6.1 User Interface Design
Visual XQuery employs a user-centered design focusing on two concepts: the user and the user’s task. 

· User Analysis – The users identified are novices in data query or occasional users who have basic knowledge of XML data model and have little or no knowledge in XQuery. 

· Task Analysis – Simple queries are identified as the main context as advanced users would be proficient in creating a complex query without the help from Visual XQuery. Therefore, the main functionalities are creating a simple query through a graphical interface.

The principle factor that contributes to poor user interface is overcrowding of information in a display. The heart of the screen layout should be on the graphical construction of queries and extraneous information must be avoided. A good layout must also ensure that all the functions can be reached and activated easily without any confusion or anxiety. Figure 52 presents a design that aims to accomplish the objectives of a good and simple layout. 

· The main view presents both the draw area for the construction of a query graph and the translation result through a tabbed panel.

· The menu bar provides the access to all the functions of the program.

· The draw tool bar provides access to the frequently used draw tools.

· The XML viewer presents a tree model view of the xml file used in the query as a helpful resource to the user.

[image: image61.jpg]Menu Bar

Draw Tool Bar

Main View
- Draw Area
-Translation Result

XML
Viewer





Figure 52: Screen Layout Design

6.2 Overall Architecture
Visual XQuery builds on a functional approach illustrated in Figure 54 for an extensible and changeable system through identifying and setting rules for dependencies between the modules to prevent bidirectional dependencies between the packages. The overall system architecture design shown in Figure 53 for this project is separated into five packages.

[image: image62.jpg]I

XML Viewer
Package [w

I \

Translator \
Package  [W-

T
[ — A -

Graph la
Package

A ’
/.

XQuery Parser |}
Package

Gul
Package





Figure 53: System Architecture

[image: image63.jpg]USE CASE DIAGRAM: Visual XQuery

Update XML

Viewer

Save
Workspace

Select Tool
\
<<uses>>
<<yses””
.
o
Edit 5
Properties K;

Delete Graph
Component

New
Workspace

Choose
Algorithm

Generate
Query

Update Query

<<Uses>> .
Viewer





Figure 54: Interface Use Case

6.2.1 GUI Package

The GUI package is the main program which integrates the different ad-hoc packages and is based on Java Swing, a standard library in Java for writing user-interface applications. It consists of the main frame which holds the various interface components and the menu bar. This package co-operates with the various packages to retrieve data from them.

6.2.2 Graph Package

The graph package is the core of Visual XQuery for constructing a query graph. It consists of the toolbar and the drawing panel. Design of this package will be discussed in section 6.3.
6.2.3 Translator Package

The translator package consists of the algorithms used to translate the query graph into XQuery. It is dependent on the graph package for translation. Design of this package will be discussed in section 6.4.
6.2.4 XQuery Parser Package

The XQuery parser package contains the parser for XQuery files. Using the parser and the graph package, it can create an equivalent query graph for users to view or edit the graphical representation of the query.

6.2.5 XML Viewer Package
The XML Viewer package is able to retrieve XML data from various XML files and construct a tree representation of the data model with only the tag labels. It is a standalone package which is used to assist the user in creating the query.

6.3 Graph Package Design
The graph package design illustrated in Figure 55 contains the framework classes for graph construction and editing and the application-specific nodes and edges classes. Most nodes and edges are instances of the same class except the difference in attributes. E.g. the return and element node are instances of the circle node class and their difference lies in their fill color.  The graph editor uses two classes for editing the graph:

· Toolbar: a panel that holds toggle buttons for the node and edge icons.

· GraphPanel: a panel that shows the graph and handles mouse clicks and drags for the editing commands.


Figure 55: Graph Package Design

6.3.1 Prototype Tools

In order to tell the framework the node and edge types that can occur in a particular graph, the prototype pattern illustrated in Figure 56 is employed and when the toolbar is constructed, it queries the graph for the node and edge prototypes and adds a button for each of them. And when a user inserts a new node or edge through the GraphPanel, the object corresponding to the selected tool button is cloned and then added to the graph. 
Figure 56: Prototype Pattern

6.3.2 Insert New Node

When the mouse is clicked inside the GraphPanel, the point is analyzed and if it is outside an existing node, the getSelectedTool method of the toolbar returns an object of the desired node type.  The object is cloned and added to the graph. Figure 57 shows the sequence diagram for inserting a new node. 

Figure 57: New Node Sequence Diagram

6.3.3 Insert New Edge

When the mouse is clicked, the point is determined if it is inside an existing node. This is carried out in the findNode method of the graph class, by calling the contains method of the Node interface. And if the mouse is clicked inside an existing node and the current tool selected is an edge, the mouse position is kept in the the startPoint field in the GraphPanel class. 

In the mouseDragged method, a line following the mouse pointer is drawn by invoking the repaint method of the GraphPanel. When the mouse is released, the edge is added to the graph. Figure 58 shows the sequence diagram for inserting a new edge. 

Figure 58: New Edge Sequence Diagram
6.3.4 Delete Node and Edge

On command of delete, if the selected is a node, the removeNode method in Graph is invoked and checks for edges linked to the selected node and delete it. If the selected is an edge, the removeEdge method in Graph is invoked and selected edge is deleted.
6.3.5 Edit Properties
This feature is implemented using JavaBeans by exposing the set and get methods of the nodes and edges and supplying a property sheet dialog box.

6.4 Translator Package Design

The translator package illustrated in Figure 59 is built based on a strategy pattern to support different algorithms and future additions. The selection of the translation algorithm is done through the menu bar. 

[image: image64.jpg]AbstractTranslation
<<abstract>>

translate()

simpleTranslation ForwardTranslation

translate() translate()





Figure 59: Translator Design Pattern
AbstractTranslation declares an interface common to all supported algorithms. Currently, two translation algorithms namely, simple and forward are implemented in Visual XQuery.

The TranslateContext is configured with a AbstractTranslation object which maintains a reference to a concrete algorithm and uses this object to call the concrete algorithm which implements the AbstractTranslation abstract class. The translateContext exposes to external packages the capability to select algorithm and call the selected algorithm for translation passing the graph nodes and edges as an argument.

7 Visual XQuery Functionalities

This chapter introduces the functionalities available in Visual XQuery for constructing a XQuery graph. A demo is publicly available at http://www.ntu.edu.sg/home/kkchoi/website/Introduction.html. 

7.1 Main Window

Upon program activation, the user will be presented with the main window, depicted in Figure 60. The main window presents the toolbar, draw panel and xml viewer. All the other operations can be accessed via the menu.
[image: image65.jpg]Visual XQuery
Ele Edit Algorithm

=|=]e 0]

Transiate |

& (T book1)
¢ CJbook(2]
[ tte

o Jauthor
[0 publisher
D) price
o T bookia)
¢ C[oooki4]
[ tite

o (3 editor
[ puslisher

[ price

“bibomr

*Great_Books"





Figure 60: Main Window

7.2 Draw Panel
The draw panel works in cooperation with the toolbar for graph construction and employs a natural tree approach with a reading order from left to right for visualization of the query constructed.

7.3 Toolbar

The toolbar shown in Figure 61 provides all the tools for drawing the query diagram. A node is drawn by selecting the node tool and clicking on the graph panel. An edge is drawn by selecting the edge tool and clicking on a start node and an end node.
[image: image66.jpg]‘k”@ ElH.H.Hm\‘Wm‘Hm\‘
Select Document Condition Element Return Path Value Return
Tool Node Node Node Node Edge Edge Edge





Figure 61: Toolbar
7.3.1 Select Tool

The select tool is used to select and move graph components in the draw panel for editing.

7.3.2 Document Node

A document node is used to access xml files specified in the filename attribute and select elements using the pathname attribute to locate nodes. The filename attribute is only valid when closed by double quotes e.g., “filename”.

7.3.3 Condition Node

A condition node is used to specify the general and value comparison operator through its condition attribute and is only valid when it is connected to at least two edges. 

7.3.4 Element Node

Correspond to element nodes in xml file.

7.3.5 Return Node

A return node is used to specify query output node and is only valid when it is connected to a return edge.

7.3.6 Path Edge

A path edge is used to create a parent-child relationship between two nodes and the elements are selected using the pathname attribute to locate nodes. 

7.3.7 Value Edge

A value edge is used to specify an absolute value for comparison with an element. The edge is only valid when connected to a condition node and the value attribute is closed by double quotes e.g., “value”.

7.3.8 Return Edge

A return edge selects elements using the pathname attribute to locate nodes for output and is only valid when connected to a return node and an element node. 

7.4 XML Viewer

The XML Viewer shown in Figure 62 displays the hierarchy structure in a xml file. The user can use the combo box to select file for viewing and only one file can be viewed at one time.
[image: image67.jpg]bibxmi | v||  Open

i xmt
lperson.smi
=

okl]
¢ CJbook(2]
[ tte

o [Jauthor
[0 publisher
[ price
o (T bookia)
¢ Cbook(4]
[0 tite

o (3 editor
[ publisher

[ price




Figure 62: XML Viewer
7.5 Translation

On selection of the translation tab, the program will translate the query graph into the relevant XML Query Language as shown in Figure 63 using the selected algorithm. Users can edit, paste or copy to clipboard or save the result into an xquery file (.xq). *Note: changes edited will not be reflected in graph.
[image: image68.jpg]Visual XQuery
Ele Edit Algorithm

[ =]

=

bibxmi | v||  Open

(orapn

Transiate |

# Cbib
¢ T book(1]
[ tte
o (S author
[0 pubisher
[ price
¢ CJbook(2]
[ tte
o (S author
[0 pubisher
[ price
¢ T book(3]
[ e

for 5 in docCbibn)oi
~[lsb in Sararticle
5 in §aibook
here Sbipublisher = "Great_Books"
and Sbiauthor = Sefauthor
retum Siiite
sctile

Copyto ClipBoard

Paste from ClipBoard





Figure 63: Translation
7.6 Menu Bar

7.6.1 File Menu
The file menu in Figure 64 provides an interface for the user to access all the functions of the program except the common drawing tools available in the drawing toolbar.
[image: image69.jpg]Visual XQuery
Algorithm

New

Delete
Open | Properties

Save Graph | Transtate
oo Open —

© SimpleTranslation
© ForwardTranslation

about.
Exit





Figure 64: File Menu
7.6.1.1 File > New

Clear the draw panel and create a new draw panel.

7.6.1.2 File > Open

Open a Visual XQuery file (.vxq) for editing.

7.6.1.3 File > Save

Save current graph on drawpanel into a Visual XQuery file (.vxq). 

7.6.1.4 File >Import

Import a xquery file (.xq) into program for display into Visual XQuery.

7.6.2 Edit Menu

7.6.2.1 Edit > Delete

Delete selected graph node or edge from graph.

7.6.2.2 Edit > Properties

Edit selected graph node or edge properties. This function can also be performed through a right-click on the selected node or edge. 

7.6.3 Algorithm Menu

Select the translation algorithm.

8 Conclusions and Recommendation
8.1 Conclusions

With the fast-growing popularity of XML databases and XML finding a second use as a medium language for data integration between different data sources, XQuery is foreseen to become a standard query language for XML. And demand for XQuery knowledge is expected to grow. However, the world is clustered with many query languages and the complexity of XQuery needs a lengthy learning curve. Therefore, this is where Visual XQuery comes in handy.

Being developed as a graphical query language with user interaction as its priority, it achieves its objective of being intuitive introducing only 7 symbols and a clear representation of the query based on tree adhering to XML data model fulfilling the QBE paradigm that a graphical query support is effective in supporting query formulation of its basic graphical constructs are close to the visual abstraction of the underlying model. 

On top of that, there is no compromise on the language support. Visual XQuery offers a reasonable basic query capabilities ranging from cartesian product to equality join to create a basic single hierarchy query. And the amount of knowledge in XQuery needed in order to use it is almost zero as long as the user is knowledgeable in the basic XML data model and knows the output he or she require.

In addition, the forward translation algorithm addresses reverse axes by adopting a rewriting approach to replace such path with equivalent reverse-axes-free ones. However, the algorithm does not support multiple axes and further expansion. Therefore, this report introduces a canonical forward translation algorithm to solve the aforementioned shortcomings in forward translation algorithm.
Canonical forward translation offers a systematic way to rewrite reverse-axes. However, the fallback of this algorithm is that it introduces more for loops, joins and document accesses adding more complexity to the final query. Therefore, an enhanced canonical forward translation algorithm is introduced to optimize the query based on these fallbacks.

Through identifying and understanding of the relationship between the nodes, it is possible to translate sequential nodes with similar relationship to reduce the number of for loops which indirectly reduces the number of joins and document accesses. Although the query may not be optimal, it is of lower or equal complexity to the same query result from the original translation algorithm.
 Visual XQuery also supports the feature to translate from XQuery language to a graphical language as long as the input fits in with Visual XQuery syntax. Besides that, Visual XQuery translation algorithm and drawing panel is designed to be easily extended with the adoption of the strategy and composite pattern respectively. 

To sum it up, Visual XQuery has achieved its aim of being a user-centered graphical XQuery language that is capable of running on top of any XQuery engines offering users basic querying capabilities.

8.2 Recommendations

Although Visual XQuery has fulfilled all the fundamentals requirements of allowing users to create basic XQuery expressions, there is still some room for improvement. The following sections propose a number of recommendations that can be implemented to further improve the capabilities of Visual XQuery.

8.2.1 Source Document Linkage

The construction of the graph in the program depends heavily on manual user input for the query related source fields. The addition of a drag and drop from the XML viewer would enhance the user-friendliness of the program and reduce typo error by filling in the required fields automatically. And explore the possibility of creating a sub-graph automatically by drag and drop, finishing off the query through adding and subtracting graph elements. This would reduce the time for creating a query.
8.2.2 Real-time Query Preview

The program offers offline query construction and it would be nice if the program can offer a preview output of a partial query by adding in an XQuery engine linked to a sample from the source document. This would offer users aid in query creation ensuring correctness throughout the creation process.
8.2.3 Nested Expression Support

Visual XQuery is designed based on a single hierarchy to reduce the complexity of the project. XQuery is known for its FLWOR expressions and its flexibility in combination of expressions for complex query. Support for nested expression would be beneficial to users in creating complex queries.
9 Appendices

1. D.Branga, A. Campi, and S. Ceri. (XQuery by example): a visual interface to the standard XML query language. Trans. On Database Systems (TODS)

2. Zheng Qin, Benjamin Bin Yao, Yingbin Liu, and Michael McCool. A Graphical Xquery Language Using Nested Windows (GXQL).

3. Moshé M. Zloof, Query-by-example (QBE): A data base language. IBM Systems Journal, 16(4):324-343, 1977 

4. W3C. XSL Transformations (XSLT). http://www.w3.org/TR/xslt

5. W3C. XQuery: An XML Query Language http://www.w3.org/TR/xquery
6. Galax: An implementation of xquery. http://db.bell-labs.com/galax/
7. W3C. XML Query Use Cases. http://www.w3.org/TR/2003/WD-xquery-use-cases-20031112/

8. I.M.R. Evangelista Filha, A. H. F. Laender, and A. S. da Silva. Querying Semistructured Data by Example: The QSByE Interface.
9. K. D. Munroe and Y. Papakonstantinou. BBQ:  A visual Interface for Integrated Browsing and Querying of XML.
10. S. Ceri,  S. Comai, E. Damiani and P. Fraternali. XML-GL: a Graphical Language for Querying and Restructuring XML Documents
11. H. Katz. XQuery from the Experts: A Guide to the W3C XML Query Language. Addison Wesley. 2003

12. Michael Brundage. XQuery: The XML Query Language. Addison Wesley. 2004

13. D. Olteanu, H. Meuss, T. Furche and F. Bry XPath: Looking Forward

14. D.Megginson, SAX: The Simple API for XML, http://saxproject.org/. 
Figure � SEQ Figure \* ARABIC �19�: Simple Query 





findNode (Edge E)


	Let N store a Node object


	N = Node connected to end of E


	CASE OF N


	Element Node		: compute 'for’ clause


			  	  findEdge(N)


	Return Node		: compute ‘return’ clause


	Condition Node	: IF Node is not visited THEN


			  		compute partial left ‘where’ clause


			  		findEdge(N)


			  	  ELSE 	


			  	 	compute partial right ‘where’ clause


			  		add left and right ‘where’ clause	


			  	  ENDIF	


	Square Node		: compute partial right ‘where’ clause


			  	  add left and right ‘where’ clause


	ENDCASE


STOP








Figure � SEQ Figure \* ARABIC �24�: FindNode function





Figure � SEQ Figure \* ARABIC �25�: FindEdge function








PAGE  
-


