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Abstract. Streaming XML, the de-facto standard for electronic data
exchange, has quickly gained its practical importance. Holistic algo-
rithms on twig queries have been shown efficient on processing streams of
XML documents. We study some theoretical issues, mainly the optimal-
ity, of holistic algorithms for evaluating queries with any kind of XPath
axes. We characterize that such algorithms exist only when the query
does not contain any of child, parent, following, following-sibling,
preceding and preceding-sibling axes, regardless the order of nodes
in streams. For the XPath queries that optimal holistic algorithms exist,
we propose the DagStack algorithm, an extension of the TwigStack al-
gorithm, to find all solution. Since the DagStack algorithm assumes that
nodes are sorted by their preorder number, we conclude that preordering
is an appropriate order of nodes for streaming XML.

Keywords: Single-pass algorithms, streaming XML, data stream models and
computations.

1 Introduction

Database research has recently shifted its focus from relational systems to sys-
tems facilitating data exchange on the Web [1]. Streaming [2] XML, the de-facto
standard for electronic data exchange, has quickly gained its practical impor-
tance [14,12,13,11,9]. XPath [8] is a W3C recommendation on navigating XML
documents. We study some theoretical properties of evaluating XPath on con-
tinuous streams of XML documents. We believe these properties are essential to
elegant XML stream systems.

Application scenario. Consider a large number of users conecting to a
mobile network via small devices such as mobile phones or PDAs. Web pages,
stock market information, application related data are probably exchanged in
XML format nowadays. This results in a large amount of XML streams on the
wireless network. Although these devices often have relatively limited comput-
ing resources, one may want to perform simple query on the mobile device.
For instance, one may want to display the IBM stock and the source of the
quote is Reuters. This can be expressed in our syntax as //stock(/name/ibm,
/source/routers).



The first question of such applications is that is it possible to collect the
relevant part of XML document while it is streamed over the network. There are
a few challenges. First, the data streaming context, it is not possible to cache
the entire stream since one does not know the end of the stream. It is desirable
to write a memory bound for processing the queries. Second, there are bursts
of data in a pratical network scenario. An XML stream algorithm must process
each data item in the stream efficient and discard the irrelevant items as qucikly
as it can. It appears to be overkilling relational joins on streams of XML.

This paper formalizes the above questions and provides some answers on
streaming XML. The optimal way for processing a stream is to collect the rele-
vant nodes as they are streamed in. We argue if this is possible for XPath queries.
We also argue if XPath queries is computable with bounded memory.

Recently relational databases are extended to support efficient evaluation on
XPath queries [5,17,16]. These systems typically decompose the queries into
sub-queries, compute the intermediate result of the sub-queries and merge them
at the end. For systems do not have knowledge on the size of the streams, large
intermediate results may be stored during the computation even though the
final result can be relatively small. In contrast, holistic algorithms for XPath
evaluate the query as a whole. Such algorithms are useful in data streaming
since irrelevant nodes are not kept in main memory during the evaluation.

The optimal holistic twig join algorithm called TwigStack was recently pro-
posed by Bruno and his co-researchers [3]. It evaluates twig queries as a whole
over streams of XML documents efficiently. Each node in the twig query is asso-
ciated with a stream of nodes. The algorithm scans the streams only once and
assigns constant memory only to the nodes that participate in at least one solu-
tion. Thus, the algorithm is optimal among all sequential algorithms that read
the entire input. However, the algorithm is suboptimal when the twig queries
contain child axes.

Recently, we [7] show that there is no strong optimal (see Definition 2) holistic
algorithms for twig queries with child axis. The cause of this negative result is
the exsistence of structural recursions in the document, which are common in
practice [6]. In this paper, we perform an analysis on all XPath axes. We show the
XPath fragment that cannot be evaluated optimally in Section 3. The memory
requirement and the number of necessary scans of XPath are discussed. For
the XPath fragment that can be evaluated optimally, we propose the DagStack
algorithm (Section 2), which is based on the TwigStack algorithm [3], to find all
solution.

Now, we describe the node representation and the assumptions on the streams
of nodes that we use. We also briefly describe the syntax and the semantics of
XPath. Finally, we describe the technical problem that we investigate.

XPath navigations are applied to the XML documents represented as follows.
A document is modeled as a label tree. Nodes are represented by (1) the preorder
number, (2) the postorder number and (3) the depth of the node. An example
is to be found in Figure 1.
Assumptions. We assume that the preorder number, the postorder number,



Root

ey &
/

\ A

(2:7; b, ®8.2C, // \\
@63 a, ° ¢
N 7N

(4:4,4) b2 5.4C;

Figure. 1. An example XML document. Figure. 2. Graphical representation of
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the depth and the label are the only accessible information of a node. These
assumptions imply the followings:

1. Given any two nodes, one can compute the ancestor-descendant and parent-
child relationship of the two nodes in constant time;

2. one can compute the depth of a node in constant time;

3. one can compute the document order of the nodes in constant time.

Definition 1. [8] The syntaz of an XPath navigation, Twig, is defined as fol-
lows in Backus-Naur Form:

Step = /| // [T ] <[ <<= ]>>

NodeTest ::= label

Path ::= Step NodeTest | Step NodeTest Path

Twig ::= Path | Path (Twig, Twig, ..., Twig)

An XPath navigation is given as a twig query in Definition 1. The steps
(1) /5 (2) 17, B) 5 (4) 1, (6) =, (6) ‘<=, (7) 7, (8) =7 denote
advancing one step along the axis (1) child, (2) descendant, (3) parent, (4)
ancestor, (5) following-sibling, (6) following, (7) preceding-siblingand
(8) preceding defined in the W3C recommendation on XPath [8]. We do not
consider the self axis for simplicity. The query is called XPath navigations
since predicates on data values are not considered. Predicates on data values are
of practical importance but orthogonal to our analysis on the optimality. The
solution of an XPath navigation is the set of all node combinations that satisfy
the query.

Our computation model assumes that there is a stream of nodes associated
with a node test in the XPath navigation such that the nodes satisfy the node
test. A stream (denoted as T') is viewed as a pop-only stack. Since a stream
contains only nodes with the same label, the partial ordering of two nodes in a
stream is only defined if they have the same label. a; < as is interpreted as node
ay precedes node as in the A-stream. For example, given the document and the
query shown in Figure 1 and Figure 2, respectively. A, B, C, D; and D> are
associated with a stream of A-, B-, C-, and D-nodes, denoted by T, T, Tc,
Tp, and Tp, and defined by T4 = [a1,a2], T = [b1,b2], Tc = [c1,¢2], Tp, = |
] and Tp, = []. We will call the nodes that participate in at least one solution
the useful nodes and the remaining nodes useless nodes.



Definition 2. An algorithm for XPath navigation is strongly optimal if and
only if it returns the solution of a query by using: (1) a single forward scan of
the streams, (2) constant memory for each useful node and (8) constant time
processing each of the nodes in the streams.

Definition 3. An algorithm for a problem is optimal if and only if its time and
space complexities meet the lower bounds of that problem.

Strong optimality is important for data streaming since one need to collect
the useful items while receiving a stream without caching the entire stream.

The problem statement is given as follows. Given a XPath navigation, is it
possible to design a strongly optimal algorithm for arbitrary streams?

2 The DagStack Algorithm

In this section, we show that there exists a strongly optimal holistic algorithm for
the XPath//-" fragment by proposing the DagStack algorithm. The DagStack
algorithm (1) incoperates the TwigStack algorithm with the “backward” axes
elimination algorithm yaos [15] and (2) extends the TwigStack algorithm eval-
uating dag queries.

First, we illustrate that the evaluation of XPath navigation with other axes
(e.g. XPath//-<=) is not straightforward. This is due to the fact that the def-
inition of the following nodes (similarly the preceding nodes) of a node x
excludes the descendant nodes (ancestor nodes) of z.

Proposition 1. If the nodes in streams are sorted by their preorder number,
there is no strongly optimal holistic algorithm for XPath// ===,

Proof. Consider a document tree with 4 A-nodes where a; is an ancestor of a;
and aj2; a1 and aio are siblings; and a; and ay are siblings. The ordering of
the nodes are a; < aj; < a;a < as. Consider the query 4; << A, (also 4; <
As). We cannot declare a; is useful until the stream T4, is popped to as. This
implies that aqs is discarded.

Second, we illustrate the evaluation of “backward” axes in data streaming
context by using the algorithm yaos [15]. The central of the algorithm is to
translate the navigation to a directed acyclic query graph (a DAG query) in
which contains “forward” axes only. For example, the query shown in the LHS
of Figure 3 is translated to the query shown in the RHS of the figure. The xaog
algorithm handles only child, descendant, parent and ancestor axes. It is ob-
served that xao¢ can be naturally extended to handle the following-sibling,
following, preceding-sibling and preceding axes. This observation is used
in our proofs.

Denote also the translation to be yaos. An evaluation of an XPath navigation
eval is a function from a query to its solution. By performing a simple induction
on the translation rules, we obtain that eval(q) = eval(xaos(q)).



Figure. 3. Translation of queries by using xaos

Now, we extend the TwigStack algorithm to handle DAG queries. This
leads to a holistic optimal algorithm for XPath navigation with descendant
and ancestor axes (denoted as XPath//-M) — the DagStack algorithm.

The pseudo-code of the DagStack algorithm is shown in Figure 4. We avoid
the definition of auxiliary functions appearing in the pseudo-code of TwigStack
if possible. However, the procedure getNext requires some explanations. The
intuition of getNext is to pop the streams until the next possible solution is on
the top of the streams. The nodes discarded in getNext are guaranteed to be
useless (Lemma 4.2 of the TwigStack tech. report [4]). When g, is returned by
getNext, it guarantees that the top of stream of g,.; descendants form a solution
of the sub-query rooted at g,c; (Lemma 4.1 of the tech. report [4]). Another fact
is that TwigStack algorithm is sound and complete [3].

We use the translation xaos [15] on the query ¢ (Line 01). In general, we
obtain a dag g. Second, spanningTree (g) returns the spanning tree ¢ of g (Line
02). We also obtain the set of edges E where ¢t + E = g. The rest of the code
are the same as the TwigStack except that Line 11-19 is added. It repeatedly
calls getNext for locating the next solution (Line 04-05) for t. When Line 10 is
reached, TwigStack guarantees the top of the streams of the descendants of ggt
form a solution of ¢. Line 12-18 checks if the top of these streams satisfy all the
edges in E. If it does, a solution of g is declared (Line 15-17). The stacks for
storing the useful nodes are maintained as in TwigStack (Line 07-08, 20, 22-23).

Theorem 1. DagStack is sound and complete.

Proof. Given an XPath//-" query q. Let g = xaos(q) and (t, E) = spanningTree(g).
Soundness: When Line 06 is reached, it implies that the top of streams and
useful nodes found thus far form a new solution for ¢. If this solution also satisfies
the edges F, it is a solution of g.
Completeness: Suppose s is a solution for g and hence ¢. s must be reported
at Line 10 by the completeness of TwigStack algorithm. Since s is a solution of
g, s must pass the tests on F in Line 11-18. Hence s is reported at Line 20. This
implies that DagStack does not miss any solution.

Proposition 2. DagStack is strongly optimal.

This is established by the fact that DagStack performs constant amount more
work than TwigStack does (which is essentially Line 11-18). DagStack also as-
signs memory to the useful nodes only. (Line 20)



Procedure DagStack(q)

01 g = xaos(q)

02 (t, E) = spanningTree(g)

03 //the extension TwigStack(t)

04 while —end(t)

05  gact = getNext(t)

06 if (—isRoot (gact))

07 pop result stack of parent(gqct)

08 until its top is an ancestor of top(Ty,.,)
09  if (isRoot(guct)V—emtpy(result stack parent(gqct))
10 //a solution of ¢ is found

11 dagSol = true

12 for (¢s,a,q) in E

13 if(gs, q+ € descendants of ¢uct)

14 if (= a(top(Ty,), top(Ty,)))

15 dagSol = false

16 else if only ¢; € descendants of Quct
17 if (—a(top of result stack of(gs), top(7y,)))
18 dagSol = false

19 if dagSol

20 maintain intermediate result stack of ggct
21 if (isLeaf (gact))

22 check if some intermediate result can be
23 removed from the result stacks

24 else advance(T,ct)

Figure. 4. The DagStack algorithm.

3 XPath Axes and the Optimality

In the last section, we show a strongly optimal algorithm for XPath//:". In this
section, we show that given the assumptions in Section 1, there is no strongly
optimal holistic algorithm for an XPath navigation with any other axes.

Lemma 1. Given the assumptions in Section 1, there is no ordering of nodes
such that the holistic evaluation for XPath//T is strongly optimal.

Proof. Suppose there exists such an evaluation eval for ¢ € XPath//-T. We can
use the translation xaos to obtain a DAG d in which all parent axes are elim-
inated. By using the technique shown in Section 2, we can obtain an optimal
evaluation eval® for the dag with child axes. It is known [7] that such evalua-
tions for twig queries with child axes, and hence the dag queries, do not exist.
Therefore, eval does not exist.

We use two propositions to establish similar result for XPath//:<==.

Proposition 3. To satisfy the memory requirement of data streaming XPath//,
and to allow one scan of the streams, without loss of generality, if a; < a; and



a; is not an ancestor of a; and vice versa, then for all pairs (b;, b;), b; < bj,
where p in XPath//, b; € a;//p and b; € a;//p, respectively [7].

Proposition 4. To satisfy the memory requirement of data streaming XPath//»<=<
and to allow one scan of the streams, if a; and a; are siblings and a;.preorder#
< aj.preorder#, then only either of the below properties holds for all streams.

1. a; < aj
2. a; > aj

Proof. Proof by induction on the number of A-children of a node. Consider a
document rooted at r with n A-children and the query A; << As. The statement
&(m, n) to be proved: given a, .preorder# < ag.preorder## < ... < @, .preorder#,
m < n, the ordering that can satisfies the memory requirement is either a; <
as ... < Ay Or Gy, < Ampp—1 --- < A7-

Base Case (m = 8): Assume that as < {a1, as}. At the beginning, the top of
T4, and T4, are as. Popping T4, will discard the solution (a2, ag) while popping
T4, will discard the solution (a1, a2). Hence, the only valid order is a1 < as <
az or az < as < ai

Inductive step (m = k+1): The induction hypothesis &(k, n) is true. Assume
that a; < ay ... < ag. agy1 must follow ay, or at least a solution (e.g. (ag, axi1))
will be missed. Similarly, assume that ay < ag_1 ... < a1. agy1 must precede ay
or at least a solution will be missed.

Hence &(m, n) is true for all m < n.

By using Proposition 3, if property (1) (property (2)) is true among the
children of one node, property (1) (property (2)) holds for the entire document.

Figure. 5. One of the XML documents used in the proof of Lemma 2 and Lemma 3.

Lemma 2. Given the assumptions in Section 1, there is no ordering of nodes
such that the holistic evaluation for XPath//"= is strongly optimal.

Proof. Consider the document shown in Figure 5 except that only a1, a1 and
az are A-nodes while otheres are B-nodes and the query A; < As. Suppose
ay.preorder# < aqz.preorder#. Suppose property (1) of Proposition 4 holds for
the document, i.e. a; < as.



Case 1. a1 < a;1 = a2 < descendants of as (Proposition 3) = a; < descen-
dants of a; (Proposition 3). There must not be useful A nodes, and hence A4;
nodes (Proposition 4 property (1)), in between a; and as or at least a solution
is missed regardless of the order the streams are popped. a;; is an useful node
because of ai5. Consider the order a; < as < descendants of a; < descendants
of ay and the query A; // As. Consider a similar document in which there is
a solution (az, a,) in a1 subtree. No strongly optimal evaluation can return all
solution by using a1 < a2 < {az, ay}. We obtain a contradiction.

Case 2. a11 < a1 = descendants of as < a2 (Proposition 3). Since as is
the only node causing a; useful. There must not be any As useful nodes, and
hence A; useful nodes (Proposition 4 property (1)), in between a; and as for the
similar reason in the above case. Consider the order a;; < descendants of as <
a1 < az and the query A; // As. Consider a similar document in which there is
a solution (az, ay) in as subtree. No strongly optimal evaluation can return all
solution by using a11 < {az, ay} < ai.

Now, we perform a similar case analysis on assuming property (2) of Propo-
sition 4 holds for the document. We established similar contradicitons.

Lemma 3. Given the assumptions in Section 1, there is no ordering of nodes
such that the holistic evaluation for XPath//*=<= is strongly optimal.

Proof. The proof of this lemma is very similar to the proof of Lemma 2.

Consider the document as described in the proof of Lemma 2 and the query
Ay < As. Suppose a;.preorder# < as.preorder#t. Suppose property (1) of Propo-
sition 4 holds for the document. a; < as

Case 1. a; < a11- The analysis of this case is the same as Case 1 in the proof
in Lemma 2, except that ai, a11, a12 and as are the only A-nodes while the
others are altered to B nodes for this case analysis.

Case 2. a;1 < a1 = descendants of a; < a1 (Proposition 3). Consider the
query Az // A4 and a similar document in which only a;, a11, @12, a122 and
as are A-nodes while others are B-nodes. The only node that makes a;; useful
(for Ay4) is a1. By using Proposition 4 property (1), we have a;1 < ai2. Consider
a similar document in which there is a A-descendant node of a2 a;. a, must
precedes ay. Neither a11 < a12 < a; < a1 nor a1 < a; < a2 < a supports
strongly optimal evaluation for Az // A4. This implies that descendants of a;2 <
a1l < ap < a; = a2 < air < aiz < ap. Consider the query Al << Ay again.
aj2» cannot be declared useful (for A;) until a node in a, subtree is encountered
. The solution a;; will not be reported.

Now, we perform a similar case analysis on assuming property (2) of Propo-
sition 4 holds for the document. We established similar contradicitons.

Lemma 4. Given the assumptions in Section 1, there is no ordering of nodes
such that the holistic evaluation for XPath!/*>>" is strongly optimal.

Proof. Suppose there exists such a strongly optimal evaluation eval for ¢ €
XPath//>>>>. We can use the translation yaos to obtain a DAG d in which all
preceding and preceding-sibling axes are eliminated. By using the technique



shown in Section 2, we can obtain an optimal evaluation eval® for the dag
with following and following-sibling axes. Lemma 2 and 3 show that such
evaluations for twig queries with following and following-sibling axes, and
hence the dag queries, do not exist. Therefore, eval does not exist.

Theorem 2. Given the assumptions in Section 1, there is no ordering of nodes
such that the holistic evaluation for query beyond the XPath//N fragment is
strongly optimal.

Proof. By putting Lemma 1, 2, 3 and 4 and the result in [7] together.

3.1 Multiple Scans and Memory Requirement

Similar to twig queries with child axes [7], XPath navigations requires large
number of scans if memory is assigned to useful nodes only.

Proposition 5. If memory is assigned to useful nodes only, the lower bound
of the number of scans required by XPath navigation on arbitrary streams is
exponential to the depth of the document.

However, when the memory requirement of the streaming evaluation is re-
laxed, a large fragment of XPath can be evaluated efficiently [10].

Proposition 6. XPath navigation is P-complete with respect to the combined
complezity [10].

Proposition 6 indicates that the lower bound of the space complexity of the
evaluation of XPath is in LOGSPACE. In contrast, we obtain that the lower
bound of the space complexity of XPath//-" fragment is linear to the size of
solution and the space complexity of any larger XPath fragment is higher than
linear to the size of solution.

Since the size of streams is usually not known aprior, it is a desirable property
if the space requirement of the query is not given by the size of input but some
other parameters.

Definition 4. A query q is memory-bounded computable if and only if there is
a constant M by which q can be evaluated upon arbitrary data streams.

Although the memory-bounded computability is an important property of

data streaming, it is natural to see that streaming XML does not have this
property.

Proposition 7. XPath navigations are not memory-bounded computable.



4 Conclusions and Future Work

We propose the DagStack algorithm for XPath//-". We provide a charaterization
of XPath navigations. Our result is summarized in Table 4. We also present the
lower bound of the number of scans if memory is assigned only to useful nodes
and the memory requirement of XPath navigations.

This work shows that the preorder walk of the tree (the DagStack algorithm)
can be used to evaluate exactly the XPath fragment for which optimal evalu-
ations exist. On the contrary, for the XPath fragment could not be evaluated
optimally by a preorder walk of the tree will not be evaluated optimally by any
other walk. For the future work, we aim at studying the power of a preorder
walk on XML trees with bounded memory.

Table 1. Table of Result

|Solved by DagStack|No strongly optimal holistic algor.|

descendant child

ancestor parent

following
following-sibling
preceding
preceding-sibling
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