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ABSTRACT 

Homomorphic hash functions (HHF) play a key role in securing distributed systems that use 

coding techniques such as erasure coding and network coding. The computational complexity of 

HHFs remains to be a main challenge. In this paper, we present a massively parallel solution, 

named Tsunami, by exploiting the widely available many-core Graphic Processing Units (GPUs). 

Tsunami includes the following optimization techniques to achieve the highest ever hashing 

throughput: (1) using Montgomery multiplication and pre-computation to speed up modular 

exponentiations; (2) using a clean implementation of Montgomery multiplication in order to 

decrease the demand of registers and shared memory and increase the utilization ratio of GPU 

processing cores; (3) using our own assembly code to implement the 32-bit integer 

multiplication, which outperforms the assembly codes generated by the native compiler by 20%; 

(4) exploiting memory alignment and constant memory on GPUs to improve the efficiency of 

memory access. Integrating the above techniques, our Tsunami achieves a significant 

improvement over existing results. Specifically, the hashing throughput achieved by Tsunami on 

a GTX295 GPU is about 33 times of the existing solution on a Quad-core CPU. We also show 

that the hashing throughput grows almost linearly with the number of GPU cores. 

Keywords: Homomorphic hash function, GPU, CUDA 

1. INTRODUCTION 

In recent years, peer-to-peer (P2P) distributed systems such as file sharing application (e.g., 

BitTorrent) and multimedia streaming applications (e.g., ppLive, ppStream), have become the 

killer Internet applications. Erasure coding and network coding are very promising mechanisms 

to improve the performance of such P2P applications [7-15]. However, P2P applications with 

coding techniques suffer from the notorious pollution explosion problem: a malicious node can 

send out bogus packets which will be merged into other genuine packets and propagated into the 

whole network at an exponential speed [10] [12] [13]. To resolve this problem, homomorphic 

hash functions have been designed such that the homomorphic hash of any encoded packet can 

be effectively derived from the hashes of the original packets, which enables the detection of 

bogus packets before a peer encodes it with other packets [10]. Unfortunately homomorphic hash 

functions rely on multiple-precision modular operations and are computationally expensive. This 

computational challenge becomes the main obstacle that limits the application of coding 

techniques in peer-to-peer systems [12] [13]. 
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On the other side, GPU computing has become a well-accepted parallel computing paradigm 

which shifts the domain of parallel computing from mainframes in data centers to personal 

computers that are widely available [19]. Commodity GPUs like NVIDIA’s GTX 280 has 240 

processing cores and can achieve 933 GFLOPS of computational horsepower. Furthermore, the 

NVIDIA CUDA programming model enables developers to easily develop non-graphic 

applications using GPU [1] [4]. In CUDA, the GPU becomes a dedicated coprocessor to the host 

CPU, which works in the principle of Single-Program Multiple Data (SPMD) where multiple 

threads based on the same code can run simultaneously. GPUs have recently been proposed to 

accelerate network coding [22-24]. Our previous work also applied GPU computing in 

accelerating homomorphic hashing [24-26]. 

In this paper, we propose the Tsunami system that uses GPUs for homomorphic hashing. 

The homomorphic hash function needs to multiply a large number of exponentiations, so the 

critical design concern of Tsunami is to optimize the modular exponentiation operation for high-

precision large integers. To this end, we focus our work on the design, implementation, and 

optimization of modular exponentiation operations on GPU. Contemporary GPUs are optimized 

for floating-point operations; and integer operations are relatively poorly supported. Hence there 

are a lot of challenges to optimize high-precision large integer operations on GPUs. Nevertheless, 

we optimize Tsunami at the assembly code level, and achieved very promising result. The 

contribution of our work is threefold: First, we designed and implemented a fast modular 

exponentiation algorithm using Montgomery reduction and also precomputation, for the CUDA 

architecture. Second, we achieved 34.7 Mbps of hashing throughput using a graphic card with 

GTX295 GPU, which is 33 times of the throughput of existing solution on a quad-core CPU. 

Third, we developed a multiple-precision modular arithmetic library for CUDA, which could be 

applied to a lot of security applications such as RSA, and ElGamal schemes. We also make our 

source code available to the research literature. 

The rest of the paper is organized as follows. Section 2 provides background information on 

Montgomery multiplication, homomorphic hash functions, GPU architecture and CUDA 

programming model. Section 3 presents the design of Montgomery multiplication on GPU. 

Section 4 presents the parallel implementation of homomorphic hash function. Experimental 

results are presented in Section 5, and we conclude the paper in Section 6. 

2. BACKGROUND AND RELATED WORK 

In this section, we provide the required mathematical background; introduce homomorphic 

hash function; and then briefly present GPU architecture and CUDA programming model. 
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2.1 Mathematical Preliminaries 

In modular arithmetic, all operations are performed in group 
w

Ζ , i.e., the set of integers 

{0,1, , 1}w −� . In this paper, the modulus w is represented in radix b as 1 1 0( )s bw w w− �  where 

1 0sw − ≠ . s is called the length of w. Each symbol , 0iw  i s≤ < , is referred to as a radix b digit. 

Non-negative integers x and y, ,x w  y w< < , are represented in radix b as 1 1 0( )s bx x x− �  and 

1 1 0( )s by y y− �  respectively.  

The following gives the definitions of Montgomery reduction and Montgomery 

multiplication, which are well-known techniques for efficient implementation of modular 

exponentiation [5] [6]: 

Definition 1 Given positive integers w and R such that R > w and gcd(w, R) = 1. For integer 

x that 0 ≤ x < wR, we define the Montgomery reduction of x modulo w with respect to R as xR
-1

 

mod w. 

Definition 2 Given positive integers w and R such that R > w and gcd(w, R) = 1. For integers 

x and y with 0 ≤ x, y < wR, we define the Montgomery multiplication of x and y modulo w with 

respect to R as Mont(x, y) = xyR
-1

 mod w. 

In practice, R is set to be a power of 2, because divisions by a power of 2 are simply shift 

operations which are efficiently supported by most platforms. 

2.2 Homomorphic Hash Functions 

We use network coding as an example to illustrate the importance of homomorphic hash 

functions. Consider a P2P content distribution application. The data to be distributed is divided 

into n blocks 
1 2

( , , , )
n

b b b… , where each block 
i

b is further divided into m codewords 
,i k

b , 

{1, , }k m∈ … . An encoded block je  is a linear combination of the n original blocks and it is also 

divided into m codewords ,j ke , {1, , }k m∈ … . The linear relationship between je  and the 

original n blocks is described by je ’s global coefficient vector ),,,( ,2,1, njjj ccc … , i.e., 

, ,1,

n

j i i kij k c be
=

⋅=∑ , {1, , }k m∈ … . In a P2P application, a peer receives encoded data blocks from 

upstream peers, and also creates new encoded data blocks by randomly and linearly combining 

its received encoded blocks, and then disseminates the new encoded blocks to its downstream 

peers. Notice that the global coefficient vector should be derived and sent along with each new 

piece of encoded data block. A peer can recover/decode the original n blocks as soon as it has 
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received n linearly independent coded blocks 1 2( , , , )ne e e… , by solving the set of linear 

equations 
, ,1,

n

j i i kij k c be
=

⋅=∑ , {1, , }k m∈ … , {1, , }j n∈ … .  

P2P networks are prone to the pollution attacks in which bogus data blocks are disseminated 

into the network by malicious peers. When network coding is not deployed, each peer will 

receive original data blocks directly from other peers, and hence it is possible to use hash 

functions such as SHA1 to verify the correctness of a data block simply by comparing the hash of 

each received data block to the corresponding hash provided by the source. For P2P networks 

with erasure coding or network coding, the effect of pollution attack becomes much more 

difficult to handle [10] [12] [13], because each bogus block could be mixed with valid blocks 

and propagated throughout the network, resulting the pollution explosion. The traditional hash 

functions such as SHA1 cannot be applied here because a peer receives random encoded packets 

which cannot be predetermined by the source. Homomorphic hash functions are currently the 

only solution to this security issue, which enable a peer to detect the bogus data block once it has 

been received. Homomorphic hash functions have the property that the hash value of a linear 

combination of the input blocks can be constructed by the hash values of those input blocks. One 

such homomorphic hash function, h(·), has been proposed in [10], which requires to decide a set 

of hash parameters G = (p, q, g) in advance. The parameters p and q are large prime numbers of 

order pλ  and qλ  chosen such that q | p − 1. The parameter g is a vector of m numbers (denoted by 

gk, 1 ≤ k ≤ m), each of which can be written as ( 1) /p qx − mod p where qx∈Ζ  and 1x ≠ . The 

method of creating the parameter set can be found at [10]. The homomorphic hash of a data 

block ib is then calculated as  

,

1
( ) i k

m b

kki gh b
=

= ∏  mod p.            (1) 

The homomorphic hash values of the original blocks 1 2( , , , )nb b b…  are 

1 2( ), ( ), , ( )nh b  h b   h b…  respectively. Given an encoded block je  with global coefficient vector 

,,1 ,2( , , , )j nj jc c c… , the homomorphic hash function ( )h ⋅  can be proved to satisfy the following 

condition:  

,

1
( ) ( )j i

n
c

j ii
h e h b

=
= ∏ .        (2) 

This property can be used to verify the authenticity of an encoded block. Typical values of 

the parameters are summarized in Table 1. 

Although the homomorphic hash function can theoretically resolve the pollution attack 

problem, it is computationally expensive for today’s desktop CPUs. A 3 GHz Pentium 4 CPU 
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can only achieve around 300 Kbps of throughput for verifying a single 16 KB data block, using 

the parameters in Table 1 [10]. Given the computational challenge of homomorphic hash 

functions, some compromised solutions have been proposed which sacrifices the security level 

[12] [13] [18]. This motivates us to explore other approaches to overcoming the computational 

challenge. 

2.3 GPU Computing and CUDA 

GPUs are dedicated hardware for manipulating computer graphics, and recently they have 

been evolved into highly paralleled, multithreaded, many-core processors. As an example, the 

NVIDIA GeForce GTX280 has 30 Streaming Multiprocessors (SMs), and each SM has 8 Scalar 

Processors (SPs), resulting in a total of 240 processor cores. The design of the SMs is based on 

the Single-Instruction Multiple-Data (SIMD) architecture, i.e., at any given clock cycle, all SPs 

of the same SM must execute the same instruction, but can operate on different data.   

Off-chip memories on Graphic cards, such as local memory and global memory, have 

relatively long access time, usually 400 to 600 clock cycles [3]. Inside a GPU, each SM has four 

types of on-chip memory, namely, constant cache, texture cache, registers, and shared memory. 

The properties of the different types of memories have been summarized in [16]. Constant cache 

and texture cache are both read-only memories shared by all SPs. On GeForce GTX280, each SM 

has 16384 32-bit registers and 16KB shared memory that are almost as fast as the registers. 

Shared memory is divided into banks of equal size for simultaneous access. The banks are 

organized in a way such that successive 32-bit words belong to consecutive banks. If two 

memory requests fall into the same bank, it is referred to as a bank conflict; thus, the memory 

access must be serialized. For optimal memory access performance, one should minimize the 

chance of bank conflicts, and also utilize on-chip memory as much as possible. 

The exceptional GPU computing power is very attractive to general-purpose system 

development, which is referred to as general-purpose computing on GPUs (GPGPU). Recently 

one of the major GPU vendors, NVIDIA, announced their new general-purpose parallel 

programming model, namely Compute Unified Device Architecture (CUDA) [1] [3], which 

extends the C programming language for general-purpose application development. Meanwhile, 

another GPU vendor AMD also introduced Close To Metal (CTM) programming model that 

provides an assembly language for application development [2]. Intel will release Larrabee [21], 

a new multi-core GPU architecture specially designed for GPU computing. Very recently, an 

open standard named OpenCL has been proposed for general-purpose parallel programming of 

heterogeneous systems [27]. It is expected to be supported by many-core GPUs as well as multi-

core CPUs.  
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Currently, CUDA is the best available programming model, and is the most well accepted 

model by the research and development community. Since the release of CUDA, it has been used 

for speeding up a large number of applications [16] [17] [20]. More importantly, the OpenCL 

standard has a very similar structure to CUDA; hence the code written in CUDA can be easily 

migrated to OpenCL in the future. For these reasons, we chose to use CUDA in our research. 

More details of CUDA programming model can be found in [4]. 

3. Montgomery Multiplication on GPUs 

Homomorphic hash functions require the calculation of a lot of modular exponentiations. As 

today’s GPUs have a very slow implementation of integer divisions, it is advantageous to use 

Montgomery multiplication methods to implement fast modular exponentiations. In this section, 

we present the implementation of Montgomery multiplication on GPUs. A number of different 

implementations of Montgomery multiplication have been discussed in [28]. These 

implementations have the same number of multiplications but different number of additions and 

memory accesses. We first present our implementation of the Coarsely Integrated Operand 

Scanning method on GPU. We then present an alternate design by integrating the Karatsuba 

multiplication into the Separated Operand Scanning method. 

3.1 Coarsely Integrated Operand Scanning (CIOS) 

We choose to implement the Coarsely Integrated Operand Scanning (CIOS) method on GPU 

due to its low demand on memory space as compared with other alternatives. The algorithm 

computes Mont(x, y) = xyR
-1

 mod w for multiple-precision integers x and y. In the CIOS 

algorithm shown in Figure 1, we choose radix b to be 2
32

 because the current CUDA platform 

uses the native 32-bit operations. Our Montgomery multiplication algorithm (i.e., Algorithm1 

shown in Figure 1) chooses 322 ssR b= =  which satisfies the condition of gcd(w, R) = 1, as w is 

odd. An integer 1'w w−= −  mod b should be pre-computed by using extended Euclidean 

algorithm. The three multiple-precision integers x, y, w are stored in arrays x[ ], y[ ], and w[ ], 

respectively. A temporary array t[ ] is required to store intermediate results. 

Complexity Analysis: The CIOS algorithm takes 2s
2+s 32-bit multiplications and 4s

2+4s 32-

bit additions. It requires a storage space of 4s words. Notice that the 32-bit multiplication used in 

the above algorithm should output a 64-bit result, which is unfortunately not efficiently 

supported by the CUDA platform. This is because today’s GPUs are optimized for processing 

floating-point numbers. For instance, on contemporary NVIDIA GPUs, single-precision floating-

point multiplication requires 4 clock cycles, but a 32-bit integer multiplication requires 16 clock 

cycles. Even worse, the native 32-bit integer multiplication in CUDA only provides the low-32 

bits of the 64-bit result. In order to get the 32 most significant bits of the 64-bit result, we have to 

call another function _umulhi(x, y) [4]. CUDA also provides an efficient implementation of 24-
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bit multiplication and also multiplication-add (mad), i.e., _umul24(x, y) and _umad24(x, y), 

which require only 4 clock cycles. Therefore we develop our own implementation of full 32-bit 

multiplication on top of the 24-bit arithmetic. As to be shown in Section 5, this optimization 

technique improves the overall performance by 20%. Nevertheless, the optimized full 32-bit 

multiplication still takes more than 60 clock cycles, which is much slower than the CPU 

counterpart.  

Algorithm 1 CIOS for Multiple-precision Montgomery Multiplication 

INPUT: integers w, x, y with s radix b digits, ,  x w y w< < , and gcd(w, b) = 1,  s
R b= , 1

'w w
−

= −  mod b. 

OUTPUT: T = 1−⋅⋅ Ryx  mod w. 

1: for (i from 0 to s-1) 

2:     C ← 0 

3:     for ( j from 0 to s-1) 

4:         S ← t[j] + x[j] × y[i] + C 

5:         t[j] ← S 

6:         C ← S >> 32 

7:     end for 

8:     S ← t[s] + C 

9:     t[s] ← S 

10:     t[s+1] ← S >> 32 

11:     C ← 0 

12:     m ← t[0] × w' 

13:     for (j from 0 to s-1) 

14:         S ← t[j] + m × w[j] + C 

15:         t[j] ← S 

16:         C ← S >> 32 

17:     end for 

18:     S ← t[s] + C 

19:     t[s] ← S 

20:     t[s+1] ← t[s+1] + S >> 32 

21:     for (j from 0 to s) 

22:         t[j] ← t[j+1] 

23:     end for 

24: end for 

 

Figure 1. CIOS for Multiple-precision Montgomery Multiplication 

3.2 Karatsuba Montgomery Multiplication (KMM) 

Karatsuba multiplication can potentially improve the efficiency of large integer 

multiplications. Its basic idea is to reduce a 2s-digit multiply into three s-digit multiply and a 

number of additions and subtractions, which is illustrated by the following example. Assume N1 

= x12
s + x0 and N2 = y12

s + y0. We can have: 

1 2 1 0 1 0

2

1 1 1 0 0 1 0 0

2

1 1 1 0 1 0 1 1 0 0 0 0

( 2 )( 2 )

2 ( )2

2 (( )( ) )2

s s

s s

s s

N N x x y y

x y x y x y x y

x y x x y y x y x y x y

= + +

= + + +

= + + + − − +  
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By recursively applying this trick, the multiplication of two s-digit numbers takes 

2log 3
3s single-digit multiplications at the expense of more additions and subtractions. We integrate 

Karatsuba multiplication into the Separated Operand Scanning method of Montgomery 

multiplication. One challenge of implementing Karatsuba multiplication on GPU is that, CUDA 

does not support recursion in the kernel code. We tackle this problem by hardcoding different 

levels of Karatsuba multiplication as different functions. Due to the limited space, we do not 

show the detailed pseudocode for Karatsuba Montgomery Multiplication. However, in Sec. 5 we 

will show that the performance of Karatsuba Montgomery Multiplication is in fact worse than the 

CIOS method on contemporary GPUs.  

4. PARALLEL HOMOMOPHIC HASHING ON GPUS 

The core of Tsunami system is a fast modular exponentiation engine implemented on GPUs. 

CPU gathers enough codewords from the application, and delivers the codewords to GPU to 

compute the required modular exponentiations. Recall that homomorphic hashing takes two steps: 

(1) perform m modular exponentiations; (2) perform m-1 modular multiplications. The first step 

is executed by GPU cores. Although step (2) can also be done by GPU using a standard parallel 

reduction technique, some GPU resources will be wasted during the reduction process. As Step 

(2) is not computationally demanding, we exploit a new CUDA feature named Asynchronous 

Concurrent Execution, which allows CPU to compute simultaneously with GPU: after the GPU 

finishes the calculation of modular exponentiations, the results are transferred back to CPU to 

perform Step (2); meanwhile, CPU transfers the next batch of codewords to GPU for calculating 

the modular exponentiations. By doing so, Tsunami achieves higher throughput by utilizing the 

computing power of GPU and CPU. The overall structure of Tsunami is shown in Figure 2. 

Pseudocode of Tsunami on CPU 

for ( ; ; ) { 

    Get a number of data blocks; 

    Form codewords and transfer them to GPU global memory; 

    Call GPU kernel function to perform Step (1); 

    Perform Step (2) for the previous round; // this is in parallel with Step (1) 

    Receive results from GPU; 

} 

Figure 2. Pseudocode of Tsunami on CPU 

4.1 Homomorphic Hashing by Montgomery Multiplication with Precomputation 

In [24], homomorphic hashing is accelerated by GPUs using the classical binary 

Montgomery exponentiation method. In reality, when applying homomorphic hash function in 

distributed systems, the same set of parameters will be used for a large data set such as a 

computer file or a video streaming session. For this type of applications, it is possible to speed up 

the modular exponentiations by pre-computing some exponentiations. Tsunami integrates 

Montgomery multiplication into the precomputation method introduced in [29]. To compute a 
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modular exponentiation e
g  mod w, we first represent the exponent e using radix 2

k
b = : 

1

0

s i

ii
e a b

−

=
=∑ , where 0

i
a b≤ <  and 

1
0

s
a

−
≠ . It is easy to see that the length of e is logbs e=    . The 

fast modular exponentiation algorithm requires the precomputation of a set of values, i.e., 

( )
i

b
g mod w for 1 1i s≤ ≤ − . Tsunami uses Algorithm 2 (shown in Figure 3) to compute e

g  mod w. 

Algorithm 2 Multiple-precision Montgomery Exponentiation with Precomputation 

INPUT: integers w, g, 
1

0

s i

ii
e a b

−

=
=∑ ,  R , and ( )ibRg mod w for 1 1i s≤ ≤ −  

OUTPUT: 
e

g  mod w. 

1:    ,A R  B R← ← ; 
2:    for ( j from 1b −  down to 1) 
3:        for i from 0 to 1s −  

4:            if 
i

a j==  then ( )( , mod )ibB Mont B Rg w← ; 

5:        end for 
6:       ( , )A Mont A B← ; 
7:    end for 
8:    ( ,1)A Mont A← ; 
9:    return A; 

Figure 3. Multiple-precision Montgomery Exponentiation with Precomputation 

Theorem 1: Algorithm 2 outputs the value of e
g  mod w. 

PROOF: We first convert e
g  mod w into the form of 

1

1
mod

b d

dd
c w

−

=∏  where ( )

:

i

i

b

d

i a d

c g
=

= ∏ : 

1
1 1 0 0 1 1

1
0 11

( )

1( )

1

mod mod mod

( ) ( ) mod  mod  

s
s b s

s
s

a a a a a b a be

ba aab b d

dd

g w g w g w

g g g w c w

−
− −

−
−

+ + +

−

=

= =

= = ∏

� �

�

 . 

Next, we use mathematical induction to show that, after going through the loop from Line 2 

to Line 7 in Algorithm 2 for t times, where 1 ≤ t ≤ b − 1, we have 1 2  mod  b b b tB c c c R w
− − −

= �  

and 1

1 2  mod  t t

b b b tA c c c R w−

− − −
= � . 

Basic Step. Initially A = R and B = R. For the case of t = 1 (i.e., j = b − 1), in each execution 

of Line 4, if we have 1ia b= −  then ( ) ( )( ,  mod )  mod  
i ib b

Mont B Rg w Bg w= . By definition, 

( )

1

: 1

i

i

b

b

i a b

c g
−

= −

= ∏ . So after Line 5, we have 
1  mod  bB c R w

−
=  and after Line 6 we have 

1

1( , )  mod  mod  
b

A Mont R B RBR w c R w
−

−
= = = . 

Induction Hypothesis. Assume that, after going through the loop from Line 2 to Line 7 in 

Algorithm 2 for t times where 1 ≤ t ≤ b − 2, we have 1 2  mod  b b b tB c c c R w
− − −

= �  and 

1

1 2  mod  t t

b b b tA c c c R w−

− − −
= � . 
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Induction Step. Consider the (t + 1)th loop where j = b − t − 1. In each execution of Line 4, 

if we have 1ia b t= − − , then ( ) ( )( ,  mod  )  mod  
i ib b

B Mont B Rg w Bg w= = . By definition, 

( )

1

: 1

i

i

b

b t

i a b t

c g
− −

= − −

= ∏ . So after Line 5, we have 1 2 1  mod  b b b tB c c c R w
− − − −

= �  and after line 6 we 

have 1

1 2 1  mod  t t

b b b tA c c c R w+

− − − −
= � . 

Hence, after b − 1 loops, 
1

1
 mod  

b d

dd
A c R w

−

=
= ⋅∏ . After executing Line 8, we have 

1 11 1

1 1
 mod   mod   mod  

b bd d

d dd d
A AR w c R R w c w

− −− −

= =
= = ⋅ ⋅ =∏ ∏ . 

Thus we have proved that modeA g w= .      ■ 

Complexity Analysis: Algorithm 2 takes at most s + b − 3 Montgomery multiplications.  

Optimal Value of k: For e with 257-bit, 3 258 / 2 3ks b k  + − = + − . It is easy to find that the 

optimal result is achieved when k = 4, i.e, b = 16, which takes only 78 Montgomery 

multiplications in the worst case. As compared with 512 Montgomery multiplications required by 

the binary method [10] [24], this is a significant speedup. 

4.2 Implementation Details 

GPUs offer a very high internal global memory bandwidth, usually more than one hundred 

Gbps. However, the real bandwidth achieved by an application depends on the memory access 

pattern. Global memory bandwidth can be efficiently utilized when the simultaneous memory 

accesses by threads in a half-warp can be coalesced into a single memory transaction of 32, 64, or 

128 bytes. When performing homomorphic hashing on a data block bi, bi  is divided into m 

codewords bi, k, 1 ≤ k ≤ m. Each codeword bi, k takes 4 bytes and will be accessed by a single GPU 

thread. As shown in Figure 4 (a), if we organize the codewords in a normal two-dimensional 

array, the memory access pattern will be non-coalesced, and hence a separate memory transaction 

is issued for each thread which significantly reduces the throughput. Tsunami uses a coalesced 

data structure as shown in Figure 4 (b). For a half-warp (i.e., 16 threads), the 16 memory accesses 

can be coalesced into a single 64-byte memory transaction. 

In GPU computing, shared memory has always been an important but scarce resource. In the 

design of Tsunami, we also tried different ways to make use of shared memory. Each thread 

needs to store three big integers during the computing of modular exponentiations. If each thread 

stores the big integers into shared memory, then the number of active threads that can be 

executed on an SM will be extremely limited, and this results in a poor utilization of GPU cores. 

The current design of Tsunami does not utilize any shared memory, so that the number of active 
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threads per SM is only limited by the number of registered used per thread. By carefully reducing 

the number of registers per thread, Tsunami can have 384 active threads per SM, which are 

enough to fully utilize the computing power of GPU cores. However, if the size of shared 

memory grows in the future generation of GPUs, we believe that making use of shared memory 

can further improve the throughput under the condition that using shared memory won’t limit the 

number of active threads per SM. 

   

(a) non-coalesced memory access       (b) coalesced memory access 

Figure 4. Global memory organization of codewords 

Tsunami also utilizes constant memory to hide some of the memory access latency. For those 

constant variables (such as p) that are shared by different threads, we store them into constant 

memory, because each SM has on-chip cache for constant memory and hence the access to these 

constant variables will be very efficient. 

5. EXPERIMENTAL RESULTS 

The CPU version of the homomorphic hash function is implemented in C language using the 

GNU MP arithmetic library, version 4.2.3 [3]. We have also implemented the different 

implementations of homomorphic hash function using CUDA. We tested these implementations 

on tested it on three different GPUs: (1) GeForce GTX295; (2) GeForce GTX280; and (3) 

GeForce 9800. The properties of the three GPUs used in our experiments are summarized in 

Table 2. The host computer is equipped with a 2.4GHz Intel Quad-core CPU Q6600. All our 

experimental results are the average of ten runs. 

5.1 Evaluation of Montgomery Multiplication 

We first present our experimental results of the three different implementations of 

Montgomery multiplications. We tested single thread case as well as multiple thread cases on 

GTX295, and the results are shown in Figure 5. It is interesting to see that the time of computing 

960 Montgomery multiplications is only about twice of computing a single Montgomery 

multiplication. This is because the 480 GPU cores have been fully utilized to perform 

Montgomery multiplications simultaneously. 
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Figure 5. Performance of Montgomery multiplication on GTX295 

The theoretically advantageous Karatsuba Montgomery method does not perform well on 

GPUs. We ascribe this to mainly two reasons: (1) Karatsuba multiplication extensively uses flow 

control statements, causing threads of the same warp to diverge. In this case, different execution 

paths within a warp will be serialized, increasing the total number of instructions executed for 

this warp and decreasing the throughput significantly. (2) Karatsuba multiplication requires a 

large memory space to hold intermediate results. Given the limited low-latency shared memory, 

the intermediate results have to be stored in global memory which has very long access latency. 

The Karatsuba Montgomery multiplication method needs 60 registers and 5132 bytes of local 

memories. But the CIOS method only needs 14 register and no local memory at all. As a result, 

the performance of Karatsuba Montgomery algorithm is about half of the CIOS algorithm.  

Our optimized CIOS implementation makes use of the 24-bit arithmetic operations. On 

average, it can improve the throughput of CIOS by 20%. As mentioned before, our optimized 

implementation of full 32-bit integer multiplication takes more than 60 clock cycles. If the GPU 

vendors can improve their support of 32-bit integer multiplication in future generations of GPUs, 

we believe the performance of Montgomery multiplication (and hence a plenty of security 

applications) can be boosted significantly. 

5.2 Evaluation of Homomorphic Hash Function 

The performance of Tsunami depends on two system parameters: the number of threads per 

block (denoted by T), and the number of thread blocks. Our experimental results of GTX 280 

with different configurations are shown in Figure 6. We notice that 128 or 256 threads per block 

can achieve stable and optimal performance. But if there are only 30 thread blocks, 128 threads 

per block will not be enough to hide the memory latency and hence the computing power cannot 

be fully utilized. 

We summarize our experimental results of different implementations of homomorphic 

hashing in Table 3. We implemented the single thread version and multi-threaded version of 

method in [10] on CPU, and obtained a very close throughput: 304 Kbps has been reported in [10] 
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on a 3GHz Pentium 4 CPU while we got 280 Kbps on a 2.4GHz CPU. When all four CPU cores 

are utilized, the throughput can be improved to 1.03 Mbps, which is close to four times of the 

single thread result. As compared with the multithreaded result on the Quad-core CPU, Tsunami 

on GTX295 achieves 33.7x speedup.  

GPU was first proposed to accelerate homomorphic hashing in [24]. However, the method 

used in [24] is a straightforward implementation of binary-exponentiation and it can only achieve 

1.90 Mbps on GTX 280. Tsunami system achieves a speedup of 10.8x by using a number of 

optimization techniques. 

We can also observe that the performance of Tsunami system grows almost linearly to the 

number of GPU cores. Future generations of GPUs are estimated to have more and more cores, 

and hence the throughput achieved by Tsunami will grow as well. 

 

Figure 6. Throughput with different number of thread blocks and different threads per block (T), GTX 280 

6. CONCLUSIONS 

Homomorphic hashing is the key component for data authentication in distributed systems 

that reply on erasure coding or network coding. Unfortunately it is computationally expensive to 

perform homomorphic hashing on today’s CPUs. In this paper, we show the design and 

implementation of a highly efficient solution, namely Tsunami, for homomorphic hashing by 

using GPUs. By using a contemporary graphic card, our parallel algorithm can achieve 34.7 

Mbps of hashing throughput, which is 33 times faster than the contemporary quad-core CPU. 

The hashing throughput achieved by Tsunami is high enough for today’s Internet applications. 

The excellent flexibility of Tsunami makes it a good candidate for future high-bandwidth peer-to-

peer applications. 

The recently introduced Fermi GPU architecture has enhanced the integer arithmetic unit by 

supporting native 32-bit integer multiplication. Our currently implementation of 32-bit integer 

multiplication replies on 24-bit integer arithmetic, which could be replaced by the Fermi native 

32-bit integer instructions. It will be our future work to investigate how to optimize 

homomorphic hashing on Fermi architecture. 
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Table 1. Homomorphic hash function parameters 

NAME DESCRIPTION TYPICAL VALUE 

pλ  Discrete log security parameter 1024 bit 

qλ  Discrete log security parameter 257 bit 

p Random prime, pp λ=||   

q Random prime, qq λ=|| , 1| −pq   

m Number of codewords per data block 512 

n Number of data blocks 128 

g 1 x m vector of order q  
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Table 2. Parameters of GPUs used in our experiments 

GPU NAME GTX295 GTX280 GEFORCE 

9800 

Number of SPs 480 240 128 

Processor clock 1.24 GHz 1.30 GHz 1.80 GHz
1
 

Memory bandwidth 224 GB/s 141 GB/s 70 GB/s 

Memory amount 1.79 GB 1 GB 512 MB 

 

                                                                 

1 This card is donated by NVIDIA and has a higher processor clock than commercial NVIDIA GeForce 9800 cards. 
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Table 3. Throughput of Homomorphic Hashing  

PLATFORM METHOD THROUGHPUT 

(Mbps) 

Quad-core CPU 
[10]: Single thread  0.28 

[10]: Multi-threaded  1.03 

GPU GTX280 [24] 1.90 

GPU GeForce 9800 

Tsunami 

10.7 

GPU GTX280 20.6 

GPU GTX295 34.7 

 


