Source Code: 
		CaffeFCNs.zip 
		
 Usage example: caffe time -model=fcn5-b32.prototxt -gpu=0 
		
		
Data: created by the script: createFakeDataForCaffeFCN.py
Source Code: 
		CNTKFCNs.zip 
		
 Usage example: cntk configFile=fcn5.cntk configName=fcn5 deviceId=0 minibatch=32
		
Data: created by the script: createDataForCNTKFCN.py
Source Code: 
		TensorFlowFCNs.zip 
        
 Usage example: python fcn5.py -e 2 -b 32 -i 4 -d 0
		
Data: randomly generated in the source code.
Revision History:
        1. Set input data be generated on CPU size, which is the same with other tools.
        
Source Code: 
		TorchFCNs.zip 
        
 Usage example: th fcn5.lua -nGPU 1 -deviceId 0 -batchSize 32 -nEpochs 2 -nIterations 4 
		
Data: randomly generated in the source code.
Source Code: 
		CaffeAlexNet.zip 
		
Usage example: caffe time -model=alexnet-b256.prototxt -iterations=10 -gpu=0
		
Data: created by the script: createFakeImageNetForCaffeCNN.py
Revision History:
        1. Remove two dropout operations of the network. 
        
Source Code: 
		CNTKAlexNet.zip 
		
Usage example: cntk configFile=alexnet.cntk configName=alexnet deviceId=0 minibatchSize=256 epochSize=2560 maxEpochs=4
		
Data: created by the script: createFakeImageNetDataForCNTKCNN.py and createLabelMapForCNTKCNN.py
Revision History:
        1. Remove dropout operations of the network. 
        
Source Code: 
		TensorFlowAlexNet.zip 
		
Usage example: python alexnet.py -e 4 -b 256 -i 10 -d 0
		
Data: randomly generated in the source code.
Revision History:
        1. Set dimension of input data to 224x224x3; 
        2. Remove all padding settings (i.e., using 'SAME' padding); 
        3. Revise the output of 4th convolution layer to 384 instead of 256;
        4. Set input data be generated on CPU size.
        
Source Code: 
		TorchAlexNet.zip 
		
Usage: 
		
Data: randomly generated in the source code.
Revision History:
        1. Remove dropout operations of the network. 
        
Source Code: 
		CaffeResNet.zip 
        
Usage example: caffe time -model=resnet-b32.prototxt -iterations=4 -gpu=0
		
Data: the same as Caffe AlexNet data.
Source Code: 
		CNTKResNet.zip 
        
Usage example: cntk configFile=resnet.cntk configName=resnet deviceId=0 minibatchSize=32 epochSize=2 maxEpochs=2
		
Data: the same as CNTK AlexNet data.
Revision History:
        1. Add setting of shareNodeValueMatrices=true to configuration file;
        2. Add setting of maxTempMemSizeInSamplesForCNN=1 to configuration file when there is no enough memory. 
        
Source Code: 
		There is a bug in our ResNet-50 network configuration. The TensorFlow results on ResNet-50 reported in this Version 3 are not correct. We will release the corrected version very soon. 
        
Usage example: python resnet.py -e 2 -b 32 -i 4 -d 0 
		
Data: randomly generated in the source code.
Revision History:
        1. Set dimension of input data to 224x224x3; 
        2. Set input data be generated on CPU size.
        
Source Code: 
		TorchResNet.zip 
		
Usage example: th resnet.lua -depth 50 -nGPU 1 -deviceId 0 -batchSize 256 -nEpochs 4 -nIterations 10 -dataset imagenet 
		
Data: randomly generated in the source code.
Revision History:
        1. Set dimension of input data to 224x224x3; 
        2. Set input data be generated on CPU size.
        
Source Code: 
		CNTKLSTM.zip 
		
Usage example: cntk configFile=lstm.cntk configName=lstm deviceId=0 minibatchSize=256 epochSize=8192 maxEpochs=1
		
Data: from CNTK.
Revision History:
        1. Remove extra LSTM classification task in configuration file;
 
        2. Using customized brain script to do LSTM operation. 
        
Source Code: 
		TensorFlowLSTM.zip 
		
Usage example: python lstm.py --batchsize 256 --iters 10 --seqlen 32 --numlayer 2 --hiddensize 256 --device 0 --data_path ~/data/PennTreeBank
		
Data: from CNTK.
Source Code: 
		TorchLSTM.zip 
        
Usage example: th lstm.lua --seqlen 32 --batchsize 256 --iters 10 --hiddensize {256,256} --cuda --lstm --startlr 1 --cutoff 5 --maxepoch 1 --device 0 
		
Data: generated by the source code.