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Abstract—Deep learning has been shown as a successful ma-
chine learning method for a variety of tasks, and its popularity
results in numerous open-source deep learning software tools
coming to public. Training a deep network is usually a very
time-consuming process. To address the huge computational
challenge in deep learning, many tools exploit hardware fea-
tures such as multi-core CPUs and many-core GPUs to shorten
the training time. However, different tools exhibit different
features and running performance when training different
types of deep networks on different hardware platforms, which
makes it difficult for end users to select an appropriate pair
of software and hardware. In this paper, we aim to make a
comparative study of the state-of-the-art GPU-accelerated deep
learning software tools, including Caffe, CNTK, TensorFlow,
and Torch. We benchmark the running performance of these
tools with three popular types of neural networks on two
CPU platforms and three GPU platforms. Our contribution
is two-fold. First, for end users of deep learning software
tools, our benchmarking results can serve as a guide to
selecting appropriate hardware platforms and software tools.
Second, for developers of deep learning software tools, our in-
depth analysis points out possible future directions to further
optimize the running performance.

Index Terms—Deep Learning; GPU; Feed-forward Neural
Networks; Convolutional Neural Networks; Recurrent Neural
Networks

1. Introduction

In the past decade, deep learning has been successfully
applied in diverse areas including computer vision, speech
recognition, natural language processing, etc. The success of
deep learning is attributed to its high representational ability
of input data, by using various layers of artificial neurals
[1]. GPUs have played a key role in the success of deep
learning by significantly reducing the training time [2]. In
order to increase the efficiency in developing deep learning
methods, there are a number of open-source deep learning
toolkits including Caffe from UC Berkeley [3], CNTK from
Microsoft [4], TensorFlow from Google [5], Torch [6], and
many other tools like Theano [7], MXNet [8], etc. All these
tools support multi-core CPUs and many-core GPUs. One
of the main tasks of deep learning is to learn a number of
weights in each layer of network, which can be implemented
by vector or matrix operations. TensorFlow uses Eigen [9]

as accelerated matrix operation library, while Caffe, CNTK,
Torch employ OpenBLAS [10] or cuBLAS [11] to speed up
matrix related calculations. All the mentioned tools import
cuDNN [12], which is a GPU-accelerated deep learning li-
brary, for their neural network computing. However, because
of the difference of optimization methods by vendors, these
tools exhibit different running performance even when train-
ing the same neural network on the same hardware platform.
Furthermore, the performance of a tool also changes a lot
when training different types of networks, or using different
types of hardware.

Given the diversity of deep learning tools and hardware
platforms, it could be difficult for end users to choose an
appropriate tool to carry out their deep learning tasks. In
this paper, we benchmark three major types of deep neu-
ral networks (i.e., fully connected neural networks (FCNs)
[13], convolutional neural networks (CNNs) [14][15][16],
and recurrent neural networks (RNNs) [17][18][15]) on
state-of-the-art GPU-accelerated tools (i.e., Caffe, CNTK,
TensorFlow and Torch), and analyze their advantage and
disadvantage on both CPUs and GPUs, in terms of running
time performance.

For each type of networks, we benchmark the networks
of both small size and large size.! Our major findings are
summarized as follows?: (1) In general, the performance
does not scale very well on many-core CPUs. In many
cases, the performance of using 16 CPU cores is only
slightly better than that of using 4 or 8 CPU cores. (2) On
CPU-only platforms, the performance of each tool varies
among different neural networks, CPU types, and different
number of threads; and there is no obvious single winner.
E.g., Torch performs the best on FCNs; Caffe performs
the best on AlexNet; Torch performs the best on ResNet-
50; and CNTK and TF perform much better than Torch
on RNNs. (3) All tools can achieve significant speedup
by using contemporary GPUs. We see 10-30X speedup by
comparing the best GPU result to the best CPU result. With
GPUs, Caffe, CNTK, and Torch have similar performance
on FCNs and are obviously faster than TF; for CNNs, the
performance really depends on the type of GPU, and Torch
consistently performs very well; but for RNNs, CNTK and
TF perform much better than Torch. (4) Among the three
GPU platforms, GTX1080 performs the best in most cases,

'Our source code and experimental data can be downloaded from http:
//www.comp.hkbu.edu.hk/~chxw/dlbench.html.

2These findings are based on our own experimental platforms and only
apply to the software versions specified in the paper.



due to its highest computational power. (5) The performance
is also affected by the design of configuration files. E.g.,
CNTK allows the end users to fine-tune the system and
trade off GPU memory for better computing efficiency.

The rest of the paper is organized as follows. Section
2 presents the background and related work. Section 3
introduces our benchmarking platform and methodology.
Experimental results are presented in Section 4, followed
by our discussion in Section 5. We conclude the paper and
discuss our future work in Section 6.

2. Background and Related Work

With the fast development of deep learning techniques,
numerous deep neural networks including fully connected
neural networks (FCNs), convolutional neural networks
(CNNp&s), recurrent neural networks (RNNSs), restricted boltz-
mann machine (RBM) have been developed for different
applications [19]. In this paper, we focus on analyzing the
running performance (or speed) of three types of neural
networks, namely FCNs, CNNs and RNNs. FCN has a long
history dated back to 1980s when the backpropagation (BP)
algorithm [20] was first developed. And for CNN and RNN,
they have been revealed strong power on the applications of
image recognition and natural language processing respec-
tively [15][16][16].
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Figure 1. Example of (a) Fully Connected Network and (b) Recurrent
Neural Network.

FCN is a feed-forward neural network, the first suc-
cessful use of which is the ZIP codes recognition by Yann
LeCun et al. in 1989 [13]. Assume that an FCN F has /
input neurons and O output neurons, and there are H hidden
layers, where the number of neurons is N; (i = 1, 2, ..., H).
The total number of weights in F is:

H-2
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To reduce the total number of parameters in each layer,
CNNs build a convolutional layer by using a set of kernels,
and the parameters of each kernel are shared across entire
field (e.g., a channel of color image). RNNs allow cyclical
connections of the units in the network [18][15][16]. Fur-
thermore, Long-Short Term Memory(LSTM) [21][17] has
been proposed to address vanished and exploding gradients
on RNNs.

RNN allows cyclical connections of the units in the
network, as illustrated in Figure 1(b). RNN can link the

entire historical input sequence to each output and find
the relationship between the contextual features of inputs
and the output. With this characteristic, RNN can maintain
the information given by the former inputs similar with
memory during the training period of one single sample.
Furthermore, to address the training difficulty of vanished
and exploding gradients, Long-short Term Memory(LSTM)
[17] has been proposed to record and discard the information
properly. RNN with LSTM units has been proved most suc-
cessful in handling tasks of speech recognition and natural
language processing [15][16].

Eq. (1) shows that fully-connected layers easily lead to
huge amount of parameters to learn. To reduce the total
number of parameters in each layer, CNNs use convolutional
layers in which a set of kernels are designed and the param-
eters of each kernel are shared across entire field. Starting
from the LeNet architecture, CNNs have accomplished a lot
of successful tasks including ImageNet classification [14],
face recognition [22], and object detection [23]. An example
of CNN is shown in Fig. 2 whose number of parameters is
up to 61 millions [14].

Figure 2. AlexNet [14]: ImageNet 2012 winner.

With the growing success of deep learning, there comes
out many popular open source GPU-accelerated software
tools, among which Caffe, CNTK, TensorFlow and Torch
are examples of the most active and popular ones.

Caffe is developed by Berkeley Vision and Learning
Center (BVLC) and has become open source since 2014.
The authors [3] claim that Caffe can process 40 million
images per day with GPU-accelerated version on a single
NVIDIA K40 or Titan GPU. After integrated with cuDNN,
it achieves speedup about 1.3x on NVIDIA K40 card [12].

CNTK is a unified computational network toolkit devel-
oped by Microsoft Research, which supports most popular
networks. At December 2015, the official reported a per-
formance result benchmarking on a fully connected 4-layer
neural network compared to Caffe, TensorFlow, Theano and
Torch, and the result shows that CNTK with multiple GPUs
on single node or cross multiple machines achieve a much
better speed (about 1.5x speedup) than the other compared
toolkits. However, CNTK does not support concatenation
operation in some CNNs (e.g., GoogleNet [24]).

TensorFlow is developed by Google which has inte-
grated most common units in deep learning framework using
data flow graphs. It supports many up-to-date networks
such as CNNs, RNNs with different settings. TensorFlow
is designed for remarkable flexibility, portability, and high
efficiency of equipped hardware.



Torch is a scientific computing framework which pro-
vides data structures for the most useful components in ma-
chine learning algorithms such as multi-dimensional tensors
and mathematical operations over them.

To accelerate the training speed of deep neural networks,
both CPUs SSE techniques and float points SIMD mod-
els are used to implement deep learning algorithms [25],
which achieve 3x speedup over optimized floating-point
baseline. Andre Viebke et al. also exploit thread- and SIMD-
parallelism Intel Xeon Phi processors to speedup training of
CNNs [26].Considering parallel algorithms for GPU, Jeffrey
Dean et al. [27] proposed a large scaled distribute deep
networks and developed two algorithms (i.e., Downpour
SGD and Sandblaster L-BFGS) that can be easily running
on computing clusters with thousands of machines including
GPU machines. Another way to accelerate training speed is
to reduce the number of learning parameters, Song Han et
al. [28] use the method of pruning redundant connections to
reduce parameters without losing network representational
ability, which could reduce the number of parameters of
AlexNet from 61 millions to 6.7 millions. Bahrampour et
al. [29] did the similar work with us, but they only used
a single architecture of GPU (i.e., NVIDIA Maxwell Titan
X) and old version softwares (e.g., cuDNN v2, v3). We use
three major architectures of GPU and benchmark on some
new networks (e.g., ResNet-50) and softwares (e.g., cuDNN
v4), and we also go insight into the source codes to analyze
performance.

3. Experimental Methods

For each type of neural network, we set up a small size
of network and a large size of network to make comparison.
One popular and effective way to evaluate the training
performance is to measure the time duration of an iteration
that processes a mini-batch of input data. In practice, after
a certain round of iterations or the convergence of learning,
the training progress will be terminated. Therefore, we
benchmark the networks by using a range of mini-batch
sizes for each network on these tools. For each mini-batch
size, we run numerous iterations and evaluate their average
speed. The methods of time measurement for each tool are
as follows:

o Caffe: use “caffe train” command to train a spec-
ified network, and then calculate the average time
difference between two consecutive iterations.

e CNTK: similar to Caffe, but we need to exclude the
first epoch which may include the time of disk I/O.

o TensorFlow: use “datetime” function to calculate the
average iteration time in source scripts.

o Torch: the same as TensorFlow.

All the toolkits provide very flexible programming APIs
or configuration options to do performance optimization. For
example, in CNTK, we may specify “maxTempMemSizeln-
SamplesForCNN” option in configuration file to control the
size of temporary memory used by CNNs which may result
in slightly worse efficiency but less memory requirement.

TensorFlow and Torch, which are API based frameworks,
have rich APIs for users to choose for computations. In
other words, there may exist different APIs performing the
same operations. As a result, we need to point it out that the
performances reported in our experiments are based on our
understanding of usage of these tools and are not necessarily
the best that can be achieved.

The software versions and related libraries are shown in
Table 1.

TABLE 1. THE SOFTWARES USED FOR EXPERIMENTS.

Software Version CPU BLAS LIB cuDNN
Caffe 1.0.0-rc3  OpenBLASv0.2.18  v4
CNTK 1.5rc OpenBLASV0.2.18  v4
TensorFlow  0.9.0 Eigen 3.2.8 v4
Torch 423cfba OpenBLASV0.2.18  v4

TABLE 2. THE EXPERIMENTAL SETUP OF NEURAL NETWORKS.

Networks Input Output | Layers | Parameters
FCN FCN-5 26,752 26,752 5 55 millions
FCN-8 26,752 | 26,752 8 58 millions

CNN AlexNet 150,528 1,000 4 61 millions
ResNet-50 | 150,528 1,000 50 3.8 billions

RNN | LSTM-32 10,000 10,000 2 13 millions
LSTM-64 10,000 10,000 2 13 millions

TABLE 3. THE EXPERIMENTAL SETUP OF HARDWARE.

Computational Unit Cores Memory OS CUDA

Intel CPU i7-3820 4 64 GB Ubuntu 14.04 -
Intel CPU E5-2630x2 16 128 GB  CentOS 7.2 -
NVIDIA GTX 980 2048 4 GB Ubuntu 14.04 7.5
NVIDIA GTX 1080 2560 8 GB Ubuntu 14.04 8.0
NVIDIA Telsa K80 2496 12 GB CentOS 7.2 7.5

Neural networks. For fully connected network, a 5-
layer neural network (FCN-5) and an 8-layer neural network
(FCN-8) are constructed. For CNNs, we choose the classical
AlexNet [14] and the recently proposed ResNet-50 [30]. For
RNNS, considering that the main computation complexity is
related to the length of input sequence, we select 2 LSTM
[17] layers for testing, with input length of 32 (LSTM-32)
and 64 (LSTM-64) respectively. The network configuration
details can be found in Table 2.

Hardware. We use two types of multi-core CPUs,
one quad-core desktop CPU (i.e., Intel i7-3820 CPU @
3.60GHz) and one 8-core server CPU (i.e., Intel Xeon CPU
E5-2630 v3 @ 2.40GHz), to test the performance of tools
with different number of threads; and three generations of
GPU cards, NVIDIA GTX 980 with Maxwell architecture,
GTX 1080 with Pascal architecture, and Telsa K80 with
Kepler architecture, are used to compare the performance
on different GPU platforms. Notice that we only use one of
the two GK210 chips of K80 GPU in this study. In order
to avoid host memory dependency of neural network size,
the two test machines are equipped with 64GB memory



and 128GB memory respectively. The details of hardware
configurations are shown in Table 3.

4. Results

Since the official Caffe does not implement LSTM
neuron operation, we do not benchmark Caffe on RNNs.
For CNTK, batch normalization (an operation of ResNet-
50) is not supported on CPU version, therefore, we do not
benchmark CPU-only CNTK on ResNet-50.

To make a full comparison of all toolkits, networks and
hardware, we choose a proper mini-batch size for each type
of network so that both CPUs and GPUs have their best
performance. In our cases, we choose mini-batch sizes of 64,
16 and 128 for FCNs, CNNs and RNNs respectively, and the
comparative results are shown in Table 4. The performances
of different mini-batch sizes on different GPUs are shown
in Figure 3.

4.1. CPU Results

On FCNs, Torch has in general the best performance on
CPU-only platform. Its performance at 4 threads is even
better than other tools with more threads. Both CNTK
and Caffe perform slightly worse than Torch. TensorFlow’s
performance on desktop CPU is not good. It also requires 32
threads to achieve similar performance with other software
tools.

On AlexNet with CPU-only computing resources, Caffe
performs the best on the quad-core desktop CPU with 4
threads, while TensorFlow performs the best on the server
CPU with 16 threads. On the more complicated ResNet-50,
Torch performs the best on both CPUs. Caffe’s performance
on desktop CPU is very close to Torch, but its performance
on server CPU becomes 40% slower than Torch and Ten-
sorFlow.

On RNNs, CNTK performs consistently very well. It is
almost twice as fast as Torch. TensorFlow’s performance is
slower than CNTK on desktop CPU, but becomes slightly
better than CNTK on server CPU when using 32 threads.

In general, the speedup achieved by multi-threading
on multi-core CPUs are diminishing with more and more
threads. In most cases, using 16 threads can only slightly
reduce the training time as compared to using 4 or 8 threads,
except TensorFlow which relies on more threads to saturate
the system.

4.2. GPU Results

The FCNs testing results on GPUs are displayed in
Fig. 3(a) and Fig. 3(b). Caffe and CNTK have similar
results, which are better than that of TensorFlow and Torch.
TensorFlow has a poorer performance on these kinds of
networks, which is about 2 times slower than Caffe and
CNTK.

The CNNSs’ results (i.e., AlexNet and ResNet-50) on
GPUs are shown in Fig. 3(c) and 3(d). When training the

AlexNet on GTX 980 and K80 cards, Caffe has a better
performance than any others with all the mini-batch sizes.
However, CNTK is on par with TensorFlow and Torch on
ResNet-50, and slightly better than Caffe on GTX 980 and
K80 cards. Furthermore, TensorFlow has a much better
speedup on GTX 1080 card when running CNNs, and it
performs the best both on AlexNet and ResNet-50.

As for RNNs, we have different settings of input se-
quence lengths which are 32 and 64, and mini-batch size
varying from 64 to 256. According to our results demon-
strated in Figure 3(e) and Figure 3(f), CNTK achieves the
best performance for all available settings.

On different GPUs, GTX 1080 card performs the best in
most of cases, and the average running time on GTX 1080
is around 1.5x shorter than on GTX 980 which is about
2 times faster than running on Tesla K80 card. Specially,
TensorFlow has a very outstanding speedup on GTX 1080
card. However, when running much larger network (e.g.,
ResNet-50), with the mini-batch size getting larger, much
more GPU memory is needed to do the computation, which
results in crash of some tools on smaller memory GPUs.
For example, with mini-batch size of 16, Caffe cannot run
on GTX 980. The programs with CNTK are also crashed
at not less than 64 mini-batch size on both GTX 980 and
GTX 1080 cards. Torch can run all the configured mini-
batch size except 64 on GTX 980 card. All the benchmark
results can be generated with TensorFlow on all GPU cards
except the case of ResNet-50 on GTX 980 card with the
mini-batch size of 64. It seems that TensorFlow and Torch
have a better GPU memory management strategy on running
convolutional neural networks.

In summary of GPU versions, most of the training
speeds on GTX 1080 are faster than on GTX 980 and K80.
On FCNs, Caffe and CNTK may be better choices, and Caffe
and Torch perform better on AlexNet, while CNTK achieves
better performance on ResNet-50 and RNNs. When there
exists GTX 1080 with CUDA-8.0, TensorFlow performs the
best on CNNS.

To make a simple comparison between GPUs and CPUs
parallelization, the numbers in Table 4 show that GPU ver-
sion has an obviously high performance than CPU versions,
and the maximum speedup on GTX 1080 reaches to 81
times than the 4 cores CPU version with TensorFlow, and
approximate 35 times than 16 cores CPU by using CNTK.

5. Discussion

Considering parallelization on CPUs, the number of
computation threads are recommended to be not larger than
the number of physical CPU cores. Because if there are lots
of calculation tasks in all CPUs, it is difficult for the system
to specify idle CPU to do scheduling, which could easily
lead to bad performance such as Caffe, CNTK and Torch at
8 threads on 4-core CPUs. On single core CPU version, the
performance of TensorFlow is much worse than others, the
reason of which is because the BLAS library (i.e., Eigen-
3.2) that TensorFlow (v0.9.0) used does not support AVX
(x86_64) [9], while OpenBLAS which is used by other three



TABLE 4. COMPARATIVE EXPERIMENT RESULTS (TIME PER MINI-BATCH IN SECOND, AND THE MINI-BATCH SIZES FOR FCNS, CNNs AND RNNs
ARE 64, 16 AND 128 RESPECTIVELY).

Desktop CPU (Threads used) Server CPU (Threads used) GPU

1 2 4 8 1 2 4 8 16 32 G.980 | G.1080 | T.K80

Caffe 1.322 0.795 0.739 0.622 1.112 0.908 0.656 | 0.553 | 0.539 | 0.981 0.042 | 0.033 0.051

FCN-5 CNTK 2.351 1.240 0.962 0.810 2311 1.229 0.828 | 0.547 | 0.530 | 0.549 0.044 | 0.033 0.053
TF 7.206 4.905 2.626 1.934 7.449 5.203 2.804 | 1.574 | 0.857 | 0.595 0.070 | 0.063 0.098

Torch 1.227 0.655 0.661 - 1.030 0.741 0.536 | 0.440 | 0.425 | 0.892 0.044 | 0.046 0.055

Caffe 3.423 1.883 1.162 0.993 2.976 1.805 1.257 | 0.875 | 0.756 | 2.405 0.048 | 0.038 0.057

FCN-8 CNTK 2.641 1.402 1.393 0.919 2514 1.391 0.885 | 0.633 | 0.580 | 0.653 0.049 | 0.037 0.059
TF 7.167 4.863 2.630 1.955 7.760 5.198 2.896 | 1.577 | 0.892 | 0.620 0.071 0.063 0.107

Torch 1.317 0.707 0.448 0.881 1.106 0.774 0.560 | 0.475 | 0.444 | 0.976 0.047 | 0.048 0.057

Caffe 1.609 0.999 0.885 1.074 1.199 0.942 0.707 | 0.738 | 0.799 | 0.960 0.033 | 0.026 0.054

AlexNet CNTK 6.541 3.426 2.140 2.063 6.476 3.760 2.319 | 1.684 | 1.223 | 1.292 0.054 | 0.040 0.091
TF 3.988 3.127 1.833 1.462 4.465 3471 1.747 | 1.003 | 0.607 | 0.835 0.048 | 0.018 0.086

Torch 4.554 2.483 2.087 3.938 3.450 1.878 1.250 | 1.076 | 1.033 | 1.076 0.038 | 0.029 0.076

Caffe 11.529 | 7.641 8.739 7.230 8.332 6.499 5.580 | 5.303 | 5.870 | 7.283 - 0.307 0.503

ResNet-50 [ CNTK - - - - - - - - - - 0.245 0.207 0.475
TF 26.707 | 16.105 | 10.093 | 8.187 27.339 | 17.560 | 9.989 | 6.048 | 3.773 | 4.060 0.346 | 0.184 0.486

Torch 12.101 | 7.147 - - 10.275 | 6.971 5.145 | 4.043 | 3770 | 4.428 0.215 0.188 0.435

CNTK 4.393 2.173 1.220 1.369 4.144 2.241 1.331 | 0964 | 0.773 | 0.897 0.088 | 0.062 0.133

LSTM-32 TF 9.306 3.432 2.021 1.723 6.453 3.783 2.168 | 1.229 | 0.770 | 0.706 0.087 | 0.070 0.123
Torch 4.872 2.680 2.366 3.645 4.704 2972 2.067 | 1.706 | 1.763 | 2.901 0.135 | 0.098 0.205

CNTK 8.218 4.307 2.483 2.762 7.920 4.384 2.662 | 1.949 | 1.527 | 1.798 0.171 0.122 0.249

LSTM-64 TF 11.699 | 7.292 3.516 3.477 12.760 | 7.823 4402 | 2.525 | 1.590 | 1.469 0.178 | 0.144 0.234
Torch 9.623 5.324 4.980 6.976 9.365 5.614 4.054 | 3.252 | 3.358 | 5.815 0.269 | 0.194 0.407

tools supports [10]. Fortunately, Eigen-3.3 adds support for
AVX (x86_64) and it would be applied to newer version of
TensorFlow.

With GPU computing resources, all the deep learning
tools mentioned achieve very high speedups compared to
their CPU-only versions because of high parallelization on
lots of CUDA cores. The theoretical performance of GTX
1080 is up to 8873 GFLOPS which is much higher than
CPUs. In overall, the performance of GTX 1080 is better
than GTX 980, and much better than Tesla K80 (with single
GK210 chip).

On FCNs, Caffe and CNTK performs a little better
than TensorFlow and Torch with one GPU. Our results
match with the official claims of CNTK [31]. In general,
training a network involves a two-phase computation (i.e.,
feed-forward and backward propagation). In feed-forward
phase, matrix multiplications are the most time-consuming
operations, and cuBLAS API: cublasSgemm is adopted by
all the four tools. However, there is a tricky calling param-
eter of cublasSgemm, which may result in very different
performance when doing matrix-matrix multiplication. With
the same matrix sizes, if we set the second parameter to
CUBLAS_OP_T of cublasSgemm API, the kernel actually
used by the API is different and it results in 3 times slower
compared to CUBLAS_OP_N in some cases (e.g., C' =
A x BT, where A € R1024x26752 4nq B ¢ R2048x26752)
CNTK and TensorFlow construct its data structure to call
cublasSgemm use CUBLAS_OP_N, while Caffe and Torch
use CUBLAS_OP_T. In the phase of backward propagation,
it needs to use matrix multiplication to calculate the gradi-
ents and use element-wise matrix operation to update the
parameters. When it comes to low efficiency computation
of A times transposition of B by calling cuBLAS, it may

be better if we transpose B first and then call A times B
API. Furthermore, the cublasSgemm API provides the full
support to backward propagation because it adds a scaled
(parameter beta as scalar) matrix after matrix multiplication.
So if we merged gradients calculation and update operation
into a single GPU kernel, the calculation efficiency could be
improved. To optimize the efficiency of FCN, it is better to
use cublasSgemm API without transpose and use cublasS-
gemm to calculate gradients and do update operations at the
same time.

On CNNs, all the toolkits use cuDNN library to do
convolution operations. Though the same API calls are used,
the parameters may determine different kernels to use. We
found that on convolution operation, FFT is an optimized
way compared to performing convolution directly. After FFT
of a matrix, convolution calculation can be transformed into
inner product operation which is much faster. TensorFlow
acheives much better performance than the other three tools
on ResNet-50 on GTX 1080, and FFT is one of the main
factor that contributes to its high efficiency.

On RNNs with LSTM, CNTK performs better than
TensorFlow and Torch, both of which achieve similar per-
formance. To launch training procedure of LSTM, Torch
executes lots of Pointwise kernels of basic operations such
as multiplication, addition, sigmoid, etc. on tensors designed
by itself. Regarding the workload of kernels, Torch gives
more than 50 blocks of which size is batch size. In this way
Torch can somehow fully utilize the computation resources
of GPU. We know that TensorFlow organizes all the com-
putations as graph operations [5], which is also indicated by
the kernels launched during the training procedure to some
extend. There are a large number of TensorAssignOp kernels
with different types of operations also including scalar_sum,
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Figure 3. GPU training speed comparison on Deep Learning Tools.

scalar_product etc. on tensors. As for CNTK, some specific
kernels for training LSTM designed by itself are also very
different from those of Torch and TensorFlow. Its brain
scripts are very flexible to customize the neural networks.

6. Conclusion and Future Work

This work aims to evaluate the running performance of a
set of modern deep learning software tools and see how they
perform on different types of neural networks and different
hardware platforms. Our experimental results show that all
tested tools can make good use of GPUs to achieve signif-
icant speedup over their CPU counterparts. However, there
is no single software tool that can consistently outperform
others, which implies that there exist some opportunities to
further optimize the performance.

We have two directions of future work on the agenda.
First of all, we plan to include more deep learning software
tools (such as MXNet, Paddle) and hardware platforms (such
as AMD’s GPU, and Intel Xeon Phi) into this benchmarking

study. Secondly, we plan to benchmark the performance of
multi-GPUs within a server and across a high-performance
cluster.
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Appendix

8.1. Revision History

This version (v4):

+ Remedy the bug of ResNet-50 configuration in Ten-
sorFlow.

e Change time measurement method of Caffe from
“caffe time” to “caffe train”.

e Add an option of “prefetch=true” to configuration
file of CNNs in CNTK.

Version 3 (v3):

e Correct the CUDA version on Table 3 and re-test
the experiments.

o Revise minor difference of network configuration
and delete some extra operations like dropout on
AlexNet.

¢ On RNN of CNTK, we remove an extra LSTM
classification task which is not included in other
tools and change the configuration file with “Sim-
pleNetworkBuilder” to customized brain scripts.



