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G-CRS: GPU Accelerated Cauchy
Reed-Solomon Coding

Chengjian Liu, Qiang Wang, Xiaowen Chu, and Yiu-Wing Leung

Abstract—Recently, erasure coding has been extensively deployed in large-scale storage systems to replace data replication. With the
increase in disk I/O throughput and network bandwidth, the performance of erasure coding becomes a major bottleneck of
erasure-coded storage systems. In this paper, we propose a graphics processing unit (GPU)-based implementation of erasure coding
named G-CRS, which employs the Cauchy Reed-Solomon (CRS) code, to overcome the aforementioned bottleneck. To maximize the
coding performance of G-CRS, we designed and implemented a set of optimization strategies, such as a compact structure to store the
bitmatrix in GPU constant memory, efficient data access through shared memory, and decoding parallelism, to fully utilize the GPU
resources. In addition, we derived a simple yet accurate performance model to demonstrate the maximum coding performance of
G-CRS on GPU. We evaluated the performance of G-CRS through extensive experiments on modern GPU architectures such as
Maxwell and Pascal, and compared with other state-of-the-art coding libraries. The evaluation results revealed that the throughput of
G-CRS was 10 times faster than most of the other coding libraries. Moreover, G-CRS outperformed PErasure (a recently developed,
well optimized CRS coding library on the GPU) by up to 3 times in the same architecture.

Index Terms—Cauchy Reed-Solomon Code, Graphics Processing Unit, Erasure Coding, Distributed Storage System
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1 INTRODUCTION

THe past decade has witnessed the rapid growth of data
in large-scale distributed storage systems. For example,

the European Centre for Medium-Range Weather Forecasts
[1] reached a data amount of 100 PB and experienced an
annual growth rate of 45%. Traditionally, data replication
scheme such as triplication is used by distributed storage
systems to protect users’ data due to its simplicity. Currently,
with the rapid increase of data volume, the reduction of
storage overhead has become an unavoidable task in large-
scale storage systems. Consequently, erasure codes have
been introduced in many storage systems because they
can provide a higher storage efficiency and fault tolerance
than data replication. Examples of such storage systems
include Microsoft cloud service Azure [2] and Facebook’s
warehouse [3] and Web service storage system f4 [4]. In
addition, distributed file systems such as Hadoop [5] and
Ceph [6] have begun to support erasure coding to yield a
higher reliability and lower storage overhead.

A general erasure coding system works as follows. Ini-
tially, the user data to be protected is divided into k equal
sized data chunks. The encoding operation gathers all k
data chunks and generates m equal sized parity chunks
according to an encoding algorithm. In a distributed storage
system, the set of n=k+m data and parity chunks are usually
stored at different hardware devices to prevent data loss
due to device failures. When no more than m devices fail
out of these n devices, the chunks in the failed devices
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become unavailable. To recover the lost data, a decoding
operation gathers k available chunks and reproduces the
missing chunks according to a decoding algorithm. The
erasure codes that can restore m missing chunks from the
remaining k alive chunks have the highest error correction
capability and are called Maximum Distance Separable (MDS)
codes [7]. Reed-Solomon (RS) coding [8] and its variant
Cauchy Reed-Solomon (CRS) coding [9] are the two well-
known general MDS codes that can support any values of k
and m.

In erasure coded storage systems, an encoding operation
is triggered when data is written on the storage system,
whereas decoding is performed when some lost data is
required to be recovered. Thus, the encoding and decoding
performance is crucial for the quality of service and user
experience. The coding performance is usually inversely
proportional to m. Modern data centers begin to deploy 40-
100Gb/s Ethernet or even InfiniBand FDR/QDR/EDR to
improve the network speed [10], and disk arrays based on
Solid-State Drives (SSD) to improve the disk input-output
(I/O) performance [11]. Such technology trend pushes the
computationally expensive erasure coding into a potential
performance bottleneck in erasure-coded storage systems.

Recently, graphics processing units (GPUs) have been
used in some storage systems to perform different com-
putationally expensive tasks. Shredder [12] is one frame-
work used for leveraging GPUs to efficiently chunk files
for data deduplication and incremental storage. GPUstore
[13] is another framework for integrating GPUs into storage
systems for file-level or block-level encryption and RAID
6 data recovery. Another GPU-based RAID 6 system has
been developed in [14], which uses GPUs to accelerate two
RAID 6 coding schemes, namely Blaum-Roth and Liberation
codes. This system achieves a coding speed of up to 3GB/s.
However, RAID 6 only supports up to two disk failures
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and is not suitable for large-scale systems. To date, Gibraltar
[15], which employs table lookup operations to implement
Galois field multiplications, is the most successful GPU-
based Reed-Solomon coding library; notably, the system
has much higher speed over the single-thread Jerasure [16],
which is the most popular erasure coding library for CPUs.
PErasure [17] is a recent CRS coding library for GPUs and
its performance is even better than Gibraltar. However,
PErasure does not fully utilize the GPU memory system
and results in sub-optimal performance. With the rapid
improvement of networking speed and aggregated disk I/O
throughput, there is a demand to further improve the coding
performance.

In this paper, we aim to design a new CRS coding library
for GPUs, namely G-CRS, that can fully utilize the GPU
resources and deliver high coding performance that can
saturate the state-of-the-art network speed. To this end, we
have designed new data structures and a set of optimization
strategies. G-CRS can achieve more than 50GB/s of raw
coding performance on a modern GPU Nvidia Titan X for
the case of m = 16 (i.e., the system can withstand up to 16
device failures)1. Our major contributions are summarized
as follows:

1) We present a step-by-step optimization analysis to re-
veal the method of utilizing GPUs to accelerate CRS
coding.

2) We present a simple yet accurate performance model
to understand the major factors that affect the coding
performance.

3) We provide a pipelined mechanism to enable our G-
CRS to achieve a peak performance by efficiently over-
lapping data copy operations and coding operations.

4) We conduct extensive experiments to validate the effec-
tiveness of our proposed G-CRS, compare with other
state-of-the-art coding libraries, and analyze the domi-
nating factor.

5) G-CRS is open-source and freely available to the public.
The remainder of this paper is organized as follows. Sec-

tion 2 introduces the background of GPU computing, CRS
coding, and some related work. Section 3 gives the details
of our optimization and implementation of G-CRS. Section 4
presents a performance model of G-CRS to understand the
impact of computational power, memory bandwidth, and
coding parameters on the coding performance. Section 5
presents a pipelined mechanism that can further enhance
the performance of G-CRS. Section 6 presents the experi-
mental results of G-CRS and other state-of-the-art libraries.
We summarize the paper in Section 7.

2 BACKGROUND AND RELATED WORK

In this section, we first briefly introduce the key concepts
of GPU computing and CRS coding. Then, we identify the
challenges of applying erasure coding in modern distributed
storage systems. Finally, we introduce some related work.

2.1 GPU Computing and CUDA
Modern GPUs are typically equipped with hundreds to
thousands of processing cores evenly distributed on several

1. The source code and experimental results of our G-CRS are avail-
able at http://www.comp.hkbu.edu.hk/∼chxw/gcrs.html.

streaming multiprocessors (SMs). For example, the Nvidia
GTX 980 with Maxwell architecture contains 16 SMs and
4GB off-chip GDDR memory. Each SM has 128 Stream
Processors (SPs, or cores) and a 96-KB on-chip memory
named shared memory, which has much higher throughput
and lower latency than the off-chip GDDR memory [18].
Besides the 2MB L2-cache shared by the whole GPU, each
SM also has a small amount of on-chip cache to speed up
the data access of read-only constant memory.

Currently, CUDA is the most popular programming
model for GPUs [19]. A typical CUDA program comprises
host functions, which are executed on the central processing
unit (CPU), and kernel functions, which are executed on
the GPU. Each kernel function runs as a grid of threads,
which are organized into many equal sized thread blocks.
Each thread block can include a set of threads distributed
in a number of thread warps, each of which has 32 threads
that execute the same instruction at a time. Threads in a
thread block can share data through their shared memory
and perform barrier synchronization.

2.2 Cauchy Reed-Solomon Coding
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Fig. 1. Illustration of CRS encoding. |di|T is the w-row format of data
chunk di. |ci|T is the w-row format of parity chunk ci.

As illustrated in Fig. 1, the encoding procedure of CRS
takes k equal sized data chunks d0, d1, ..., dk−1 as input,
and generates m parity chunks c0, c1, ..., cm−1 as output. To
perform the coding, it needs to select an integer parameter
w that is no less that log2(k + m). Hence a CRS code can
be defined by a triple (k,m,w). CRS first defines an m × k
Cauchy distribution matrix over Galois Field GF (2w), and
then expands it into a (k +m)w × kw generator matrix over
GF (2) whose elements are either 1 or 0 [9]. Notice that the
top kw rows of the generator matrix is an identity matrix.

Each data chunk di needs to be transformed into w rows,
denoted by Di,0, Di,1, ..., Di,w−1. The w-row format of data
chunk di is denoted by |di|T . Then all the k data chunks can
be combined into a data matrix with kw rows. By multiply-
ing the generator matrix and data matrix over GF (2), we
can get k+m output chunks that include the k original data
chunks (due to the kw× kw identity sub-matrix) and the m
parity chunks. Notice that the multiplication in GF (2) can
be implemented by efficient bit-wise XOR operations, which
is the major property of CRS.

Fig. 2 presents a concrete example of the CRS encoding
process where k=2, m=2 and w=2. Data chunk di consists of
two rows: Di,0 and Di,1, i = 0, 1. In the actual encoding

http://www.comp.hkbu.edu.hk/~chxw/gcrs.html
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1  1  0  1
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C1,1＝D0,0 Å D0,1 Å D1,0

Fig. 2. A concrete example of CRS encoding. k = 2,m = 2, w = 2.

process, we only need to calculate the m parity chunks
using the bottom mw rows of the generator matrix. For each
parity chunk, the values from the corresponding row vector
in the generator matrix determine which data chunks will
be involved in the XOR operations. For example, the fifth
row vector from the generator matrix in Fig. 2 < 1, 1, 0, 1 >
determines that C0,0 is generated from D0,0, D0,1 and D1,1

with XOR operations.
When either a data chunk or a parity chunk becomes

unavailable due to device failure, a decoding operation is
triggered to restore the missing chunk. To recover a parity
chunk, w row vectors from the generator matrix together
with all data chunks serve as the input. By contrast, to
recover a data chunk, an inverse matrix is generated from
the generator matrix (which can be done offline in advance),
and k alive chunks serve as the input with w row vec-
tors from the inverse matrix. The encoding and decoding
operations are essentially the same in terms of data access
pattern and computation. Therefore, we use the term coding
to represent both encoding and decoding.

2.3 Opportunities and Challenges in Erasure Coding
Data reliability and availability are critical requirements for
data storage systems. Although coding-based RAID 5/6
have become the industry standards for decades, replica-
tion is still the de facto data protection solution in large-
scale distributed storage systems. With the increase in the
amounts of data and the deployment of expensive SSDs,
there is a great opportunity for erasure coding because
it can provide much lower storage overhead and higher
reliability compared with data replication. In [20], a com-
prehensive comparison of erasure coding and replication
was presented. However, erasure coding is a compute- and
data-intensive task which brings practical challenges to its
adoption in distributed storage systems.

In an erasure coded distributed storage system, there
could be three potential performance bottlenecks: the ag-
gregated disk I/O throughput, the network bandwidth,
and the coding performance. Modern data centers have
started to deploy high-speed network switches with more
than 40Gb/s of bandwidth per network port [10]. Facebook
and LinkedIn are already working on 100Gb/s network for
their data centers [21] [22]. Meanwhile, the sequential I/O
throughput of a single SSD has been improved to more than
4Gb/s [23], and the aggregated I/O throughput of a disk
array can easily match the network bandwidth. However,
the throughput of software implemented erasure coding
is inversely proportional to the number of parity chunks,
and is typically less than 10 Gb/s on multi-core CPUs
[17], which makes erasure coding impractical for large-scale

distributed systems. Modern GPUs have tens of TFlops
computation power and an internal memory bandwidth of
a few hundreds of GB/s, providing an opportunity to speed
up erasure coding to saturate the disk I/O and network
bandwidth. This motivates us to design and implement G-
CRS to fully utilize the GPU power and achieve a high
coding throughput.

2.4 Related Work

Coding Performance: Many research and industrial studies
have focused on improving the performance of erasure cod-
ing. One pioneer study optimizes the Cauchy distribution
matrix that results in better coding performance for CRS
coding on the CPU by performing less XOR operations [24].
Jerasure [16] is a popular library that implements various
kinds of erasure codes on the CPU, including optimized
CRS coding. Optimization with efficient scheduling of XOR
operations on CPU is presented in [25]. These sequen-
tial CRS algorithms are designed for CPUs and are not
suitable for GPUs due to their complicated control flows.
Another thread of research aims to exploit parallel com-
puting techniques to speed up erasure coding. For multi-
core CPUs, CRS codes have been parallelized in [26], [27];
EVENODD codes have been parallelized in [28]; and RDP
codes have been parallelized in [29]. A fast Galois field
arithmetic library for multi-core CPUs with the support
of Intel SIMD instructions has recently been presented in
[30]. Although these works have achieved great improve-
ment, their coding performance is still not comparable to
the throughput of today’s high speed networks, especially
when a large number of parity data chunks are required
for higher data reliability. These parallel algorithms cannot
be directly applied to GPUs either, due to their different
hardware architectures. For many-core GPUs, the Gibraltar
library [15] implements the classical Reed-Solomon coding
and outperforms many existing coding libraries on CPUs.
PErasure [17] is a recent CRS coding library for GPUs and
its performance is better than Gibraltar. However, PErasure
does not fully utilize the GPU memory system and results
in sub-optimal performance.
Offloading Tasks to GPUs: Modern GPUs are embedded
with hundreds to thousands of arithmetic processing units
that provide tremendous computing power, and attracts
many work to port computationally intensive applications
from CPUs to GPUs. For example, G-Blastn [31], which is a
nucleotide alignment tool for the GPU, achieves more than
10 times of performance improvement over its CPU version
NCBI-BLAST. In [32], regular expression matching on GPUs
can be 48 times faster than that on CPUs. SSLShader [33] and
AES [34] both demonstrate great performance improvement
when data encryption algorithms are offloaded to GPUs.
Network coding on GPUs, such as those in [35], [36] and
Nuclei [37], are the most closely related work in addition to
the aforementioned Gibraltar [15] and PErasure [17]. These
studies aim to improve the performance of network coding
to match the throughput of high speed networks for both
encoding and decoding.
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3 DESIGN OF G-CRS

In this section, we first present a high-level view of G-CRS
and define our terminologies. Next, we provide a baseline
implementation of CRS coding on GPUs that directly mi-
grates from the CPU version. Subsequently, we analyze the
potential drawbacks of this basic design and provide a set of
optimization strategies to accelerate CRS coding on GPUs.
Our G-CRS is implemented by applying all optimization
strategies described in this section.

Fig. 3 illustrates the system architecture of G-CRS that
implements a (k, m, w) CRC code. The bitmatrix stores the
bottom mw rows of the generator matrix of the CRS code.
The input data is divided into k equal sized data chunks, and
the output includes m parity chunks with the same size.
We use s to represent the number of bytes of a long data
type on the target hardware platform, i.e., s = sizeof(long).
We define a packet as s consecutive bytes. The XOR of
two packets can then be efficiently carried out by a single
instruction. We define a data block as w consecutive packets,
where w is the parameter of CRC and should be no less
than log2(k +m). The number of data blocks in a chunk is
denoted by N .
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Fig. 3. Input and Output for Coding

We summarize the high level workflow of G-CRS in
Algorithm 1. When the size of user data is greater than the
available GPU memory, we will encode the data in different
rounds.

Algorithm 1 High Level Workflow of G-CRS
1: Input: k, m, w, bitmatrix, dataSize
2: Compute round from k, m, w, dataSize
3: Construct bitmatrix
4: Allocate GPU memory
5: Copy bitmatrix to GPU
6: for each i ∈ [1, round] do
7: Copy k data chunks of the i-th round to GPU
8: Launch the encoding kernel function to generate m

coding chunks
9: Copy back m parity chunks of the i-th round to main

memory
10: end for
11: Free memory resources

3.1 Baseline Implementation

Listing 1 presents the baseline implementation of the CRS
coding kernel written in CUDA, which is directly migrated
from a CPU version. The kernel function defines the behav-
ior of a single GPU thread. In this implementation, each
thread is responsible for encoding a single packet. When
the kernel function is launched, a total of mwN threads
will be created to generate the m parity chunks in parallel.
Each element of bitmatrix is represented by an integer. This
kernel function works as follows: (1) The input buffer in
and the output buffer out are located in the GPU global
memory. (2) The mw bottom row vectors from the generator
matrix are stored in the bitmatrix, which is also located in the
global memory. (3) Each thread calculates the initial index
of its assigned packet in each data block (line 13). Then,
each thread iterates its corresponding row in the bitmatrix to
determine the data required to perform the XOR operation
(lines 16-24). (4) Each thread writes a packet, which is stored
in the variable result, to the output buffer (line 26).
1 global void crs coding kernel naive
2 ( long ∗ in , long ∗out , i n t ∗bi tmatr ix ,
3 i n t s ize , i n t k , i n t m, i n t w) {
4 i n t blockUnits = blockDim . x / w;
5 i n t blockPackets = blockUnits ∗ w;
6 i n t t i d = threadIdx . x + blockIdx . x ∗

blockPackets ;
7 i n t u n i t i d o f f s e t = t i d / w ∗ w;
8 i n t u n i t i n i d = t i d % w, i , j ;
9

10 i f ( threadIdx . x >= blockPackets ) return ;
11 i f ( t i d >= s i z e ) return ;
12
13 i n t index = threadIdx . y∗k∗w∗w+ u n i t i n i d ∗k∗w;
14 long r e s u l t = 0 , input ;
15
16 for ( i = 0 ; i < k ; ++ i ) {
17 for ( j = 0 ; j < w ; ++ j ) {
18 i f ( b i t m a t r i x [ index ] == 1) {
19 input = ∗ ( in+ s i z e ∗ i + u n i t i d o f f s e t + j ) ;
20 r e s u l t = r e s u l t ˆ input ;
21 }
22 ++index ;
23 }
24 }
25
26 ∗ ( out + s i z e ∗ threadIdx . y + t i d ) = r e s u l t ;
27 }

Listing 1. A baseline implementation of CRS coding on GPU

Some severe performance penalties exist in this base-
line implementation, implying that the GPU resources are
substantially under-utilized. To design a fully optimized
version of CRS coding on GPU, a thorough understanding
of the GPU architecture is required, including its memory
subsystem and its method of handling branch divergence.
We have identified three major performance penalties of the
baseline implementation:

Inefficient memory access: The memory access pattern
of the baseline kernel implementation in its global memory
causes a considerable performance penalty. From lines 18-
20 of Listing 1, we can observe that each XOR operation
requires two memory reads, one from the bitmatrix and
another one from the input buffer. Since the baseline im-
plementation stores the bitmatrix and input buffer in global
memory, each memory access to the bitmatrix or input buffer
is very likely to generate a global memory read because
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TABLE 1
Features of different types of GPU memory space

Memory Access Latency Cached Scope
Global Around 600 cycles Yes All threads

Constant Around 400 cycles Yes All threads

Shared Around 20 cycles N/A All threads in the
same thread block

Register Around 4 cycles N/A Single thread

the GPU L2 cache is small and shared by the whole global
memory. Accesses to global memory have long latency and
low throughput as compared to the XOR operations, hence
the performance of the baseline implementation will be
limited by the global memory throughput.

Underutilization of memory bandwidth: Since an in-
teger is used to store the binary value of 1 or 0 in the
bitmatrix, the memory bandwidth utilization is very low
when accessing the bitmatrix. Regarding the input data, each
data packet is in fact accessed by mw threads, implying an
opportunity of temporal reuse. But due to the small size of
GPU L2 cache and large data size, the L2 cache hit rate is
not satisfactory.

Penalty of Control Flow: Finally, the GPU architec-
ture is inefficient at handling control flow. Specifically, a
constant performance penalty is caused by control flow.
This is because the threads in a warp can only execute
the same instruction simultaneously; if threads in a warp
execute different instructions due to control divergence, the
execution of these instructions are serialized. The penalty
is often incurred by if-then-else and loop statements. In the
baseline implementation, we have two for loop statements
at lines 16 and 17, and an if statement at line 18. Although
some threads do not require the execution of the code inside
the if statement, given a warp, they are required to wait for
other threads to finish the calculation in that same warp
before proceeding with their execution.

3.2 Optimization Strategies
In this subsection, we present a set of optimization strategies
for overcoming the major performance penalties discussed
in the previous subsection. Here we first investigate how to
improve the performance of accessing bitmatrix. Next, we
achieve efficient access to data blocks by loading them to
on-chip shared memory before accessing and reducing the
thread dimension. We also present our strategy of removing
control divergence. At last, we discuss how to make decod-
ing performance the same as encoding.

3.2.1 Efficient access to the bitmatrix
GPU memory system has a very complicated structure [18].
Table 1 presents three major features of four types of com-
monly used GPU memory. Global memory has the longest
access latency, and registers have the shortest access latency.
Although the access latency of physical constant memory is
close to that of global memory, each SM offers an on-chip
cache for it, which makes it perfect to store a small amount
of read-only data that are frequently accessed.

Since bitmatrix is frequently accessed by all threads, we
can store it in the constant memory to reduce access latency

because each SM offers a small on-chip cache for read-only
data in the constant memory. The bitmatrix contains kmw2

elements. However, the size of the constant cache is limited
to the KB-level. If the size of the bitmatrix exceeds the size of
the constant cache in each SM, the access will eventually go
to the global memory and result in long access latency. One
possible solution is to use the char data type (which has a
size of 1 byte) to store each element of the bitmatrix instead
of using the int type (which has a size of 4 bytes). This
approach reduces the size of the bitmatrix to one-quarter of
its original size, enabling it to more easily fit in the constant
cache.

Although storing the bitmatrix in constant memory re-
duces the access latency, it may still suffer from the follow-
ing performance penalty. If multiple threads in the same
warp access the same memory address in the constant cache,
the access can proceed in parallel. However, if multiple
threads in the same warp access different memory addresses
in the constant cache, these accesses will be serialized [38],
incurring substantial performance penalty. We thus further
investigate how w successive threads from the same warp
access the bitmatrix in each iteration. The access pattern to
the bitmatrix in our implementation is illustrated in Fig. 4. In
each iteration, w threads simultaneously access w different
elements. If the access latency of the on-chip memory takes
one time slot, w time slots may be required to obtain
elements from the bitmatrix for each iteration.
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Fig. 4. Access pattern to bitmatrix. tid refers to thread ID.

To reduce the access latency to the read-only cache,
we need a strategy that allows threads in each warp to
access only one memory address to obtain elements from
the bitmatrix in each iteration. One possible solution is to
assign the same packet to w successive threads in a warp
by increasing the size of a packet. This solution enables the
threads in a warp to access just one element in the bitmatrix
at a time. However, it changes the access pattern to the
input data. In addition, each thread will be responsible for
coding w packets, which may reduce the opportunity for
parallelism with the same workload.

Although one memory address is used to store an ele-
ment in the bitmatrix (e.g., each element occupies one byte),
each element can be represented by one bit because the
value of an element is either 1 or 0. This suggests that w
bits can be used to store w elements of the bitmatrix. In
practice, the value of w can be set to no more than 8 when
k + w ≤ 256, which implies that we can use a byte to store
w elements of the bitmatrix. If wm is not greater than 32,
an integer can be used to carry a column vector from the
bitmatrix. For this solution, the mapping for each element
from the bitmatrix to each memory address is illustrated in
Fig. 5. The access to one memory location to fetch elements
from the bitmatrix for a thread warp in each iteration is
presented in Fig. 6. The access latency is reduced from w
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time slots to one time slot in each iteration. In addition,
only 4kw bytes are required to store the entire bitmatrix if
mw ≤ 32. For mw greater than 32, the b32/wcw elements
of a column vector can be stored in a 32-bit integer. The
access pattern is similar to the case of mw ≤ 32.
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Fig. 5. Mapping of each bitmatrix element to memory
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Fig. 6. Memory access pattern for a single warp

After w elements are fetched from one memory address,
we need to extract the exact element from the bitmatrix for
each thread. We use a variable named unit id offset to
mark the index of the packet that is assigned to each thread
for each block. Using this variable, its start index in the
bitmatrix can be located. When each column vector is stored
in one value of int type, unit id offset can locate the bit
for its row vector elements. To detect whether the value is 1
or 0, a shift operation and XOR operation is adopted. Then,
the if operation is used to detect whether the XOR operation
should be performed. The problem of serialized access to the
bitmatrix is completely eliminated by our proposed solution.

3.2.2 Efficient memory access
After removing performance penalty introduced by access-
ing the bitmatrix, the major inefficient memory access comes
from the access to the input data referenced by long *in. Fig.
7 illustrates the access pattern of w successive threads to
access wk packets from k data chunks. In the i-th iteration,
the memory request is on the i-th data chunk. This access
pattern is applicable to all threads in the baseline imple-
mentation.

From Table 1, we can see that shared memory is a block
of on-chip memory that can be accessed by all threads from
the same block. This indicates that we can load data blocks

10tid

D0,0 D0,1 D0,w-1…

… w-1
Iteration i=0 j=0 j=1 j=w-1

10tid

D1,0 D1,1 D1,w-1…

… w-1
Iteration i=1 j=0 j=1 j=w-1

… …
10tid

Dk-1,0 Dk-1,1 Dk-1,w-1…

… w-1
Iteration i=k-1 j=0 j=1 j=w-1

Fig. 7. Access pattern of w threads on the data blocks

to shared memory for frequent access by threads in the same
block. To reduce the access latency of the global memory for
input data chunks, threads in each unit cooperate with each
other to load the required data into the shared memory at
the outside iteration. The allocated shared memory for each
thread block can be reused for k times. Each thread then
accesses the data from shared memory for calculation in the
inner iteration.
1 extern shared long sh data [ ] ;
2 for ( i n t i = 0 ; i < k ; ++ i ) {
3 i f ( threadIdx . y == 0)
4 sh data [ threadIdx . x ] = ( in+ s i z e ∗ i ) + t i d ;
5 synchronized ( ) ;
6
7 for ( i n t j = 0 ; j < w; ++ j ) {
8 i f ( b i t m a t r i x [ index ] == 1){
9 r e s u l t ˆ= sh data [ u n i t i n i d + j ] ;

10 ++index ;
11 }
12 }
13 synchronized ( ) ;
14 }

Listing 2. Use shared memory to reduce the data access latency

The code for loading input data to shared memory is
illustrated in Listing 2. The array sh data is used for storing
data from the global memory. If a thread block contains
128 threads in one dimension, only 1KB of shared memory
is required for each block. Because each packet takes only
8 bytes, up to 128 packets can be loaded from the global
memory at a time. By using this optimization strategy, each
packet of input data is accessed only once from the global
memory.

3.2.3 Improve the utilization of memory bandwidth
Now the performance of input data access can be improved
by loading data to the shared memory. However, the global
memory bandwidth is still underutilized. When the threads
whose threadIdx.y = 0 issue an access request to the global
memory (line 3 in Listing 2), other threads in the same
block remain idle. Notice that the value of the variable
threadIdx.y ranges from 0 to m − 1. Because each SM has
a limited number of active blocks and active threads, the
memory bandwidth is underutilized due to the inadequate
number of memory requests to saturate the global memory
bandwidth. If m is equal to 1, the memory bandwidth has
an opportunity to be fully utilized because each SM may
have more active threads to concurrently issue memory
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requests. However, with the increase of m, the number
of active blocks markedly decreases, implying substantial
underutilization of the global memory bandwidth due to
reduced concurrent memory requests.

To conquer this issue, we assign the tasks of coding
m packets to each thread to improve memory bandwidth
utilization. Each thread is now responsible for coding a
column of packets from m parity blocks. In addition to
improving the utilization of the global memory bandwidth,
this approach can also remove the conditional branch at line
3 in Listing 2, which leads to better performance by avoid-
ing the execution of additional instructions and removing
branch divergence.

3.2.4 Optimization of control divergence

Branch divergence introduces a severe performance penalty
because threads in a warp can execute the same instruction
at a time. The execution of different instructions must be
serialized for threads in a warp. In our baseline implemen-
tation, branches exist in three places and may introduce
performance degradation (lines 16-18 in Listing 1).

We first investigate the if statement of the bitmatrix
operation. The purpose of this statement is to perform
an XOR operation with a packet where the corresponding
element from the bitmatrix is 1; otherwise, no XOR operation
is performed. We use the following solution to remove this
branch. First, we set all bits of a long type variable named
fullOnebit to 1. Then, fullOnebit performs a multiplication
with the element extracted from the bitmatirx, denoting an
operation to copy the element from the bitmatirx (either 1
or 0) to all bits of fullOnebit. Finally, fullOnebit performs an
AND operation with the packet obtained from the shared
memory. Using this approach, a branch divergence is re-
moved.

For the inner loop in the baseline implementation, the
size of the loop depends on w. Since w is small in practice,
we can manually apply loop unrolling to remove the inner
loop for different values of w.

3.2.5 Parallelism of decoding

The encoding process can be fully parallelized because each
thread reads kw packets from the input data to code a
packet. However, achieving complete parallelism may not
be straightforward for the deocding. When both a data
block and parity block become unavailable, the available
k blocks must be used together with an inverse matrix to
restore the missing data block. Subsequently, w row vectors
of the generator matrix are used to restore the missing parity
block. Because all data blocks are required to serve as the
input for restoring the missing parity block, it is necessary
to wait until all data blocks become available to restore any
missing parity block. In this case, the decoding process is
serialized, which reduces the decoding performance.

To reduce the performance penalty of decoding caused
by this serialization, a strategy for complete parallelism of
the decoding process must be adopted. This suggests that
a matrix with mw row vectors must be used to restore any
m missing blocks with any k available blocks. Moreover, for
decoding, each thread can restore a packet with input data
and a row vector. Consequently, decoding can be completely

parallelized for any case, and the decoding performance is
the same as encoding.

We first investigate how to generate a matrix that can
restore both the data blocks and parity blocks. According to
Fig 1, each packet from the parity blocks can be represented
by the XOR results of kw packets from data blocks. We can
translate this problem into how to represent a packet from
a parity block with an XOR operation of kw input packets.
Each packet can be represented by the XOR of packets from
the kw input packets. Subsequently, the missing data packet
in the representation of each missing packet from parity
blocks can be replaced. After replacement and calculation,
a representation of XOR operations can be obtained from
the kw input packets. Finally, a row vector can be written
to generate the missing packets from parity blocks with kw
input packets.

We present a simple example herein to demonstrate how
our proposed method works. Consider the generator matrix
from Fig. 8 (a) as an example, where k=2, w=2, and m=2.
We assume that the first data block and the first parity
block are missing. To restore packets D0,0 and D0,1, D1,0,
D1,1, C1,0 and C1,1 are taken as the input. We then use the
existing application programming interface to generate two
row vectors for restoring D1,0, D1,1 as shown in Fig. 8 (a).
Therefore, D0,0 can be represented as D1,1⊕C1,0⊕C1,1 and
D0,1 can be represented as D1,0 ⊕ D1,1 ⊕ C1,0. Moreover,
C0,0 can be represented as D0,0 ⊕ D0,1 ⊕ D1,1 and C0,1

can be represented as D0,0 ⊕ D1,0 ⊕ D1,1. By replacing
D0,0 and D0,1 with their representation of input packets in
the representations of C0,0 and C0,1, we can get that C0,0

can be represented with D1,0 ⊕ D1,1 ⊕ C1,1 and C0,1 can
be represented as D1,0 ⊕ C1,0 ⊕ C1,1. Subsequently, two
row vectors can be written to restore the packets from the
missing parity blocks, as illustrated in Fig .8 (b). The four
row vectors can function with the input packets to decode
the missing blocks in parallel.

1

0   1   1   1
1   1   1   0

D1,0

D1,1

C1,0

C1,1

= D0,0

D0,1

(a) Recover Packets From Data Blocks

1   1   0   1
1   0   1   1

D1,0

D1,1

C1,0

C1,1

= C0,0

C0,1

(b) Recover Packets From Parity Blocks
??

Fig. 8. An example of decoding missing blocks

We provide a function to generate the matrix that can
decode the missing blocks that contain both data blocks and
parity blocks. The whole matrix is placed in the bitmatrix
to perform the decoding process, and the entire process
becomes the same as the encoding.

4 PERFORMANCE MODEL

The performance of a GPU application is usually bounded
by either the computation capability or memory through-
put. For GPU applications with low compute-to-memory
ratio, the GPU’s memory bandwidth limits its performance,
while the computational power limits the performance of
applications with high compute-to-memory ratios.

Given different combinations of k, m and w, the
compute-to-memory ratio of G-CRS could be different,
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which indicates that the performance of G-CRS may be
limited to either memory bandwidth or computational
power of a GPU. To elucidate the utilization of a GPU’s
computational resources and memory bandwidth by G-CRS
under different compute-to-memory ratios, we present a
performance model of G-CRS in this section.

4.1 Kernel Analysis

CRS coding with G-CRS includes encoding and decoding
processes, which essentially perform the similar operations.
To analyze the performance of encoding or decoding, we
first categorize the operations in the kernel function into
two types, namely SM and dynamic random-access memory
(DRAM). SM operations include computational instruction-
s, shared memory operations, constant cache operations,
and synchronization instructions that are executed in SM;
whereas DRAM operations include global memory read-
/write transactions.

To determine the performance of G-CRS, six key opera-
tions from different phases are summarized in Table 2.

TABLE 2
Categorize the operation type by SM and DRAM

Phase Main operation Domain
Step 3 Load data from global memory DRAM
Step 3 Store data to shared memory SM
Step 5 Load data from constant memory SM
Step 6 Load data from shared memory SM
Step 6 Computation SM
Step 9 Store results to global memory DRAM

We build our G-CRS performance model based on the
smallest scheduling unit of thread warp. First, to obtain
the i-th data chunk, each warp launches a global memory
request to DRAM. Since each thread in a warp loads one
long integer of the i-th chunk, totally 32 long integers with
length 2048 bits are fetched from global memory. Such
memory access should take 2048

BW transactions where BW
denotes the memory interface width of the GPU. Then the
data is stored in shared memory for later usage. Thus, k data
chunks need totally 2048k

BW global memory transactions.
Second, each thread loads part of the temporary data

chunk in shared memory as well as one coding bit from
bitmatrix. Then they do m times of coding work to produce
m integers which contribute to the final m parity chunks.
Each warp executes mw shared memory loading and data
coding for each data chunk. Thus, each warp executes kmw
SM-type operations.

Finally, each warp writes their coding results back to
global memory, which launches totally 2048m

BW global mem-
ory transactions since each thread writes back one long
integer.

In summary, each warp has respectively 2048(k+m)
BW

DRAM data transactions and kmw SM-type operations.
Thus, the ratio of DRAM data transactions to SM-type
operations varies with different values of (k,m,w), and
causes the performance to be dominated by either DRAM
data transactions or SM-type operations.

4.2 Dominant Factor Analysis

We define the memory-to-compute ratio r as Eq. (1) to better
illustrate the performance of G-CRS. Since 2048

BW is a constant
that depends on the GPU hardware, we remove it from the
r definition.

r =
k +m

kmw
=

1/m+ 1/k

w
. (1)

Each thread in a kernel issues k+m global memory requests
and conducts kmw XOR operations. Notably, r will decrease
with the increase of k,m,w. Moreover, different values of
(k,m,w) lead to different memory bandwidth consump-
tion, which is calculated by the total size of data divided by
the time spent on the execution. Fig. 9a presents the memory
throughput changing with r of two modern GPUs, whose
physical parameters are listed in Table 3. We define CSM by
Eq. (2) to describe the computational capability with respect
to memory bandwidth. fcore and fmem represent the GPU
core frequency and memory frequency, respectively. #SM
and #coresPerSM represent the number of SMs and the
number of cores per SM, respectively. We have two observa-
tions from Fig. 9 (a). First, memory throughput continuously
increases with a larger r and reaches an upper bound with
a certain r. Second, two GPUs have different r thresholds,
denoted by ρ, to reach the maximum memory throughput,
which can be explained using CSM . A larger CSM implies
that the hardware has a more powerful computational abili-
ty, and a smaller r indicates that the computation part of the
kernel scarcely limits the performance of the GPU.

CSM =
fcore ×#SM ×#coresPerSM

fmem ×BW
(2)

A GPU schedules its threads in rounds. In each round,
the number of concurrent warps (a.k.a active warps) is
denoted by #Aw. The number of rounds is denoted by
#Rs. Then the execution time of a kernel, denoted by Tkl,
can be calculated as Tkl = Tact ×#Rs, where Tact denotes
the execution time of one round on one SM. Next we discuss
how to calculate Tact.

As mentioned before, a kernel could be either compute-
bound or memory-bound. More specifically, for our G-CRS
kernel, we use ρ to help differentiate those two cases. If
r ≤ ρ, we consider the kernel to be compute-bound and
the DRAM transaction latency can be hidden by SM-type
operations. In this case, we only focus on the kmw SM-
type operations. The execution time can be calculated by
kmw × TSM × #Aw, where TSM denotes the average
number of cycles needed for one SM-type operation. On
the other hand, if r > ρ, we consider the kernel to be
memory-bound and the SM-type operations can be hid-
den by DRAM transactions. Thus, we can focus on the
2048(k+m)

BW DRAM operations, whose total time is given
by 2048(k + m)/BW × TDRAM × #Aw, where TDRAM

denotes the average number of cycles needed for one DRAM
transaction. To summarize, Tact can be calculated by Eq. 3.

We also list some key parameters of our performance
model in Table 3. TDRAM and TSM can be obtained by
microbenchmarks.
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TABLE 3
Metrics and parameter settings of different GPUs

Metrics/Parameter GTX980 Titan X(Pascal)
Compute capability 5.2 6.1
SMs * cores per SM 16 * 128 28 * 128

Memory interface width 256-bit 384-bit
Memory size 4GB 12GB

Base core frequency 1126MHz 1417MHz
Base memory frequency 3500MHz 5000MHz

CSM 2.57 3.21
ρ 0.06 0.05

TDRAM 3.516 2.6
TSM 1.506 1.5

Tact =

{
kmw × TSM ×#Aw, if r ≤ ρ
2048(k+m)

BW × TDRAM ×#Aw, if r > ρ
(3)

To validate the accuracy of our performance model, we
adopt various (k,m,w) combinations in which k ranges
from 1 to 45, m ranges from 1 to 4 and w ranges from 4
to 8, subject to the constraint of w ≥ log2(k +m). We apply
a large number of blocks for each kernel execution to ensure
that the GPUs keep as busy as possible. For each group
of (k,m,w), we run the kernel for ten times and calculate
the average execution time. We use mean absolute preci-
sion error (MAPE) to evaluate the accuracy of our model.
The MAPE is defined as MAPE = |Tmodel − Texp|/Texp,
where Tmodel refers to the execution time derived from the
performance model while Texp refers to the average time
measured by real experiments.

The accuracies of the performance estimation of the
two GPUs are shown in Fig. 9 (b). Most of performance
estimations reveal a MAPE within 7%. The average MAPE
is 2.79% for GTX980 and 3.37% for Titan X respectively. To
address the reproducibility of our performance model, we
also conduct significance test with bilateral t-distribution
for the average MAPE. With 95% confidence interval, our
model can achieve no more than 3.9% average MAPE on
these two GPUs.
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Fig. 9. (a) Memory throughput with different r (b) Model accuracy

5 PIPELINED G-CRS
For applications with high computational intensity and a
large amount of data involved, one of the major difficulties
of obtaining high performance is to balance the cost of

computational intensity and I/O operations. For erasure
coding, we must move data to the specified GPU device and
write the result back to main memory or network interface
through I/O transfer. To achieve high performance for G-
CRS with both I/O and computation involved, we provide
a pipelined mechanism in this section that overlaps data
transfer and computation.

Efficient utilization of both the computational resources
of GPUs and I/O bandwidth between the main memory
and GPUs’ global memory is critical for achieving peak
performance to offload the coding task to GPUs. Fig. 10
(a) illustrates the execution of two tasks. Conventionally,
serialized execution is adopted, and Task 2 waits until the
execution of Task 1 is completed. For pipelined execution,
both the computational resources and I/O bandwidth are
more efficiently utilized. Our G-CRS resembles the execu-
tion pattern of these tasks, because data must be copied from
main memory for coding and then the parity data must be
copied back to the main memory.
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Fig. 10. Cases for Pipelined I/O and Computation

To efficiently utilize both the GPU computational re-
sources and I/O bandwidth, we design a pipelined mecha-
nism for G-CRS to overlap I/O operations and computation
tasks. We divide the coding work into independent tasks
and use different GPU streams to perform each indepen-
dent task in order to simultaneously run data transfer and
computation.

Algorithm 2 illustrates how our pipeline mechanism
works. We launch a number of GPU streams to achieve
asynchronous execution of each task. The execution for
Pipelined G-CRS is similar with the pipelined execution
illustrated in Fig. 10 (a). We can observe that both GPU
computational resources and I/O bandwidth get better uti-
lization with Pipelined G-CRS by overlapping the execution
of I/O tasks and computational tasks.

Algorithm 2 Pipelined G-CRS
1: Input: k, w, m, bitmatrix and numStream
2: for each i ∈ [0, numStream− 1] do
3: Copy the i-th data chunk of stream s to GPU asyn-

chronously
4: end for;
5: for each i ∈ [0, numStream− 1] do
6: Launch the kernel of stream i asynchronously
7: end for;
8: for each i ∈ [0, numStream− 1] do
9: Copy back the i-th parity chunk of stream s to main

memory asynchronously
10: end for;
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TABLE 4
Major Parameters for Measuring Different Workloads

Parameter Value Range
k 10
m 1-4
w 4-8

Thread Blocks 24-213

Threads 128 Per Thread Block
Input data size 8kwb128/wc Bytes Per Thread Block

An example of executing three independent coding tasks
is illustrated on the left side of Fig. 10 (b). The total execution
time is 3tHD + tDH + tK , which reveals that the time for
executing all tasks comprises three parts. The first part is the
time required to transfer all data to the GPU, the second part
is the time required for the kernel execution, and the third
part is the time required to transfer the data from the GPU
back to the main memory. Overall, dividing each task into
smaller tasks can reduce the total execution time. The right
side in Fig. 10 (b) depicts the execution of each independent
task divided into two equal sized tasks, for which the total
execution time is reduced to 3tHD + tDH

2 + tK
2 . Assuming

that the total time for transferring all of the data from main
memory to GPU memory is THD , the total time for coding
is TK , and the total time for transferring the entire parity
chunks from GPU memory to main memory is TDH . We
divide the work into x tasks so that each task requires THD

x

time to transfer its data to the GPU memory, TK

x to produce
the parity chunks, and TDH

x to transfer the parity chunks
back to the main memory. The total time for completing the
entire task is calculated as follows:

Ttotal = THD +
TK
x

+
TDH

x
(4)

Equation (4) reveals that the entire coding task can be
divided into many smaller tasks that can effectively utilize
both the I/O bandwidth and computation resources to
achieve better performance.

6 PERFORMANCE EVALUATION

In this section, we conduct a set of experiments to
evaluate G-CRS from various aspects on two modern GPU
architectures: Maxwell and Pascal. First, we evaluate the
coding performance of G-CRS with various workloads. Nex-
t, we analyze the peak raw coding performance of G-CRS
and compare it with the performance of other major state-
of-the-art coding libraries: Jerasure, Gibraltar, gferasure [39]
and PErasure [17]. We also analyze how our different opti-
mization strategies improve the performance of CRS coding.

6.1 Throughput Under Different Workloads

The coding performance of G-CRS depends on the level
of parallelism on a given GPU for the specified k, m, and
w values. The level of parallelism that can be achieved
depends on the workload assigned to each task. In other
words, an adequate workload must be assigned to a given
GPU to achieve a high throughput.

We measure the coding performance of G-CRS under
different workloads on two modern generations of GPUs:
Maxwell and Pascal. The major parameters for our exper-
iments are presented in Table 4. First, we set the number
of threads in each thread block to 128 because this yields
the maximum number of active threads and the maximum
number of thread thread blocks in each SM for Maxwell and
Pascal. Notably, the input data size is slightly different for
different w values due to memory alignment. The number
of working threads in each thread blocks is w b128/wc, and
the input data size is the total number of thread blocks
multiplied with 8kw b128/wc bytes.

The experimental results are presented in Fig. 11. Con-
sidering the coding performance with minimum thread
blocks for a kernel, the throughput of the Maxwell GTX 980
is around 11 GB/s when m equals 1. We can see that the
performance is doubled when the workload is doubled for
m = 1 or 2. But for the cases of m = 3 or 4, there is no
big performance improvement. This is because larger value
of m requires more computation resources. The situation
is similar for Pascal Titan X GPU. But it has a higher
throughput with minimum number of chunks for a kernel,
because it has higher memory bandwidth than Maxwell
GTX 980.

At maximum workload, in which each kernel has 213

thread blocks, the throughput reaches the peak for each
GPU. Moreover, when computational power is not the bot-
tleneck of the coding performance, the peak throughput
is limited by the GPU memory bandwidth; therefore, the
throughput of the Maxwell GTX 980 is about half of that
of the Pascal Titan X when m = 1. However, when each
thread is responsible for coding more packets, the compu-
tational power is gradually saturated and hence limits the
coding throughput. With maximum workload, the coding
throughput decreases to around two third of its original
peak when m is increased from 1 to 4. For Pascal Titan X,
which has a higher memory bandwidth and computational
power, the decrease is not so obvious as the Maxwell GTX
980. Specifically, the peak throughput of the Pascal Titan X is
approximately 230 GB/s when each thread is assigned with
four packets.

The value of w also has a great impact on the coding
performance. Specifically, a GPU performs optimally when
it has the smallest value of w, which is 4, than with any
other values. Especially when computation is the limitation,
smaller w leads to better performance because the increase
in w indicates an increase in computational intensity for
each working thread. Furthermore, when bandwidth is the
limitation, w with values of 4 and 8 may outperform w with
other values because of the increased number of working
threads in each thread block; thus, a more efficient band-
width utilization is achieved. Based on our experimental
results, we conclude that when the computation is the bot-
tleneck, w with a smaller value outperforms w with larger
values. On the other hand, when GPU memory bandwidth
is the bottleneck, more working threads in each thread block
can lead to better performance.

We present only the encoding performance to represent
the overall coding performance of G-CRS herein because the
difference between encoding and decoding throughput is
less than 1/1,000 in our measurement. The evaluation result-
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Fig. 11. Throughput under Different Workloads
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Fig. 12. Comparison of raw encoding performance

s also reveal that more workloads typically indicate a more
efficient coding performance because of higher parallelism.
At minimum workload, the throughput is usually sufficient
to saturate 40G/100G-bps of Ethernet.

6.2 Peak Raw Coding Performance
After investigating the coding performance under different
workloads, we measure the peak raw coding performance
of our G-CRS and compare it with other state-of-the-art
coding libraries, namely Jerasure, Gibraltar, gferasure and
PErasure. Jerasure is a well-known erasure coding library
on CPU [40]. We measure two versions of Jerasure: one with
CRS coding and one with accelerated Reed-Solomon coding
that uses Intel SIMD instructions presented in [30]. Gibraltar
is a recently developed open-source Reed-Solomon coding
library for GPUs. gferasure is an on-going erasure code
library accelerated with a high-performance Galois field
arithmetic [39]; we measure its performance using SSSE3
and AVX2, which achieve the fastest coding performance of
gferasure.

The CPU used for evaluating Jerasure and gferasure is
an Intel i7-6800K model with six cores running at 3.4GHz.
To maximize the coding performance of the CPU, we used
OpenMP to parallel Jerasure and gferasure. We set the
values of m to 2, 4 and 8, and the values of k range from
m to 45. For Jerasure with CRS coding, we set the packet
size to 8 KB to achieve maximum coding performance. The
size of each input data chunk is fixed to 10 MB. Finally, we
selected the smallest available value of w for erasure coding.
Notably, the size of each data chunk varies slightly different
due to the necessary alignment for w with values of 5, 6 and
7.

The encoding performance is presented in Fig. 12. As
depicted, our G-CRS is more than ten times faster than the
Gibraltar, Jerasure and gferasure, and up to 3 times faster
than PErasure on the same architecture.

Jerasure shows the lowest coding throughput in all ex-
periments. Although its Reed-Solomon coding outperforms
CRS coding with a single thread, the CRS coding achieves
3.5x higher performance with four threads, but the Reed-
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Solomon coding only achieves 1.5x higher performance
when using four threads. By contrast, our G-CRS outper-
forms Jerasure by more than 10x in all situations.

Gibraltar achieves a coding throughput of approximately
11 GB/s for m with values of 2 and 4. The performance of
Gibraltar is limited by the PCIe bandwidth because it uses
zero copy to manage the memory buffer, which indicates
that it accesses the host memory directly for coding. How-
ever, when m is equal to 8, the coding throughput was only
8 GB/s on the Maxwell GTX 980, where the PCIe bandwidth
no longer limited its performance.

The coding performance of gferasure is markedly fast
on the CPU. In addition, gferasure with AVX2 outperforms
that with SSSE3, because AVX2 can process a 256-bit word
which is double of the length of SSSE3. We also achieves
a 2x speedup with multi-threads in our measurement. It
also outperforms Gibraltar when m = 2 and 4. Still, our
G-CRS is five to ten times faster than gferasure because G-
CRS exhibits a better utilization of GPUs’s computational
power and memory bandwidth.

In short, G-CRS can effectively exploit GPU’s compu-
tational power and memory bandwidth, and exhibits a
more efficient coding performance compared with other
state-of-the-art coding libraries. In all cases, G-CRS’s coding
performance can saturate the state-of-the-art disk I/O and
network bandwidth.

6.3 Optimization Analysis

We have proposed a set of optimization strategies to over-
come every possible performance penalty to build G-CRS.
In this subsection, we evaluate the effectiveness of our
optimization strategies and then investigate the dominating
factor that contributes the most to the performance improve-
ment.

6.3.1 Effectiveness of optimization strategies
We evaluate the effectiveness of our optimization strategies
by gradually applying them to the baseline version in List-
ing 1. We fix k as 10 and set m in the range of 1 to 4. The value
of w varies from 4 to 8 for different computation workloads.
The size of each data chunk is set at 10 MB to achieve the
peak coding performance.

The evaluation results are presented in Fig. 13, wherein
only the encoding performance is shown to represent the
entire coding performance. The Base version is the base-
line implementation presented in Listing 1. The Bitmatrix
version stores each column vector from the bitmatrix in
one memory address. The one named EfficientAccess is
the version that we apply shared memory optimization
in Listing 2 on the Bitmatrix version. For the Bandwidth
version, we reduce the thread dimension of y to 1, and each
working thread is assigned with m packets. G-CRS is our
final version with all optimization strategies applied.

It is obvious that the Base version has the lowest coding
performance, about 10% of the highly optimized G-CRS.
When we change the way how bitmatrix is stored and
accessed, we observe a big performance improvement from
the Base version to Bitmatrix version. But the degree of
improvement decreases greatly when m is increasing. This
is because more working threads are launched with the

increase of m, which increases the access to data chunks and
brings more performance penalties.

We can see that the version named EfficientAccess has
much better performance than the Bitmatrix when m =
2, 3, 4, and the one named Bandwidth further improves
the performance of EfficientAccess. Our G-CRS obtains the
best coding performance in all experiments. The one named
Bandwidth has the closest performance to our G-CRS. From
this we first can see that the better utilization of bandwidth
can bring better performance. And we also can see that
the control divergence brings the least performance penalty
compared with others.

We can see an obvious performance improvement after
adding our optimization strategy one by one to form G-
CRS. Thus, we can conclude that each of our optimization is
effective to improve the coding performance.

6.3.2 Dominating factor
We have shown that our optimization strategies can im-
prove the performance of the Base version greatly. To find
out the dominating factor for the performance improvemen-
t, we remove one optimization strategy from the G-CRS
and keep the remaining ones to observe its impact on the
performance.

Fig. 14 illustrates the experimental results. We use the
minus symbol to represent that the corresponding optimiza-
tion strategy is not used. For example, -Bitmatrix means we
remove the optimization of bitmatrix from G-CRS.

It is obvious to see that without the optimization of bit-
matrix, the performance degrades significantly. Even though
other optimizations are used, its performance is only slightly
better than the Base version in Fig. 13. There are two
performance penalties for accessing bitmatrix from global
memory directly. One is the long access latency to fetch an
element from global memory. Another one is the serialized
access to different elements due to non-coalescing access.
From our experimental results, we can conclude that the
optimization of the bitmatrix is the dominating factor to the
performance improvement.

For others with the optimization of bitmatrix, we can see
the performance penalty is reduced. Without loading data
from global to on-chip shared memory, which is the version
of -EfficientAccess, the performance decreases obviously
compared with G-CRS.

The performance of the -Bandwidth is similar with G-
CRS when m is 1. But when m increases, there is a per-
formance gap between -Bandwidth and G-CRS because
the memory bandwidth is underutilized with the increase
of m in the version of -Bandwidth. The version of -
ControlDivergenceOpt is the one that is closest to the per-
formance of our G-CRS. However, the performance gap
increases with the increase of m and w.

In a word, the optimization to bitmatrix is the dominating
strategy that can improve the performance by 4-7 times,
while other optimization strategies can further improve the
performance by 30-100%.

6.4 Overall Performance

For both encoding and decoding, data must be transferred
from other sources to the device memory via PCIe. We
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Fig. 13. Optimization analysis
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evaluate the coding performance of our pipelined G-CRS
with PCIe transfer involved. The PCIe used in our ex-
periment is PCIe 3.0, which supports bi-directional PCIe
communications. Our benchmarking experiments show that
the highest effective PCIe bandwidth on our testbed is 12
GB/s. We set each data chunk size to 10 MB, divide the
entire coding task into 10 small tasks, and use 10 CUDA
streams to implement pipelined G-CRS.

The encoding performance is presented in Fig. 15. Since
no obvious differences have been observed between encod-
ing and decoding performance, the decoding performance is
not presented. By using pipelined G-CRS, the coding speed
reaches up to 11 GB/s, which is approximately 90% of the
bandwidth limitation. This overall coding throughput can
already saturate the network bandwidth. With the recent
progress on the standardization of PCIe 4.0 and PCIe 5.0
[41], the overall performance of G-CRS can be naturally
boosted in the future.

7 CONCLUSION

In this paper, we presented the design of a GPU accelerated
CRS coding and evaluated its performance on two current
generations of GPUs. Our evaluation results indicate that
G-CRS can operate with various sizes of data and code
block to obtain a favorable coding throughput. The cod-
ing performance of G-CRS can be up to ten times faster
than other state-of-the-art coding libraries such as Jerasure,
Gibraltar and gferasure. Moreover, our optimization strate-
gies can effectively utilize both GPU memory bandwidth
and computation resources. The overall performance of G-
CRS is only limited by PCIe bandwidth. Our optimization
strategies can also be applied to other applications with
similar compute and data access patterns. Examples include
regenerating codes that are built on top of Cauchy Reed-
Solomon codes [42], and also circular-shift linear network
coding [43].
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