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Abstract

Synchronized stochastic gradient descent (SGD) optimizers with data parallelism
are widely used in training large-scale deep neural networks. Although using larger
mini-batch sizes can improve the system scalability by reducing the communication-
to-computation ratio, it may hurt the generalization ability of the models. To this
end, we build a highly scalable deep learning training system for dense GPU
clusters with three main contributions: (1) We propose a mixed-precision training
method that significantly improves the training throughput of a single GPU without
losing accuracy. (2) We propose an optimization approach for extremely large
mini-batch size (up to 64k) that can train CNN models on the ImageNet dataset
without losing accuracy. (3) We propose highly optimized all-reduce algorithms
that achieve up to 3x and 11x speedup on AlexNet and ResNet-50 respectively
than NCCL-based training on a cluster with 1024 Tesla P40 GPUs. On training
ResNet-50 with 90 epochs, the state-of-the-art GPU-based system with 1024 Tesla
P100 GPUs spent 15 minutes and achieved 74.9% top-1 test accuracy, and another
KNL-based system with 2048 Intel KNLs spent 20 minutes and achieved 75.4%
accuracy. Our training system can achieve 75.8% top-1 test accuracy in only 6.6
minutes using 2048 Tesla P40 GPUs. When training AlexNet with 95 epochs, our
system can achieve 58.7% top-1 test accuracy within 4 minutes using 1024 Tesla
P40 GPUs, which also outperforms all other existing systems.

1 Introduction

With the ever-increasing sizes of datasets and larger deep neural networks (DNNs), training often
takes several days if not weeks. For example, training ResNet-50 [12] takes 29 hours using 8 Tesla
P100 GPUs. Due to the single machine’s limited computing resources, it is natural to distribute
the workload to clusters and use supercomputing power to increase the throughput of data flow. A
commonly adopted solution is distributed synchronous stochastic gradient descent (SGD) which
parallelizes the tasks across machines. Therefore, it is common to use the large mini-batch size to
improve the GPU utilization and reduce the communication-to-computation ratio, and thus easy to
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scale out [11, 22]. By using a larger mini-batch size to train a model, fewer updates of the model are
needed so that it requires shorter time to train the model with the same number of epochs. However,
there are two challenges when using a large mini-batch size across large clusters:

Challenge 1. Larger mini-batch size allows the model to take bigger step size and in turn makes the
optimization algorithm progress faster. However, when increasing the mini-batch size to 64K in the
ImageNet dataset [8], the test accuracy of ResNet-50 drops [22, 7].

Challenge 2. A distributed training system with data parallelism typically divides batches across
GPUs, and requires a gradient aggregation step in each training iteration. This communication step
usually becomes the bottleneck of the system when the number of GPUs becomes large. To fully
utilize such a distributed training system, we need to improve both the single GPU performance and
the system scaling efficiency. To improve the throughput, we need faster computation and more
efficient memory bandwidth utilization. To improve the scaling efficiency, we need more efficient
collective communication primitives for data exchange.

In this paper, we address the above two challenges. Our contributions are summarized as 1) We
successfully scale the mini-batch size to 64K for AlexNet [15] and ResNet-50 training without loss
of accuracy. 2) We build a high-throughput distributed deep learning training system which contains
two main features to improve the single GPU performance with half-precision and the system scaling
efficiency with the optimized all-reduce collective.

2 Related Work

Goyal et al. [11] train the ResNet-50 model with a large mini-batch size of 8K over 256 Tesla GPUs
and finish the training process within one hour. You et al. [22] further increase the mini-batch size
of ResNet-50 from 8K to 32K by using the Layer-wise Adaptive Rate Scaling (LARS) algorithm.
Akiba et al. [2] demonstrate the training of ResNet-50 in 15 minutes with a mini-batch size of 32K
over 1024 Tesla P100 GPUs. Similar work have also been demonstrated in [7][19]. However, all the
above research towards large-batch training either fail to scale to more nodes and more GPUs with
larger mini-batch size, or trade accuracy loss for better performance. Training with low-precision
introduces a tradeoff of the number-of-bits used versus the statistical accuracy. Micikevicius et al.
[17] propose several techniques including loss-scaling and mixed-precision training for preventing the
loss of critical information. However, they have not applied these techniques with large-batch training
strategies such as LARS to achieve better performance. To reduce the communication overhead
when the number of nodes increases in distributed training, Baidu [9] introduces the ring-based
all-reduce algorithm [4] to deep learning. [3][23] further improves the system throughput. However,
the original all-reduce version is low in bandwidth utilization when the data size is small or the
number of nodes is large. The IBM’s PowerAI Distributed Deep Learning (DDL) system [6] has
deployed a multi-dimensional ring algorithm to improve the scaling efficiency, and it scales to 512
GPUs with scaling efficiency of 95% on ResNet-50. However, it could not be optimal when scaling
to more GPUs due to the impact of the startup time of communications.

3 System Overview

At a high level, our system contains the following three modules: 1) input pipeline module; 2) training
module; and 3) communication module.

Input pipeline module: In the procedure of SGD, each worker needs to fetch the data from disk to
CPU memory, and then transfers the data to GPU memory. In order to reduce both the CPU and the
GPU idle time, one should pipeline the data reading with the computation on the GPU. The module
first allocates a data buffer queue for GPU computation, and then invokes multiple CPU threads to
read the training data from the disk to the buffer. In each iteration, each GPU worker only needs to
read the data from the buffer, which overlaps the I/O operation with the GPU computation.

Training module: The training module contains the weights and gradients management to support
mix-precision training. Given a DNN model, the module constructs the weights and gradients of
the model. We maintain two copies of the DNN model weights, one with single-precision (FP32)
and another with half-precision (FP16). The FP32 one is updated iteratively based on the calculated
gradients, while the FP16 one is used to do the calculation of feed-forward and backward propagation.
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For the gradients, they are allocated with the FP16 format, and calculated iteratively with SGD. Before
being updated to the weights, the FP16 gradients should be aggregated across multiple workers.
Compared to the FP32 gradients, the size of data communication is reduced by half.

Communication module: The communication module maintains a message queue that stores the
information about which layers should be aggregated across multiple workers. When the queue is not
empty, it fetches the message from the head to invoke the all-reduce operation on the specific tensors
(the gradients of DNN layers) and decides which all-reduce algorithm should be used according to
the tensor size and system configurations (e.g., the number of workers and the bandwidth of inter-
connection). The communication module mainly makes two decisions to achieve better performance:
1) Tensor fusion: When there are many small tensors to be communicated, it is better to fuse these
small tensors to one large tensor which only needs to be communicated once. 2) All-reduce algorithm
selection: With different tensor sizes and system configurations, the original ring-based all-reduce
algorithm could be sub-optimal. We propose a hierarchical all-reduce algorithm. At runtime, our
system uses a hybrid all-reduce algorithm to decide which all-reduce algorithms (the hierarchical
all-reduce and the original ring-based all-reduce) to use according to different tensor sizes.

4 System Implementation and Optimization

4.1 Mixed-precision training with LARS

As Micikevicius et al. [17] have mentioned, the motivation of using half-precision (FP16) in the
training phase is to release the memory bandwidth pressure as well as increase arithmetic throughput.
Orthogonal to half-precision training, You et al. [21] first propose LARS to enable larger mini-batch
size for distributed training. The algorithm introduces a local learning rate for each layer (as shown
in Equation 1), which is the ratio of the L2-norm of weights and gradients weighted by a LARS
coefficient η.

∆wlt = γ · η · wl

5L(wl))
· 5L(wlt). (1)

Gradients are multiplied with its adaptive local learning rate. A natural choice is to combine half-
precision training with LARS to achieve larger mini-batch size with scalability. However, a naïve
implementation would introduce several problems because using LARS directly on half-precision
training will cause the computed learning rate to be out of the dynamic range of the IEEE half-
precision format, and thus cause the gradients to vanish and stall the training process.

The mixed-precision technique has been used to solve the zero gradients problem, but it would also
loss accuracy when scaling to a large mini-batch size. As LARS makes training with large mini-batch
sizes possible, we propose a training strategy which uses mixed-precision training with LARS. In the
proposed strategy, the operations in forward and backward propagation are performed in FP16, while
the weights and gradients are cast to single-precision (FP32) format before applying LARS in weight
update and cast back to FP16 afterwards.

4.2 Improvements on model architecture

We improve the model architecture to keep the model accuracy from the following two aspects when
training with a large mini-batch size: 1) eliminating weight decay on the bias and batch normalization;
and 2) adding a proper batch normalization (BN) layer for AlexNet.

Weight decay [16] is a commonly-used strategy to achieve better model generalization by adding a
regularization term to the loss function as follows:

E(w) = E0(w) +
1

2
λ
∑
i

w2
i , (2)

where E0(w) is the original loss function, and 1
2λ

∑
i w

2
i is the L2 regularization term. If gradient

descent is used for learning, the last term of the loss function leads to a new term −λwi in the
gradients update:

wt+1
i = wti − η

∂E

∂wti
− λwti . (3)
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The above equation applies to both bias and weight parameters. However, regularizing the bias
parameters could introduce underfitting, so it is common to only penalizes the weights of the affine
transformation at each layer and leaves the biases unregularized [10]. Therefore, in the training with
a large mini-batch size, we also leave the bias parameters unregularized. Moreover, the weight decay
of L2 regularization is also applied to the trainable parameters of BN layers. The two parameter sets
of BN are β and γ, and the update formula is as follows:

x̂i ←
xi − µB√
σ2 + ε

, and yi ← γxi + β ≡ BNγ,β(xi), (4)

where β and γ are two trainable parameters, µB is the mean of mini-batch and σ2 is the variance of
mini-batch. What we have observed in our training for AlexNet is that if we also leave two parameter
sets β and γ in BN unregularized, the model achieves better convergence.

As Goodfellow et al. [10] have noted, the reason that the model without regularizing the parameters
of BN layers achieves better convergence could be that b, β and γ usually have much less parameters
compared to the weights W (for AlexNet model, b, β and γ parameters only amount to 0.02% of all
parameters), which means that leaving them unregularized would not give too much variance and
regularizing could instead introduce a significant amount of underfitting. For AlexNet, we get around
1.3% improvement in accuracy from 55.8% to 57.1% with the same number of epochs. The slight
improvement on convergence comes from the reduced computations in L2 regularization.

Batch normalization is generally better than local response normalization (LRN) in generalizing deep
models [13][21]. Replacing LRN layers in AlexNet with BN (AlexNet-BN) can improve the accuracy
[13]. However, when scaling to a mini-batch of 64K, the AlexNet-BN model can only achieve the
top-1 accuracy of 57.1%, while the baseline is 58.8%. By analyzing the parameters and feature map
distributions, we find that the feature map distribution after Pool5 has a large variance and maximum
values during the training. The significant change of feature scaling makes the training difficult. This
motivates us to insert another BN layer after Pool5 to rescale the feature map. The variance and
maximum values are significantly reduced after inserting a BN layer. The refined-AlexNet-BN model
reaches 58.8% top-1 accuracy with a mini-batch size of 64K in the 95-epoch training.

4.3 Improvement on communication strategies

In a cluster with p GPUs, the ring-based all-reduce algorithm splits the data on each GPU into p
chunks and do the reduction in p−1 iterations [20]. Its time cost can be modeled as Equation 5 whose
first term is the startup time of communication. The startup time is determined by the number of
GPUs and is not related to the message size M . To reduce the impact of the startup time, we propose
two strategies: tensor fusion and hierarchical all-reduce. And wee finally use hybrid all-reduce which
combines original all-reduce and hierarchical all-reduce to further improve the efficiency.

tc = 2(p− 1)a+ 2
p− 1

p
bM +

p− 1

p
cM. (5)

Tensor fusion. Usually, gradient tensor sizes are variant for different layers in a DNN, and convo-
lutional layers are relatively small. Sending too many small tensors in the network could not only
under-utilize the bandwidth but also increase the latency. According to Equation 5, aggregating one
message with a size of M1 +M2 is faster than sending the two messages (M1 and M2) separately.
Therefore, the core idea of tensor fusion is to pack multiple small size tensors together before all-
reduce to eliminate some startup times. One can use the optimal tensor fusion strategy to achieve the
largest overlap between gradient communication and backward propagation [18].

Hierarchical all-reduce. From Equation 5, the time cost also has a relation with the number of
GPUs p. When p becomes too large (e.g., 1024), the startup time has also large contribution to
the time cost. Therefore, we propose a hierarchical all-reduce algorithm to reduce p involving the
ring-based all-reduce operation. The hierarchical all-reduce algorithm splits all the GPUs into groups
and invokes three-step operations with intra-group and inter-group collectives to finish the task of
the original all-reduce algorithm. p GPUs are grouped into p/k groups and each group contains k
GPUs, the three-step operations are: 1) Reduction: Each group invokes a reduction in parallel. 2)
All-reduction: The master GPU of each group constitutes a communication ring (with p/k GPUs),
and a ring-based all-reduce collective is invoked on the ring. 3) Broadcast: The master GPU in each
group broadcasts the messages to all the other GPUs in the same group. Note that the startup time
cost of the all-reduce collective is reduced from 2(p− 1)a to 2(p/k − 1)a.
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Table 1: Compare AlexNet training with different teams

Team Batch Hardware Software Top1 Acc Time

You et al. [22] 512 DGX-1 station NVCaffe 58.8% 6h 10m
You et al. [22] 32K CPU × 1024 Intel Caffe 58.6% 11min

This work 64K Tesla P40 × 512 TensorFlow 58.8% 5m
This work 64K Tesla P40 × 1024 TensorFlow 58.7% 4m

Table 2: Compare ResNet-50 training with different teams

Team Batch Hardware Software Top1 Acc Time

He et al. [12] 256 Tesla P100 × 8 Caffe 75.3% 29h
Goyal et al. [11] 8K Tesla P100 × 256 Caffe2 76.3% 1h

Cho et al. [6] 8K Tesla P100 × 256 Torch 75.0% 50min
Codreanu et al. [7] 32K KNL × 1024 Intel Caffe 75.3% 42min

You et al. [22] 32K KNL × 2048 Intel Caffe 75.4% 20min
Akiba et al. [2] 32K Tesla P100 × 1024 Chainer 74.9% 15min

This work 64K Tesla P40 × 1024 TensorFlow 76.2% 8.7m
This work 64K Tesla P40 × 2048 TensorFlow 75.8% 6.6m

Hybrid all-reduce. Hierarchical all-reduce can bring performance gain in some cases, however, it
also performs worse than the original all-reduce algorithm when the size of message is large enough.
To enjoy the best of both worlds, we use a hybrid strategy in our system. We set a parameter η to
represent the size of the tensor to aggregate in bytes to determine which algorithm (hierarchical or
original all-reduce) to use.

5 Experimental Results and Analysis

5.1 Experimental settings

Models. We choose AlexNet and ResNet-50 for our experiments because they represent two typical
types of CNNs. The parameter size of AlexNet (64M) is around 2.5 times as ResNet-50 (25M), while
the computation of ResNet-50 (4 GFLOPs) is around 5.6 times as AlexNet (727 MFLOPs). The
baseline top-1 test accuracies of AlexNet and ResNet-50 are 58.8% [22] and 75.3% [12] respectively.

Dataset. The chosen two CNNs are evaluated in the ImageNet dataset. Both models are trained with
about 1.28 million training images and evaluated with 50,000 validation images by the top-1 test
accuracy on the 1000-class classification task. Images are stored in the format of TFRecord2. In all
our experiments, we use data augmentation offered in TensorFlow benchmark 3.

Software. Our training system is built on TensorFlow [1]. The communication libraries are NCCL2
and OpenMPI. The CUDA version is 9.2 and the operating system is CentOS-7.2.

Hardware. The experimental GPU cluster includes 256 nodes, and each node contains 8 Nvidia
Tesla P40 GPUs that are interconnected with PCIe-3.0. Each server has an Mellanox ConnectX-4
100Gbit Ethernet network card which supports RDMA.

5.2 Overall experimental results

For AlexNet, You et al. [22] can finish the ImageNet training with a mini-batch size of 32K in 11
minutes using 1024 Intel CPUs, while we can train the AlexNet model 2.75 times faster by using
1024 Nvidia Tesla P40 GPUs. To our best knowledge, we create the fastest training time of 95-epoch
AlexNet on the ImageNet dataset in 4 minutes with 1024 Tesla P40 GPUs.

2The converting method is provided here: https://github.com/tensorflow/models/blob/master/
research/inception/inception/data/buildimagenetdata.py

3https://github.com/tensorflow/benchmarks/blob/master/scripts/tf_cnn_benchmarks/
preprocessing.py
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For ResNet-50, our system finishes the 90-epoch training in 8.7 minutes with 76.2% top-1 test
accuracy over 1024 Tesla P40 GPUs and 6.6 minutes with 75.8% top-1 test accuracy over 2048 Tesla
P40 GPUs. Compared to Akiba et al. [2], our work saves around 40% cost with similar hardware but
much shorter training time. Compared to He et al. [12]’s work which uses 8 GPUs, we achieve more
than 248x speedup. Using the same number of 1024 GPUs, we achieve 1.61 times faster and higher
top-1 test accuracy than the work in [2]. Note that for ResNet-50 training, we adopt half-precision
communication during the all-reduce gradients aggregation phase due to its reduced bandwidth usage.

5.3 Training speed and scalability

Throughput of mixed-precision. To improve the throughput of GPU computation, we use FP16
in the forward and backward propagation, which are two most time-consuming steps during train-
ing. Using mixed-precision training can speedup single-node performance of ResNet-50 from 172
images/second to 218 images/second.4
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Figure 1: Throughput comparison on AlexNet
with a mini-batch size of 128 per GPU
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Figure 2: Throughput comparison on ResNet-
50 with a mini-batch size of 64 per GPU

Scalability. The scaling performance comparisons of AlexNet and ResNet-50 are shown in Fig. 1
and Fig. 2 respectively. For AlexNet, it can be seen that FP16 performs better than FP32 since
FP16 communicates a half size of message compared to FP32. Tensor fusion would improve the
scaling efficiency from 70% to 81% without other optimization using FP16 on 512 GPUs. Without
tensor fusion, only using hierarchical all-reduce results in a worse performance, but the proposed
hybrid all-reduce achieves about 89% scaling efficiency. Combined with FP16 and tensor fusion,
the hybrid all-reduce would achieve 91.4% scaling efficiency with 512 GPUs on the AlexNet model.
Regarding ResNet-50, the mini-batch size for each GPU is 64 running on 1024 GPUs (results in a
valid batch size of 64K), the throughput shown in Fig. 2 shows that our customized all-reduce has
the highest scaling efficiency. The scaling efficiency of 1024 GPUs (8 GPUs per node, and totally
128 nodes) compared to single-node (8 GPUs) is up to 99.2%, which is very close to the optimal
scaling efficiency. When comparing the scaling efficiency before and after optimization, we can see
the improvement is significant just like in the above analysis of AlexNet. By using all optimization
techniques (FP16 format, tensor fusion and hybrid all-reduce) in communication, we achieve the
scaling efficiency of 99.2% on the 1024-GPU cluster.

In order to compare with the previous work in [2], we run the benchmark using the same configuration
as theirs (set the mini-batch size as 32 per GPU on the 1024-GPU cluster). The experimental result
shows that our system achieves a scaling efficiency of 87.9%, which is 7.9% higher than their
80%. When per GPU mini-batch size is 32, it is harder to scale out. Because the smaller mini-
batch size often leads to faster computation, and thus higher communication-to-computation ratio,
which causes the communication easily become the bottleneck of the system. Due to our efficient
communication strategies, we have achieved higher scaling efficiency than the state-of-the-art with
the same mini-batch size. Due to limited space, the full version of our experiment analysis can be
found in [14].

Although we discuss several of our optimizations only in the scope of training convolutional networks
on ImageNet, the mixed-precision strategy, tensor fusion and hybrid all-reduce are model agnostic
and could be applied to other types of neural networks to increase the efficiency of the training system
in the distributed environment.

4Note that the tested P40 GPU does not have native support for half-precision computation, hence the speedup
of half-precision is mainly contributed by the software optimization in cuDNN [5]. One could achieve much
higher throughput by using GPUs that support half-precision computation in the hardware level (e.g., Tesla P100
or V100 GPUs).
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