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Abstract

Energy conservation on computing systems has become
an important research topic in recent years. Dynamic
voltage/frequency scaling (DVFS) has been shown as an
appealing method for saving energy. Nowadays, GPUs
have been widely used to accelerate many high perfor-
mance computing applications. However, there is a lack
of study on the effectiveness of GPU DVFS on energy
conservation. This paper presents a thorough measure-
ment study that aims to explore how GPU DVFS affects
the system energy consumption. We have conducted ex-
periments on a real GPU platform with 37 benchmark
applications. Our results show that GPU DVFS is an ef-
fective approach to conserving energy. For example, by
scaling down the GPU core voltage and frequency, we
have achieved an average of 19.28% energy reduction
compared with the default setting, while giving up no
more than 4% of performance. For all tested GPU appli-
cations, core voltage scaling is significantly effective to
reduce system energy consumption. On the other hand,
the effect of scaling core frequency and memory frequen-
cy depends on the characteristic of GPU applications.

1 Introduction

In the past few years, general purpose GPUs have
become increasingly popular among high performance
computing area. With a large number of cores, GPUs
can be much faster than traditional CPUs in a variety
of scientific and commercial applications [4, 5, 16]. Al-
though GPUs have higher power efficiency than most C-
PUs, they still consume a lot of power. For example,
the Titan supercomputer at Oak Ridge National Labora-
tory is equipped with 18,688 NVIDIA Tesla K20X G-
PU cards and consumes more than 8 million watts at full
load. How to conserver energy on such GPU platforms
becomes an important problem.

Dynamic voltage/frequency scaling (DVFS) has been
shown as an effective approach to saving energy for C-
PUs [6, 7, 17]. However, the study of GPU DVFS on
energy conservation is still at an early stage. Exist-
ing research work on GPU energy consumption most-
ly focused on evaluating the GPU power efficiency, and
the modeling of GPU power consumption [1, 2, 8–
13, 15, 19]. In this paper, we aim to answer one question:
can GPU DVFS save energy in practice? We conduct ex-

tensive experiments on a set of 37 GPU applications to
investigate the impact of GPU DVFS on the whole sys-
tem energy consumption.

Our major findings are summarized as follows. First
of all, our experimental results show that GPU DVFS
is an effective approach to saving system energy for a
broad range of applications. Secondly, we find that scal-
ing down the GPU core voltage is effective in saving the
system idle power. Thirdly, scaling down the GPU core
voltage is very effective in saving system runtime energy
when working at an appropriate core frequency. Lastly,
we show that GPU memory frequency scaling can also
save system runtime energy for some applications, but
the optimal setting of memory frequency depends on the
application characteristics.

The rest of this paper is organized as follows. Section
2 summarizes related work. Section 3 states our mea-
surement platform and methodology. Section 4 presents
our experimental results. The last section concludes our
findings and proposes some possible future work.

2 Related Work

The pioneer work on GPU energy conservation was done
by Hong and Kim [9–11]. They used PTX code analysis
to predict GPU kernel execution cycles. With similar ap-
proach, they could also estimate kernel power consump-
tion. They came up with an integrated GPU performance
and power prediction model eventually. Then they pro-
posed to use fewer GPU SMs when possible to reduce
GPU energy consumption. Nagasaka et al. offered an
alternate to estimate GPU power consumption using per-
formance counters [19].

Jiao et al. studied GPU core and memory frequency
scaling on NVIDIA GeForce GTX 280 [12]. They dis-
closed that power efficiency is largely determined by the
ratio of memory transactions to computation instruction-
s. Scaling down GPU core frequency could save energy
for memory intense kernels. Abe et al. reported a 28%
of system energy reduction on 64 × 64 matrix multipli-
cation by scaling down memory frequency with NVIDI-
A GeForce GTX 480 [1]. Ge et al. applied frequency
scaling to both CPU and GPU with three typical paral-
lel applications. They found that scaling GPU frequen-
cy higher would not consume more energy [8]. Distinc-
t from these related work, we investigate the impact of



Table 1: Platform configuration
CPU Intel CoreTM i5-750 (4 core)
Clock rate 2.67 GHz
RAM Kingston DDR3 1333MHz 2GB
MainBoard ASUS P7P55D PRO
Harddisk Seagate ST31000528AS 1TB
Power Supply MaxPower GPX850
GPU NVIDIA GeForce GTX 560 Ti
Shading clock rate 1900 MHz
Memory interface 1 G GDDR5
Memory clock rate 2100 MHz
GPU driver 306.97
CUDA runtime version 4.1

GPU voltage scaling as well as frequency scaling on a
much broader range of applications.

Lee and Kim analyzed the optimal core number and
voltage/frequency setting of many-core processors using
predictive technology models [13, 14]. They found that
doubling core number with lower supply voltage could
reduce up to 65% power. Very recently, Leng et al. sim-
ulated GPU core DVFS and showed 14.4% energy re-
duction through GPGPU-Sim [2, 15]. Our measurement
study is complementary to these theoretical analysis.

3 Experimental Methodology

A GPU board has four scalable variables: core frequen-
cy, core voltage, DRAM I/O frequency, and DRAM volt-
age, denoted as fcore, Vcore, fmem and Vmem respectively.
We use E to denote the entire system energy consump-
tion during program execution period. Our target is to
observe how E varies to fcore, Vcore, fmem and Vmem.

Some software are available to adjust GPU voltages
and frequencies [18, 21]. In order to achieve the widest
range of GPU core voltage, we first use NVIDIA Inspec-
tor 1.9.7.1 to do coarse adjustment; and then we use Af-
terburner 2.3.0 to do fine adjustment. We also trace G-
PU temperature and some other runtime information via
TechPowerUp’s GPU-Z [22]. In this paper, we only fo-
cus on GPU DVFS and do not apply CPU DVFS.

We perform our experiments on a personal computer
equipped with a graphic card MSI N560GTX-Ti Hawk.
We choose this card because our scaling tool Afterburner
supports up to Geforce GTX 500 family GPUs at the time
we started this research work. Our system specification
is given in Table 1. The measured idle system power is
about 85 W in which 29 W is contributed by the graphic
card. Table 2 lists the obtained scaling interval of our
graphic card.

We measure the whole system power consumption by
a commercial power meter, Watts Up? Pro, which takes

Table 2: Geforce GTX 560 Ti allowable scaling interval
Category Default Adjustable range
Vcore (V) 1.049 [0.849, 1.149]
fcore (MHz) 950 [480, 1000]
Vmem (V) 1.50 [1.40, 1.58]
fmem (MHz) 2100 [1050, 2300]

a power sample every second, denoted as Pi for the ith
sample. This meter has independent power supply, so it
nearly has no influence on our system power consump-
tion. We estimate the average power consumption of a
program, P̄, by P̄ = ∑i Pi/N, in which N is the number of
samples obtained during the execution of the application.
We obtain the application execution time, t, by function
gettimeofday(). Then we estimate the whole system pow-
er consumption E by E = P̄× t.

The system energy consumption at default GPU con-
figuration is represented as Ê. For the same application,
the minimum and maximum energy consumption under
different voltage/ frequency settings are denoted as Emin
and Emax. We use two metrics R̂ and Rmax to evaluate
energy conservation:

R̂ = 1−Emin/Ê (1)
which quantizes how much energy could be saved com-
pared to default configuration;

Rmax = 1−Emin/Emax (2)
which indicates the maximum energy saving capability.
Due to limited space, we don’t present the ratio of re-
duced energy over GPU energy, which is much larger
than R̂ and Rmax.

Our benchmark suit consists of 37 GPU applications
taken from CUDA SDK 4.1 [20] and Rodinia [3]. Due to
the RLC effect [15], programs should execute for a rela-
tively long time to get accurate measurements. We revise
the source codes of these GPU applications so that each
program would last for more than half a minute. We use
control variate method to explore the impact of GPU D-
VFS on system energy consumption. Namely for each
group of experiments, we fix part of the four variables,
and observe system energy’s response to remaining vari-
ables. Detailed configurations are given in Section 4.

4 Experimental Results

4.1 System Idle Power
GPU idle power is a non-negligible component of the
whole system power consumption. It is well known
that the GPU idle power is irrelevant to fcore or fmem,
which is also confirmed by our experiments. So we
measure the system idle power at different combination-
s of {Vmem,Vcore}. Our measurement results are shown
in Figure 1. The system idle power varies from 78 W
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Figure 1: Idle power consumption of different voltages

to 89 W, where the variation is mainly caused by scal-
ing Vcore. The impact of Vmem on system idle power is
very marginal, mostly within 1 W. On our platform, the
idle GPU power drops from 29 W to 22 W when scaling
down Vcore from 1.049 V to 0.849 V, which corresponds
to about 8% of system power reduction.

4.2 Core Scaling
Core scaling refers to the adjustment of Vcore and/or fcore.
We first fix Vcore and explore the impact of fcore on E. We
do experiments under two different core voltages: 1.049
V and 0.849 V. For each core voltage, we change fcore
from 480 MHz to 880 MHz incrementally.
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Figure 2: Benchmarks benefit from low core frequencies

For CPUs, it is generally believed that with a fixed
voltage, using high processor frequencies would reduce
total energy because of shorter execution time. How-
ever, we find that it is not always true for GPUs. A-
mong our 37 testing benchmarks, 5 actually benefit
from lower core frequencies. They are: BackProp, N-
N(nearest neighbourhood), ConjugateGradient, Kmeans
and ScalarProd. These applications have frequent CPU-
GPU data transactions, and core frequency scaling al-
most has no impact on their execution time. Figure 2
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Figure 3: Core voltage and maximum stable frequency
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Figure 4: Energy savings of separate core voltages

gives their normalized energy (by normalizing to the en-
ergy consumption at fcore = 880 MHz). Up to 10% of
energy can be saved by scaling down fcore. It is interest-
ing to see that for Kmeans, scaling down fcore can save
energy when Vcore = 1.049 V, but this situation does not
hold anymore when Vcore = 0.849 V. It is an interesting
research problem to find the optimal fcore that can save
the most energy for such special applications.

But for the other 32 benchmark applications, energy
consumption suffers a lot under low fcore. A majority of
applications become much slower when running at low
core voltages, and hence they consume much more en-
ergy. Since for most of applications, scaling down fcore
will increase energy consumption, we use the maximum
stable core frequency, f ∗core, of each Vcore to do the sub-
sequent voltage scaling experiments.

We obtain f ∗core by fixing Vcore and running pressure
tests by increasing fcore until GPU turns to be unsta-
ble. Figure 3 illustrates the relationship between f ∗core
and Vcore. When core voltage changes from 0.849 V to
1.099 V, f ∗core increases accordingly. The ( f ∗core, Vcore)
pairs construct a space in which GPU hardware has the
best compute capacity. Notice that the default GPU core
frequency setting (i.e., 950MHz) is relatively conserva-
tive.

We do core voltage scaling experiments within above
space. The mean energy savings (R̂) and performance de-
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Figure 5: Core voltage scaling efficiency of all programs

Table 3: Runtime temperature of ScalarProd
Vcore (V) 0.849 0.949 1.012 1.049 1.099
Temp inc (◦C) 18 24 27 30 32

crease (as compared to the default setting) of 37 bench-
marks is shown in Figure 4. Notice that negative perfor-
mance decrease means better performance due to high-
er core frequencies. We also gain an average of 2% of
speedup at default Vcore since we have scaled up default
fcore (950 MHz) to f ∗core (995 MHz).

For all benchmarks, low Vcore is significantly effective
to conserve energy. In particular, an average of 18.91%
energy is reduced with 3.45% performance decrease at
Vcore = 0.849 V, fcore = 880 MHz. R̂ decreases almost
linearly as Vcore increases.

Figure 5 summarizes R̂ and Rmax of all benchmarks.
Applications that can save the most energy include CFD,
FastWalshTransform, convolutionFFT2D etc. These ap-
plications are both memory intensive and computation
intensive. The average R̂ is 19.28% while average Rmax
is 24.40%. In the best case (CFD), up to 32.62% of en-
ergy can be reduced.

We also find that the GPU runtime temperature is
closely related to energy conservation. Low temperature
means less energy is converted into heat, so that electric-
ity can be used more efficiently. We record the difference
between GPU chip peak temperature during program ex-
ecution and temperature in idle state. We find that for
the same application, the increase of temperature at high
voltage is much bigger than that of low voltage. Table
3 is a runtime chip temperature example of ScalarProd.
The execution time of ScalarProd is insensitive to fcore
or Vcore scaling. The large difference between the in-
crease of chip temperature at different voltages is mainly
caused by Vcore variation.

4.3 Memory Scaling

We continue our experiments by adjusting Vmem and
fmem. We find that scaling Vmem does not have obvious
influence on whole system energy. This can be explained
by two reasons. First, Vmem only offers a narrow adjust-
ing range, and increasing Vmem doesn’t lead to higher sta-
ble fmem. Second, GPU DRAM just accounts for a small
part of the whole GPU board power consumption [9].
As a result, we focus on the experiments of memory fre-
quency scaling.

We test all our benchmarks with fmem varying from
1500 MHz to 2300 MHz where Vmem = 1.50 V, Vcore =
1.049 V, fcore = 990 MHz. The memory scaling result-
s show strong individual characteristic. Figure 6 plots
the optimal fmem that can achieve minimum energy con-
sumption for 37 benchmarks. The computation inten-
sive kernels, like MatrixMulDrv etc, benefit from low
fmem, while memory intensive kernels, like Convolu-
tionFFT2D etc, can save energy with high fmem. Default
fmem is the optimal setting for eight kernels.

Figure 6 also shows Rmax and R̂ of all benchmarks.
fmem affects energy mainly by changing the execution
time. Applications with large Rmax, like SobolQRNG,
EstimatePiInlineQ, Reduction etc. last much longer with
low fmem. Such programs have large thread divergence.
Both memory parallelism and computation parallelism
are low, so that memory access latency cannot be hidden
effectively.

In summary, the average Rmax and average R̂ are
10.20% and 3.52% respectively. The average energy sav-
ing is lower than that of core scaling because many ker-
nels work quite well under the default memory frequen-
cy. In fact, memory frequency scaling can save ener-
gy significantly for some applications. In the best case
(SobolQRNG), up to 28.65% energy can be reduced by
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Figure 6: Memory frequency scaling efficiency of all programs

memory frequency scaling.

5 Conclusions and Future Work

In this paper, we conducted a comprehensive measure-
ment study of GPU DVFS on energy conservation. We
studied 37 benchmark applications and illustrated that G-
PU DVFS is an effective approach in saving system en-
ergy. In general, scaling down the GPU core voltage can
significantly save the energy when working at appropri-
ate core frequency. Memory frequency scaling can also
save energy for some applications. However, it is not a
trivial task to find the optimal setting of GPU DVFS. In
the future, we plan to develop a statistical power model
that incorporates GPU DVFS. When combined with an
execution time prediction model, it becomes feasible to
analytically find out the optimal setting of GPU DVFS
that can minimize the system energy consumption.
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