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Abstract—In recent years, erasure coding has been adopted
by large-scale cloud storage systems to replace data replication.
With the increase of disk I/O throughput and network bandwidth,
the speed of erasure coding becomes one of the key system bot-
tlenecks. In this paper, we propose to offload the task of erasure
coding to Graphics Processing Units (GPUs). Specifically, we have
designed and implemented PErasure, a parallel Cauchy Reed-
Solomon (CRS) coding library. We compare the performance of
PErasure with that of two state-of-the-art libraries: Jerasure (for
CPUs) and Gibraltar (for GPUs). Our experiments show that the
raw coding speed of PErasure on a $500 Nvidia GTX780 card
is about 10 times faster than that of multithreaded Jerasure on
a quad-core modern CPU, and 2-4 times faster than Gibraltar
on the same GPU. PErasure can achieve up to 10GB/s of overall
encoding speed using just a single GPU for a large storage system
that can withstand up to 8 disk failures.

I. INTRODUCTION

Replication is currently the most popular way to achieve
high data reliability in large-scale cloud storage systems, such
as GFS [1], Hadoop [2], and Azure [3]. To reduce the high
cost of data replication and further improve the data reliability,
erasure coding has attracted attention from both academia and
industry in recent years [4]–[8]. Due to the limitation and high
cost of hardware RAID controllers, software based erasure
coding becomes more attractive and flexible for such storage
systems [9]. However, recent technology trends bring new
challenges for erasure coding. Firstly, more and more storage
systems start to use Solid-State Drives or even huge volume
of RAM to improve the I/O performance [10], [11]. Secondly,
with the explosive increase of data volume, more redundant
disk drives are required to guarantee high data reliability
which creates an increasing demand of higher erasure coding
speed. Thirdly, with the popularity of 40G/100G Ethernet and
InfiniBand FDR/QDR in data centers, network bandwidth will
not be the system bottleneck. Therefore, how to improve the
speed of erasure coding becomes an important research issue.

With the proliferation of multi-core CPUs and many-core
GPUs, parallelization becomes a major approach to improving
the speed of erasure coding. For multi-core CPUs, Cauchy
Reed-Solomon (CRS) codes [12] have been parallelized in
[13], [14]; EVENODD codes have been parallelized in [15];
and RDP codes have been parallelized in [16]. A fast Galois
field arithmetic library for multi-core CPUs has recently been
presented in [17]. Recently, GPUs have been used in some
storage systems to perform different computationally expensive
tasks. Shredder is a framework to leverage GPUs to efficiently
chunk files [18]. GPUstore [19] is another framework to
integrate GPUs into storage systems for file-level or block-level

encryption and RAID6 data recovery. Another GPU-based
RAID6 system has been developed in [20], which uses GPUs
to accelerate two RAID6 coding schemes, namely Blaum-
Roth and Liberation codes, and achieves up to 3GB/s of
coding speed. Gibraltar is so far the most successful GPU-
based Reed-Solomon (RS) coding library [21] that uses table
lookup operations to implement Galois Field multiplications
and achieves 10-fold speedup over single-thread Jerasure [22],
the most well-known erasure coding library.

In this paper, we propose to use GPUs to perform CRS
coding [12], which is the state-of-the-art Maximum Distance
Separable (MDS) code. CRS coding uses XOR operations only
and is more efficient than RS coding. This paper makes the
following contributions:

(1) We designed and implemented a new CRS coding
library for GPUs named PErasure, which tailors the
parallel coding algorithms for GPU architecture.

(2) To overcome the bottleneck of PCI Express (PCIe)
bus, we designed a pipeline mechanism for PErasure
which can maximize the overlap between memory
copy operations and coding operations.

(3) We showed through real experiments that PErasure
outperforms two state-of-the-art libraries: Jerasure
and Gibraltar.

The remainder of this paper is organized as follows. Section
II introduces the background of CRS and GPUs. Section
III presents the design of PErasure. Experimental results are
presented in Section IV. Section V concludes the paper.

II. BACKGROUND

A. Cauchy Reed-Solomon Coding

A general erasure coding storage system consists of k data
devices and m coding devices. When using an MDS code, such
storage system can withstand the failure of any m devices.
Although there exist many MDS codes for m = 2, RS codes
are the only known general MDS codes that support any values
of k and m. To generate a single coding word, RS code
requires k Galois Field multiplications and k−1 XORs, which
are computationally expensive. CRS coding is a variant of RS
coding that uses XOR operations only and results in better
coding performance [12].

CRS coding first selects a value w that is no less than
log2(k+m), and then defines an m×k Cauchy distribution ma-
trix over Galois Field GF (2w). Next, the Cauchy distribution
matrix is expanded into a w(k +m)×wk binary distribution



matrix (BDM). Each of the k data devices is partitioned into w
rows with the same size. So the k data devices form a matrix
with wk rows. The CRS encoding process is similar to matrix
multiplication, as illustrated in Figure 1, in which I denotes a
w × w identity matrix, D represents a data device formatted
into w rows, and C represents a coding device formatted into
w rows. Upon the failure of any p ≤ m devices, CRS decoding
can recover all failed devices by multiplying the corresponding
decoding bit-matrix with the surviving devices. In practice, the
decoding bit-matrices can be precalculated offline.
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Fig. 1: Illustration of Cauchy Reed-Solomon Coding

B. GPU Computing

GPUs are highly parallel many-core processors. A GPU
consists of a number of Streaming Multiprocessors (SMs), and
each SM has many Scalar Processors (SPs). The design of the
SMs is based on the Single-Instruction Multiple-Data (SIMD)
architecture, i.e., at any given clock cycle, all SPs in the same
SM must execute the same instruction, but can operate on
different data. GPUs have a complex memory system which
includes global memory, constant memory, texture memory,
register memory, and shared memory [23]. Register and shared
memory are very fast but limited in size; both texture and
constant memory support cache mechanism; global memory is
large and has very high bandwidth, but its access latency is
very long.

Currently, CUDA is the most popular programming model
for GPUs [24], under which the GPU is regarded as a copro-
cessor capable of executing a large number of parallel threads.
A typical CUDA program consists of the host functions to be
executed on the CPU and the kernel functions to be executed
on the GPU. Each kernel function is running as a grid of
threads, which are organized into many thread blocks. Each
thread block can include a set of threads, which can share data
through shared memory and perform barrier synchronization.
GPUs have found many successful coding-related applications,
such as network coding [25]–[27] and data encryption [28],
[29].

III. PARALLEL CRS CODING ON GPUS

For any given k and m, PErasure can be used to generate
m coding devices from k data devices, and recover up to m
failed devices. If the total size of k+m devices cannot fit into
GPU memory, each device can be split into smaller chunks.
PErasure then process the data chunk by chunk. In each round,
it copies k data chunks to GPU, each from a different data
device, then encodes them into m coding chunks by launching
a GPU kernel function for m times, and finally transfers the m

coding chunks back to main memory. The high level workflow
of PErasure encoding is shown in Algorithm 1. The workflow
of decoding is basically the same as encoding, yet there are two
differences. Firstly, CRS decoding uses decoding bit-matrices
instead of BDMs. To save time, the set of decoding bit-matrices
can be precalculated. Secondly, decoding needs to determine
the source of surviving devices and hence introduces more
branches in the kernel function.

Algorithm 1: High Level Workflow of PErasure

Input: k,m,w, bitmatrix, dataSize
Compute round from k,m,w, dataSize
Copy bitmatrix to GPU’s texture or constant memory
Allocate GPU memory
for i← 1 to round do

Copy k data chunks of the i-th round to GPU
for j ← 1 to m do

Launch the kernel function to generate a coding chunk
end
Copy back m coding chunks of the i-th round to main memory

end
Free memory resources

PErasure supports two different versions of kernel func-
tion, namely GMPE (Global Memory PErasure) and SMPE
(Shared Memory PErasure). GMPE uses global memory and
can support very large values of k and m. SMPE exploits
shared memory and constant memory to improve the coding
performance, but has a limitation on the value of km due to
the limited size of constant memory. We describe these two
kernel functions in the following two subsections.

A. GMPE: Global Memory PErasure

The GMPE kernel function specifies the behaviour of GPU
threads, each of which generates w coding words from k
data words. A word is the basic unit of XOR instruction on
GPU, which is a long-type integer in CUDA. When PErasure
launches a GMPE kernel function, a grid of GPU threads are
created to collectively generate a complete coding chunk. The
pseudo code of GMPE kernel is given in Algorithm 2.

A coding word can be calculated as the dot product of a
bit vector from BDM and a word vector from k data chunks.
Since BDM is small in size and invariant, we store BDM in
GPU texture memory to reduce the latency of accessing BDM
by exploiting the caching effect. Within each thread, idxs are
first computed to locate related data words and coding words.
A boundary check follows immediately after basic index
calculations. GMPE then prepares the data address involved
and computes the output address in the coding chunk. The
calculation of dot products for w coding words is completed
by three levels of for-loop. The middle and inner-most two
loops together compute a coding word from k data words. In
each repetition, GMPE prepares a base index for performing
fast index shifting within inner loops, which can significantly
reduce the clock cycles of index calculation.

B. SMPE: Shared Memory PErasure

CRS coding is a typical memory-intensive application with
a memory-to-compute ratio greater than 2: generating a single
coding word requires 2kw memory accesses and no more than
kw XOR operations. Hence PErasure’s coding performance is
bounded by the bandwidth of GPU global memory. SMPE is



Algorithm 2: GMPE: Global Memory PErasure

Input: k,w, bitmatrix, destId, dataP trs, codingP trs
dataSize, numOfLong

Compute idx from blockIndex,blockDim,threadIndex
Compute stripShift from idx,numOfLong,w
if stripShift > dataSize then

Return
end
longIndex = idx%numOfLong
Shift outP tr to the target coding pointer
for i← 0 to w − 1 do

Shift outP tr by i packets
Compute index from destId and i
temp← 0
for dataIndex← 0 to k − 1 do

Shift srcP tr to the target data pointer
for j ← 0 to w − 1 do

if bitmatrix[index] then
Shift srcP tr by j packets
temp = temp⊕ srcP tr[longIndex]

end
index++

end
end
outP tr[longIndex] = temp

end

designed to reduce the frequency of global memory access by
using the fast shared memory as buffers. Due to the limited size
of shared memory, each SMPE thread is designed to encode
a single coding word, such that a block of threads can load
a vector of data words into shared memory collectively and
reuse them during the coding operations. The pseudo code
of SMPE kernel function is given in Algorithm 3. Major
variables like indices are prepared for input data addressing,
output coding addressing and fast index shifting. A coding
word is generated by two levels of for-loop. The outer loop
cooperates to load required k data words to shared memory.
The shared data words can be reused (i.e., without accessing
the global memory) in the inner loop during the coding
process. Furthermore, we reduce the if -branch penalties by
using AND operations in the inner loop. To match the fast
speed of shared memory, SMPE chooses to store BDM on
constant memory for the best performance, which brings a side
effect that km cannot be larger than a threshold (e.g., 1024 on
Nvidia GTX780) due to limited constant memory size.

C. Pipelined PErasure

Both GMPE and SMPE need to transfer data between CPU
and GPU through PCIe bus. The bandwidth of PCIe bus could
be a limiting factor to the overall performance of PErasure.
To minimize the impact of data transfer, we design a pipeline
mechanism for PErasure such that kernel executions can be
overlapped with data transfers between CPU and GPU. The
key idea is to launch many GPU kernels simultaneously. We
use asynchronous memory copy such that the data transfer
operation of one kernel can overlap with another kernel exe-
cution. For high-end GPUs such as Nvidia Quadro and Tesla,
our pipelined design can achieve even better performance due
to the bi-directional data communications between CPU and
GPU. An illustration of the pipeline scheme is shown in Figure
2, and the pseudo code of pipelined PErasure is given in
Algorithm 4.

Algorithm 3: SMPE: Shared Memory PErasure

Input: k,w, bitmatrix, destId, dataP trs, codingP trs
dataSize, numOfLong

Compute idx from blockIndex,blockDim,threadIndex
if idx ∗ sizeof(long) > dataSize then

Return
end
temp← 0
rowIndex = threadIndex/numOfLong
colIndex = threadIndex%numOfLong
Shift outP tr to the target coding pointer
for dataIndex← 0 to k − 1 do

Threads collectively load data to sharedData[]
Synchronize threads
for j ← 0 to w − 1 do

Compute sdIndex from dataIndex, j, colIndex
temp = temp⊕
(bitmatrix[index] ∧ sharedData[sdIndex])

index++
end

Synchronize threads
end
outP tr[longIndex] = temp
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Fig. 2: Pipelined PErasure on Nvidia GTX 780 (sinlge copy
engine) and Quadro K5000 (dual copy engines)

Algorithm 4: Pipelined PErasure

Input: k,m,w, bitmatrix, numStream
data, coding, dataSize

Compute round from k,m,w, dataSize
Copy bitmatrix to device’s texture or constant memory
Initialize cudaStreams
Allocate GPU memory
for i← 0 to (round− 1)/numStream do

for s← 0 to numStream− 1 do
for j ← 1 to k do

Copy the j-th data chunk of stream s to GPU
asynchronously

end
end
for s← 0 to numStream− 1 do

for j ← 1 to m do
Launch the GMPE/SMPE kernel of stream s
asynchronously

end
end
for s← 0 to numStream− 1 do

for j ← 1 to m do
Copy back the j-th coding chunk of stream s to main
memory asynchronously

end

end
end
Synchronize and wait for the last stream to complete
Free memory resources

D. Discussion: GMPE vs. SMPE

GMPE is designed as a general CRS coding function that
can support any values of k and m. It is expected to work



TABLE I: Hardware Configuration of Coding Experiments
Motherboard Gigabyte Z77-D3H

CPU Intel i7-3770 (3.4 GHz)

Ram Kingston DDR3 (8GB /1600 MHz)

Hard disk Hitachi HDS721050CLA362

Graphic Card GeForce GTX 780

well for future generations of GPUs because it uses the most
primitive features of GPUs. On the contrary, SMPE is designed
to optimize the coding performance by exploiting current GPU
hardware features and trading off program simplicity and
flexibility. Although SMPE has a constraint on the value of
km, it can be used for a broad range of CRS codes in practice.

IV. PERFORMANCE EVALUATION

We implement PErasure using C++ and CUDA. The gener-
ation of BDMs and decoding bit-matrices is done by Jerasure
and hence not included into PErasure. In this section, we
conduct experiments to evaluate the coding performance of
PErasure, and make a comparison with Gibraltar, CRS in
Jerasure, and multi-thread CRS in Jerasure. The hardware
configuration of our experiments is summarized in Table I. The
coding performance is evaluated using two metrics: Raw Speed
and Overall Speed. The raw speed measures the potential
coding capability of GPUs; the overall speed measures how
PErasure performs in real systems by taking into account the
data transfer overhead. We run experiments on a broad range
of (k,m) pairs. Due to limited space, we only present the
results for m = 2, 4, 8 and k ranging from m to 45. All the
results are the average of 5 runs. When evaluating the decoding
performance, we consider the worst case by randomly selecting
m failed devices out of the k +m devices.

A. Raw Coding Performance

Figures 3 and 4 show the raw encoding and decoding
speeds of PErasure (GMPE and SMPE), Gibraltar, single-
thread Jerasure, and multi-thread Jerasure, respectively. In all
testing cases, PErasure outperforms Gibraltar and Jerasure
significantly in both encoding and decoding. The zigzag shape
of PErasure and Jerasure curves is due to the increase of
w in order to satisfy the condition of w ≥ log2(k + m).
The performance of CRS coding is inversely proportional to
the values of w and m. Nevertheless, SMPE can achieve an
impressive 12.5-15GB/s of raw encoding speed even for the
case of m = 8, which is about 1.5 times of GMPE, 2.5-3 times
of Gibraltar, and 10-12 times of multi-thread Jerasure. The
decoding performance of PErasure shows more randomness
and is slightly lower than the encoding performance. This is
because the decoding procedure involves some extra work in
identifying the survival devices.

B. Overall Coding Performance

Different from Jerasure, PErasure and Gibraltar must trans-
fer data between CPU and GPU which introduces considerable
overhead. Figures 5 and 6 show the overall coding and
decoding speeds of PErasure and Gibraltar, respectively. The
bandwidth limit of PCIe bus (measured as 11.6GB/s on our
testing platform) is also shown in the figures as a reference.
Compared with the raw coding speeds, it is obvious that
PCIe bandwidth is a critical limiting factor to the overall

performance of PErasure. Since Nvidia GTX 780 only supports
a single direction of memory copy, the theoretical upper bound
of PErasure’s overall coding speed is k/(k +m) of the PCIe
bandwidth. This explains why the coding performance of
PErasure rises up with the increase of k. SMPE achieves the
theoretical upper bound for all test cases. GMPE achieves the
theoretical upper bound for all cases of m = 2, 4 and all
k ≤ 24 when m = 8. On more expensive high-end GPUs
that support bi-directional PCIe communications, PErasure is
able to achieve the full bandwidth of PCIe bus, as verified by
our experiments on GTX Quadro K5000. We also notice that
the overall performance of Gibraltar is slightly better than that
of PErasure when k is small and m = 2, 4. This is because
Gibraltar uses zero-copy approach for data transfer between
CPU and GPU, which doesn’t work well for CRS. The benefit
of zero-copy will drop with the increase of k. On the contrary,
PErasure performs better for larger k. For large values of m,
PErasure always outperforms Gibraltar significantly.

C. Experiments on a Storage Cluster

Besides showing the overall coding performance, we also
evaluate how our PErasure performs in a real storage cluster
by considering both disk I/O and network I/O. The cluster is
consisted of a server node and seven client nodes, connected by
a 10-Gbps Ethernet switch. The server node is equipped with
one 10-Gbps NIC and one NVIDIA GTX780 card. Each client
node is equipped with a 1-Gbps NIC and 4 hard disk drives.
We use the Iperf tool [30] to test the aggregate TCP throughput
between the server and the 7 clients, which fluctuates between
300MB/s and 400MB/s. The aggregate network bandwidth for
the server to receive data from the 7 client nodes fluctuates
between 600MB/s and 700MB/s.

In our experiments, we fix the value of k+m to 28 so as to
use all the 28 hard disks, while changing m from 2 to 8 with
a step size of 2. To evaluate the encoding performance, we use
PErasure to encode a certain amount of data in the memory
and distribute the encoded data blocks to the 28 hard disk
drives. This is to simulate the scenario that the GPU server
receives user data through the network and encodes them
directly. We set the data size to 160kMB such that the total size
of encoded data is fixed at 4480MB. To evaluate the decoding
performance, we test the worst case that m random disk drives
simultaneously fail. The system works in a pipelined manner,
and the encoding/decoding, network communications, and disk
I/O can overlap with each other. We measure the total time for
each single experiment and also the encoding/decoding time.
Our experimental results for GMPE and SMPE are shown in
Table II.

From the results we can see that both encoding and
decoding take a small portion of the total time. This is because
in our test bed, the aggregate data transmission rate from
the GPU server to the client nodes is the system bottleneck
(i.e., between 300-400MB/s). For decoding experiments, the
total time is much shorter than that of encoding experiments,
due to the fact that the aggregate data transmission rate from
the client nodes to GPU server is much higher (i.e., between
600-700MB/s) than the opposite direction. Our experimental
results verify that PErasure can be easily used to support
erasure coding based data storage systems, and remove the
computational bottleneck with a reasonable cost.
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Fig. 3: Comparison of raw encoding speed: k is the number of data devices and m is the number of coding devices
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Fig. 4: Comparison of raw decoding speed: k is the number of data devices and m is the number of coding devices
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Fig. 5: Comparison of overall encoding speed: k is the number of data devices and m is the number of coding devices

V. CONCLUSIONS

In this paper, we presented PErasure, a parallel CRS
coding library for GPUs. We evaluated its performance on
a contemporary GPU and obtained the following results: (1)
When compared with multi-thread CRS coding on a modern
quad-core CPU, PErasure is about 10-fold faster; (2) When
compared with the most successful GPU implementation of
RS coding, PErasure is still 2-4 times faster; (3) The current
PCIe 3.0 bandwidth is not fast enough to release the power of

PErasure. We use a pipelined design to fully utilize the current
PCIe bandwidth. We believe that with the release of PCIe 4.0
in the near future, PErasure can become more attractive to the
community of cloud storage systems.
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Fig. 6: Comparison of overall decoding speed: k is the number of data devices and m is the number of coding devices

TABLE II: Encoding and Decoding Time on a Storage Cluster
m 2 4 6 8

Data Size (MB) 4160 3840 3520 3200

GMPE Encoding: Total Time (second) 14.60 13.39 15.31 14.95

GMPE Encoding: Encoding Time (second) 0.96 1.14 1.24 1.34

GMPE Decoding: Total Time (second) 5.83 5.91 5.83 5.82

GMPE Decoding: Decoding Time (second) 1.02 1.19 1.34 1.44

SMPE Encoding: Total Time (second) 14.32 13.79 13.85 14.04

SMPE Encoding: Encoding Time (second) 0.85 0.93 0.98 1.03

SMPE Decoding: Total Time (second) 5.82 5.85 5.79 5.80

SMPE Decoding: Decoding Time (second) 0.92 1.00 1.08 1.16
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