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Abstract—Low delivery latency and high delivery ratio are
two key goals in the design of routing schemes in Vehicular Ad
Hoc Networks (VANETs). The existing routing schemes utilize
real-time information (e.g., geographical position and vehicle
density) and historical information (e.g., contacts of vehicles),
which usually suffer from a long delivery latency and a low
delivery ratio. Inspired by the unique features of bus systems such
as wide coverage, fixed routes and regular service, we propose
to use the bus systems as routing backbones of VANETs. In this
work, we present a Community-based Bus System (CBS) which
consists of two components: a community-based backbone and
a routing scheme over the backbone. We collect real traces of
2515 buses in Beijing and build a community-based backbone
by applying community detection techniques in the Beijing bus
system. A two-level routing scheme is proposed to operate over the
backbone. The proposed routing scheme performs sequentially in
the inter-community level and the intra-community level, and is
able to support message delivery to both mobile vehicles and
specific locations/areas. Extensive experiments are conducted on
the real trace data of the Beijing bus system and the results show
that CBS can significantly lower the delivery latency and improve
the delivery ratio. CBS is applicable to any bus-based VANETs.
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I. INTRODUCTION

A vehicular ad hoc network (VANET) consists of a set of
mobile vehicles equipped with dedicated short-range commu-
nication (DSRC) devices, which enable inter-vehicle communi-
cations and the communications between vehicles and roadside
units (RSUs). Routing in VANETs is a very challenging task
due to high-speed mobility and dynamic network topologies.
Extensive work has been done in the design of routing schemes
in VANETs. The existing work could be classified into three
categories. The work in the first category is to deliver messages
from source vehicles to specific geographical locations (i.e.,
vehicle → location), which can support various location-based
applications such as geographic advertising [1], delivery of
parking information [2] and tourist points of interest [3]. The
work in the second category is to deliver messages from source
vehicles to destination vehicles (i.e., vehicle → vehicle), which
is often used for data collection and information sharing [4].
The work in the third category is to disseminate messages,
e.g., emergency messages and traffic alert messages [5], in a
specified area. A broadcast operation is usually performed in
the routing schemes in this category and the challenge is to
tackle the broadcast storm problem [6] [7].

Low delivery latency and high delivery ratio are two key
design goals of routing schemes in VANETs. In the existing
solutions, delivering a message from one vehicle to another
is usually determined based on either real-time information
[8] [9] [10] [11] [12] or historical information [13] [14]

[15] [16] [17]. With the former strategy, a vehicle holding
a message selects its next-hop relay vehicle based on the real-
time information such as geographical position, vehicle density
and moving direction. This strategy performs well in dense
VANETs but suffers from a long delivery latency and a low
delivery ratio in sparse networks due to the lack of global
optimization. The latter strategy utilizes historical information
of vehicles to estimate the occurrences of their contacts in
future. A vehicle delivers its message to the relay vehicle with
the largest chance in contact with the destination vehicles.
Notice that the contacts of vehicles are not on a regular/routine
basis but random in practice. Two vehicles that contacted
previously may not contact again in the near future. Thus,
this strategy could result in a long delivery latency and failure
of message delivery.

To tackle the aforementioned problems, some work [10]
[18] proposed to deploy RSUs at road intersections and bus
stops so as to provide message relay for vehicles. However,
their routing efficiencies are limited by the number and loca-
tions of RSUs and it incurs considerable cost in the deployment
and management of the RSUs [19]. In this work, we propose to
utilize bus systems as routing backbones of VANETs without
RSUs. We study the bus system in Beijing, China, where there
are 21293 buses of 989 bus lines in total. We collect real
traces of 2515 buses (from 1 Mar 2013 to 31 Mar 2013) and
conduct extensive analysis of the traces. We find that there are
several advantages in using bus systems as routing backbones
of VANETs.

Fig. 1: One-day traces of 2515 buses in Beijing. The bold lines
denote the aggregated traces of the buses.

• Wide coverage. We plot the traces of the 2515 buses
in Beijing in Figure 1. It is clear to see that the
traces form a backbone of Beijing city. Therefore, it is
feasible to use bus systems as routing backbones for
message delivery in VANETs.
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• Fixed routes. Compared with routes of other vehicles
(e.g., taxies), the routes of buses are normally fixed.
This unique feature of bus systems enables us to map
a specific location/area to fixed routes of buses. For
example, the route of bus line No. 944 passes by the
Beijing Olympic Stadium (i.e., the Bird’s Nest). The
messages destined for the Bird’s Nest area can be
delivered by the buses of line No. 944.

• Regular service. The service of a bus line is regular.
For example, bus line No. 988 starts and stops its
service at 5am and 10pm, respectively, in Beijing. If
service hours and fixed routes of two bus lines overlap,
the contact of the buses from these two bus lines is
very likely to occur and thus message delivery among
these buses is highly predictable.

In this work, we propose a Community-based Bus System
(CBS) as routing backbone of VANETs. The idea of CBS
originates from our analysis of real traces of 2515 buses in
Beijing. Specifically, CBS is composed of a community-based
backbone and a routing scheme over the backbone. We first
build a contact graph which shows the closeness relation of
bus lines. We notice that some buses are “closer” than others
in terms of the frequency of contacts and some bus lines are
“more active” in connecting other bus lines. Inspired by the
concept of social networks, we apply community detection
techniques in the contact graph to build a community graph
which identifies potential communities of the Beijing bus
system. A backbone graph is derived from the community
graph by mapping the fixed routes of bus lines to the real map.
Based on the community-based backbone, a two-level routing
scheme is proposed to deliver messages to either a mobile
vehicle or a specific location. The two-level routing scheme
operates sequentially in the inter-community level and the
intra-community level on the backbone. Our proposed solution
is applicable to any bus-based VANETs.

The main contributions of this work are summarized as
follows.

• We analyze the real traces of 2515 buses in Beijing
and discover a strong community structure in the bus
lines of these buses.

• We propose to utilize bus system as a routing back-
bone of VANETs and build a community-based back-
bone by applying community detection techniques of
social networks.

• We propose a two-level routing scheme that operates
on the community-based backbone. The proposed
routing scheme is able to support message delivery
to both mobile vehicles and specific locations/areas.

• We conduct extensive experiments on the real bus
traces. The experimental results show that our pro-
posed solution CBS can significantly lower the deliv-
ery latency and increase the delivery ratio, compared
to the existing solutions.

The rest of this paper is organized as follows. Related work
is reviewed in Section II. We analyze the traces of the Beijing
bus system in Section III. We apply community detection
techniques to build a community-based backbone in Section

IV, and propose a two-level routing scheme in Section V. The
experimental results are presented in Section VI. Finally, we
conclude our work in Section VII.

II. RELATED WORK

VANET is a kind of mobile ad hoc network (MANET) and
is essentially a delay tolerant network (DTN). We first review
existing routing schemes in VANETs and then discuss relevant
work in MANETs and DTNs. The differences between our
solution and the existing solutions are summarized in Table I.

A. Routing Schemes in VANETs

Basically, there are two strategies in the design of routing
schemes in VANETs. The first strategy is to use real-time
information of vehicles such as geographical position, vehicle
density and moving direction. GSR [8] is a typical position
based greedy routing scheme in which a vehicle sends mes-
sages to a neighboring vehicle that is closer to the destination
than itself. A similar idea was used in GPCR [9]. It chooses a
neighboring vehicle whose geographical position is at the inter-
section or closest to the destination, and forwards the message
to this neighbor. In addition to the geographical position, traffic
information are also considered in existing routing schemes.
For example, VADD [11] proposes a stochastic model based
on vehicular traffic information which aims to minimize the
message delivery latency. TBD [12] utilizes traces of vehicles
and the traffic information (e.g., vehicle speed and vehicle
density) to improve the performance of data forwarding. A
localized algorithm is presented to compute the expected data
delivery delay (EDD) at individual vehicles to an access point.
The computed EDD is shared with neighboring vehicles and
the vehicle with the smallest EDD is selected as the next
carrier.

The other strategy is to utilize historical information in-
cluding contacts and traces of vehicles. MaxProp [13] builds
a bus network in the UMass Amherst campus and estimates
the delivery likelihood, i.e., the probability of contact between
buses. However, the testbed of MaxProp is composed of 30
buses only. BLER [14] studies contact length between different
bus lines where the contact length is defined as the length
of overlapping routes of these bus lines. A routing path is
computed from one bus line to another such that the sum of
contact length of the path is maximized. Similar to BLER,
R2R [15] calculates the frequencies of contacts between bus
lines based on historical traces and then utilizes them to
decide the routing paths. A recent work, ZOOM [16], considers
the contact-level mobility and the social-level mobility in the
message delivery. A message is relayed by the vehicle with
the shortest contact delay to the destination of the message. If
information of contact delay to the destination is not available,
the message will be delivered to a popular vehicle that has
high centrality in the social level, because the popular vehicle
can contact more vehicles and can have more opportunities
for message forwarding. Another recent work called GeoMob
[20] determines routes based on the traces of vehicles. GeoMob
captures the traffic volumes in different regions and uses the
K-means clustering method to construct clustered regions. The
route is selected to pass through the regions with high traffic
volumes. The routing from one region to another is determined
based on the mobility patterns of individual vehicles. The
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TABLE I: Differences between our solution and the existing solutions

Consider msg
delivery in bus
systems

Build
backbones on
bus systems

Use real
traces of
vehicles

Apply community
detection techniques
of social networks

Support msg
delivery to a
mobile vehicle

Support msg
delivery to a
specific area

Our Solution (CBS)
√ √ √ √ √ √

VANETs

GSR/GPCR [8] [9] × × × × × √
VADD/TBD [11] [12] × × × × × √
MaxProp [13]

√ × √ × √ ×
BLER/R2R [14] [15]

√ × √ × √ ×
ZOOM [16] × × √ √ √ ×
GeoMob [20] × × √ × × √

MANETs
GeoTORA [21] × × × × × √
GeoGrid [22] × × × × × √
SimBet [23] × × × √ × ×
BUSNet [24]

√ √ × × √ ×
DTNs

BUBBLE [25] × × × √ × ×
RCM [17]

√ × √ × √ ×
WiFi-enabled DTN [18]

√ √ × × × √

message is delivered to the vehicles with higher probabilities
of going to the destination region. However, the traffic volumes
in the clustered regions may vary significantly at different time
of a day due to the unpredictable behaviors of vehicles (e.g.,
taxies). Thus, the clustered regions are dynamic and should
be updated frequently which incurs considerable overhead of
maintenance.

B. Routing Schemes in MANET and DTN

There are several relevant routing schemes designed for
mobile ad hoc networks (MANETs). GeoTORA [21] and
Geogrid [22] are proposed to route messages to a specific
location. Notice that the moving speeds of nodes in MANETs
are usually slow. It is feasible to update the network topology
upon each of routing requests. In contrast, vehicles move
with high speeds in VANETs and the network topologies
change rapidly. Thus, GeoTORA and Geogrid are not suitable
for VANETs. SimBet [23] is a social based routing scheme
in MANETs, which employs the similarity and betweenness
centrality of nodes. Messages are routed to most central nodes
until a node with higher similarity is met. Then the packet is
routed within the community until the destination is reached.
BUSNet [24] builds a M-GRID mobility model in vehicular
MANETs, and compares its performance with the random-
waypoint model. However, it lacks a detailed routing scheme
in [24].

In delay tolerant networks (DTNs), RCM [17] assumes that
nodes are with specific cyclic motion and contact patterns,
and uses the Markov decision process to compute a route
such that the expected latency of the route is minimized.
The experiments are conducted on the same campus bus
system as in [13]. However, the urban bus system has more
complicated contact relation, and individual buses do not
follow a strict cyclic motion. BUBBLE [25] investigates social-
based message forwarding based on human mobility traces
in a social DTN. BUBBLE utilizes betweenness centrality to
identify communities of the social DTN. Messages are routed
to the nodes with higher betweenness centralities. In WiFi-
enabled DTNs [18], bus stops are utilized as relays for message
exchange among buses. It deploys wireless communication u-
nits at the bus stops so as to provide bus-stop communications.

Messages could be delivered to and stored at the bus stops, and
then be forwarded to other buses. In this scheme, two buses do
not directly exchange information even if there is an encounter
between the two buses.

III. TRACE ANALYSIS OF BEIJING BUS SYSTEM

In order to understand the characteristics of bus systems in
typical metropolitan areas, we collect the GPS traces of 2515
buses in Beijing during 1-31 March 2013. Each bus in service
submits a GPS report every 20 seconds. Table II illustrates
a sample GPS report of a bus which includes information
of timestamp, bus ID, bus line number, current location (i.e.,
“Latitude” and “Longitude”), moving speed, moving direction,
etc.

TABLE II: Sample GPS report of a bus

Item Value
T imestamp 2013-03-01 21:49:36
BusID BJ G31279

Bus line number 939
Longitude 116.494115
Latitude 40.057195

Speed (km/h) 29
Moving direction 192
Next stop number 14

We first study geographic distribution of bus traces by
aggregating the GPS traces of the 2515 buses. In Figure 2, we
plot four instantaneous geographic distributions of bus traces
at 7am, 12pm, 3pm and 8pm, respectively. The aggregated
bus traces cover an area of 1120 km2. We have the following
observations.

• The instantaneous geographic distribution of the bus
traces covers the whole city. The aggregated trace of
the 2515 buses indeed forms a backbone of the city,
which enables message delivery over the backbone.

• The aggregated trace is stable against the time. Be-
cause the bus routes are fixed, the backbones formed
by the aggregated traces at different time are more
or less the same. It implies that the design of routing
schemes is independent of the backbone.
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Fig. 2: GPS traces of 2515 buses in Beijing. Each dot represents a GPS report of a bus.

Fig. 3: GPS traces of buses of line No. 944. Each asterisk represents a GPS report of a bus of No. 944.

We plot instantaneous geographic distribution of bus traces
of line No.944 in Figure 3, where position of a bus is
indicated by an asterisk. We can see that the buses of line
No.944 are distributed along their fixed route. Notice that
the communication range of vehicles is normally smaller than
1000m [26]. These buses cannot form a connected route but
several connected components instead. This important feature
enables multi-hop delivery of messages in these connected
components, which is exploited in the intra-community level
routing of CBS (Details are given in Section V.B).

Though the backbone is stable and can be determined by
aggregating the traces of all buses, there are many challenges
to be addressed so as to realize routing over the backbone. For
example, how to explore and utilize the relation between the
buses and thus build a structured backbone? How to determine
an efficient route on the backbone? In the following, we
propose a Community-based Bus System (CBS) to answer
these questions. CBS is composed of two components: a
community-based backbone (Section IV) and a routing scheme
over the backbone (Section V).

IV. COMMUNITY-BASED BACKBONE
CONSTRUCTION

The construction of the community-based backbone con-
sists of three steps. Firstly, we build a contact graph which
shows the closeness relation of bus lines. Secondly, we model
the bus system as a social network and apply community detec-
tion techniques in the contact graph to compute a community
graph. Finally, a backbone graph can be derived by mapping
the community graph to the real map. The three steps are
detailed as follows.

A. Constructing Contact Graph

We assume that two buses could exchange a message
(called a contact) if the distance between their locations
is within a given communication range. In the Beijing bus
system, trace reports of buses are discretely generated and each

bus sends a GPS report every 20 seconds. Taking the time
drift into account, we treat two GPS reports that are generated
within 20 seconds as the simultaneously-generated reports. We
have the following definitions.

Definition 1 (Contact): There is a contact between two
buses if the following two conditions are satisfied. 1) There
exist two trace reports which are generated within 20 seconds
by the two buses, respectively. 2) Their distance is not greater
than the communication range at the time when the two trace
reports are generated.

Definition 2 (Frequency of Contacts): Frequency of con-
tacts between two bus lines is defined as the number of contacts
between any two buses from these two bus lines, respectively,
in a unit of time.

Because all buses of the same line number follow the
same fixed route and service schedule, the contact relation is
essentially the relation between two bus lines, instead of two
individual buses. By analyzing the GPS reports of all buses,
we present the definition of the contact graph as follows.

Definition 3 (Contact graph): A contact graph is defined
by a weighted graph Gct = (V,E), where each node v∈V
denotes a bus line representing all the buses of the same line
number. For u, v∈V , there is an edge euv∈E between bus lines
u and v if there exists a contact between two buses from u
and v, respectively. Each edge euv is associated with a weight
wuv = 1/fuv , where fuv represents the frequency of contacts
between u and v.

Figure 4 shows an instance of the contact graph, which is
built by analyzing the one-hour GPS reports of all the 2515
buses in the Beijing bus system. The communication range is
set to be 500m. We can see that the contact graph is connected
which implies that the communication between any two bus
lines is feasible. In Figure 4, there are 120 bus lines (i.e.,
nodes) with 516 contacts (i.e., edges). The network diameter of
the contact graph is 8, in terms of the number of hops. Notice
that the contact graph is a weighted graph. For instance, the
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Fig. 4: Contact graph of 120 bus lines (i.e., 120 nodes).

weight of the edge between bus lines No. 955 and No. 988
is 1/393, where 393 is the frequency of contacts between the
two bus lines in a unit of time (i.e., one hour in Figure 4). The
weights of edges are not specified in Figure 4 due to the large
size of the graph.

With the contact graph, a route (e.g., the shortest path) can
be easily computed between any pair of nodes in the graph.
However, the contact graph is unstructured and the relation
among the nodes are not fully exploited. It has been shown
that the social relation of the nodes can be exploited for more
efficient routing in MANETs [23] and DTNs [25]. In the next
section, we study the social structure of the contact graph to
build a community graph.

B. Constructing Community Graph

In the contact graph, we notice that some bus lines (i.e.,
nodes) are strongly connected in terms of the frequency of
contacts (i.e., weight of edges) and some bus lines are “active”
in connecting more neighboring bus lines. In the discipline
of social networks, a community is a subset of nodes with
stronger connections among them than towards other nodes
[27]. Inspired by this concept, we apply community detection
techniques in the contact graph to identify potential communi-
ties of the bus lines. It is equivalent to partitioning the contact
graph into several communities, each of which is a group of
strongly connected bus lines. We define the community graph
as follows.

Definition 4 (Community Graph): A community graph is
derived from the contact graph Gct and is defined by a
weighted graph Gcm = (V,E), where each node v∈V denotes
a community of bus lines. For u, v∈V , there is an edge euv∈E
between communities u and v if there is an edge between two
bus lines from u and v, respectively, in Gct. Each edge euv
is associated with a weight which is the minimum weight of
edges between any two intermediate bus lines (defined below)
in communities u and v, respectively.

Definition 5 (Intermediate Bus Line): Based on the con-
tact graph and the community graph, an intermediate bus line
is defined as the bus line that belongs to a community, say u,
and is connected to a bus line in another community, say v,
(u �= v). That is, different communities are connected by the
intermediate bus lines.

Two community detection algorithms are applied in the
contact graph to build the community graph. The first is the
pioneer and well-known Girvan-Newman algorithm (GN for
short), presented by Girvan and Newman [27]. The second is
the Clauset-Newman-Moore algorithm (CNM for short) which
is the fastest approximation algorithm for large-scale networks,
presented by Clauset, Newman and Moore [28]. Both algo-
rithms use edge betweenness to measure the influence of an
edge. Specifically, edge betweenness of an edge is defined as
the number of shortest paths between pairs of nodes that go
through this edge in the graph. If a graph contains communities
that are loosely connected by a few inter-community edges,
then all shortest paths between different communities must
go through these inter-community edges. Thus, an edge with
a high betweenness is a bridge-like connector between two
communities, and the removal of this edge may separate the
communities from one another.

For completeness, we describe the basic idea of the GN
algorithm [27] in the following. For the CNM algorithm,
readers may refer to [28] for details. The GN algorithm
first calculates the edge betweenness for all edges in the
graph. Each time, the edge with the highest betweenness is
removed and the betweenness of the remaining edges are
recalculated. The above process is repeated until all edges are
removed. The result of the GN algorithm is a reverse tree
structure of all nodes in the graph. To determine the number of
communities in the graph, Newman defined a quality function
called modularity [29] as follows.

Q =
1

2m

∑

vw

[Avw − kvkw
2m

]δ(cv, cw), (1)

where m is the number of edges in the graph and kv/kw is the
degree of vertex v/w. Vertices v and w belong to communities
cv and cw, respectively. δ-function δ(cv, cw) is 1 if cv = cw
and 0 otherwise. Avw is 1 if vertices v and w are connected
and 0 otherwise.

Modularity Q measures the fraction of the within-
community edges (i.e., the edges that connect vertices which
belong to the same community) minus the expected value of
the same quantity in a randomized network. Q is equal to
0 if the number of within-community edges is no different
from what we expect for the randomized network. Value of
Q approaching 1 (i.e., the maximum value) indicates a strong
community structure of the network. In practice, a value above
0.3 is a good indicator of significant community structure of
a network, and the typical value of Q is in the range from 0.3
to 0.7 [29].

We apply both the GN algorithm and the CNM algorithm
to the contact graph in Figure 4 to compute the community
graph with the maximum modularity value. The modularity
value is maximized when the number of communities equals
6 in both algorithms. The optimal modularity value of the GN
algorithm is Q = 0.576 while that of the CNM algorithm is
Q = 0.53. The comparison of the results is given in Table
III, where each number in the second and the third columns
denotes the number of bus lines contained in the corresponding
community that is computed by the algorithms. The fourth
column “Common” indicates the number of common bus lines
in the same community identified by the two algorithms. There
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are more than 93% overlap between the communities computed
by the two algorithms, which implies that the both algorithms
output a similar community structure. Since the modularity
value of the GN algorithm is larger, we adopt the GN algorithm
in constructing the community graph which is shown in Figure
5, where the 120 bus lines are partitioned into 6 communities in
Figure 5(a) and an abbreviated graph is shown in Figure 5(b).
The community graph is a weighted graph. For instance, the
weight of the edge between community 3 and community 5 is
1/198 which is the minimum weight of edges between any two
intermediate bus lines in these two communities, respectively.

TABLE III: Number of bus lines in communities

GN CNM Common
Community 1 37 32 32
Community 2 24 25 24
Community 3 21 19 19
Community 4 18 18 17
Community 5 13 16 13
Community 6 7 10 7

(a)

(b)

Fig. 5: Community graph. Six communities are identified.

C. Constructing Backbone Graph

Once the community graph is available, we can construct
the backbone graph by mapping the fixed routes of the bus
lines to the corresponding locations in the real map. In this
way, the bus lines, the communities and geographic location-
s/areas are logically connected so as to support geographic
routing. In other words, given a geographic location/area, the
backbone graph can determine a community containing a bus
line whose service (e.g., route) covers this location/area. The
backbone graph is defined as follows.

Definition 6 (Backbone Graph): The backbone graph is
derived from the community graph by mapping the fixed routes

Fig. 6: Backbone graph. Six communities are in different
colors.

of the bus lines to the corresponding roads in the map.
The backbone is partitioned into communities and different
communities may overlap due to the overlapping routes of the
bus lines in these communities.

Figure 6 shows the backbone graph derived from the
community graph in Figure 5. The community-based backbone
is partitioned into 6 regions (i.e., communities) in different
colors. Notice that the construction of the backbone graph is a
one-off operation and the graph can be preloaded at all buses
once it is computed. The backbone graph needs to be updated
only when there is a change of bus service (e.g., change of
bus routes) which does not frequently occur in practice.

V. ROUTING OVER THE BACKBONE

In this section, we propose a two-level routing scheme
of CBS which operates over the community-based backbone.
The routing scheme can support message delivery to both
mobile vehicles (i.e., vehicle → vehicle case) and specific
locations/areas (i.e., vehicle → location case). Notice that a
routing scheme that supports the vehicle → location case is
also applicable to the vehicle → vehicle case as long as the
trace of the destination vehicle is known. The basic idea is
as follows. The routing message could be delivered to the bus
whose route overlaps the trace of the destination vehicle. When
the bus travels in the overlapping route, it can broadcast the
message to any vehicles that it encounters. If the bus misses the
destination vehicle, it could send the message to other buses
which serve in the same overlapping route. In this way, the
destination vehicle can eventually receive the message with a
high probability. We focus on the routing from a source vehicle
to a geographic destination (i.e., vehicle → location case) in
this work.

The source vehicle could be any general vehicle, e.g., a taxi
and a private car. Because the backbone covers the whole city,
we assume that a routing message can be easily delivered from
the source vehicle to one of its nearby buses traveling in the
backbone. Therefore, the routing actually starts with a bus who
first gets the routing message. For simplicity, we assume that
the source vehicle is a bus. We assume that the community
graph and the backbone graph are preloaded at all buses.
Each bus periodically broadcasts HELLO messages so that it
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can be aware of neighboring buses within the communication
range. The routing scheme of CBS operates in two levels,
namely, the inter-community level (i.e., macro view) and the
intra-community level (i.e., micro view). The inter-community
routing is to determine a route from a source community to
a destination community in the community graph, while the
intra-community routing is to compute an efficient route within
each community.

A. Inter-community Routing

Given a source vehicle (i.e., bus) and a geographic desti-
nation, the routing scheme of CBS performs in the following
three steps.

1) Identifying source and destination communities: The
source and the destination are mapped to the corresponding
communities in the backbone graph. For the source bus, it is
easy to find the community which contains the corresponding
bus line of the source. For the destination, it determines the
community that includes the bus line whose route covers the
destination. Taking Figure 6 as an example, the source is a bus
of line No. 942 and the destination is located in the down-left
corner of the map. Combining the backbone graph in Figure 6
and the community graph in Figure 5, we can determine that
bus line No. 942 belongs to community 5 and the route of bus
line No. 837 in community 2 goes through the destination. We
call community 5 the source community and community 2 the
destination community.

2) Computing route between source and destination com-
munities: In the community graph (i.e., the weighted graph
shown in Figure 5, the shortest path is computed from the
source community to the destination community: community
5 → community 1 → community 2, which is called an inter-
community route. If the source and the destination belong to
the same community, the intra-community routing (presented
in next subsection) is invoked immediately.

3) Identifying intermediate bus lines of communities:
According to Definition 5, different communities are connected
by the intermediate bus lines. For each community in the route,
we determine the intermediate bus line that is connected to
the downstream community in the route. If there are more
than one intermediate bus lines, it selects the one with the
smallest weight (the most stable connection) in connecting the
downstream community.

Fig. 7: Inter-community routing.

Figure 7 shows the inter-community route determined in
the inter-community routing. We can see that bus line No. 955
belongs to community 5 and it is the intermediate bus line that
connects bus line No. 988 in community 1.

B. Intra-community Routing

Once an inter-community route is computed, the intra-
community routing is applied in each of the communities in
the route. The intra-community routing is to route the message
from a bus of the source bus line carrying the message to the
bus of the intermediate bus line within the same community.
In each of the communities, the intermediate bus line serves as
the destination bus line in the intra-community routing in that
community. It is believed that a larger frequency of contacts
between bus lines implies a more reliable communication rela-
tion and a higher delivery ratio. Since the bus lines in the same
community are strongly connected with larger frequencies of
contacts, it is better to limit the message delivery within
the community. The intra-community routing is described as
follows.

1) Computing intra-community route: Given a community,
the source bus line and the destination bus line (i.e., the inter-
mediate bus line in this community), we delete all the bus lines
that do not belong to this community and the corresponding
edges in the contact graph. The resulting graph is a subgraph of
the contact graph induced by the bus lines in this community.
Then, the shortest path is computed from the source bus line
to the destination bus line in this subgraph. Figure 8 shows the
intra-community routing in the three communities which are
calculated in Figure 7. Taking community 5 as an example,
the optimal intra-community route is: No. 942 (the source bus
line in community 5) → No. 918K → No. 915 → No. 955
(the destination bus line in community 5).

2) Exploiting multi-hop transmission: According to the
observation made in Figure 3, buses of the same bus line
usually form several connected components in the route. It im-
plies that multi-hop transmission is feasible in these connected
components. Thus, a copy of the message will be delivered
to the buses of the same bus line whenever the multi-hop
transmission is possible. This strategy can significantly save
the carrying time of buses and can increase the delivery ratio.
Since the number of buses under a single bus line is limited
(e.g., a typical number is 20 in the Beijing bus system), the
overhead of duplicated messages is acceptable.

Fig. 8: Intra-community routing.

After the intra-community routing is applied in the three
communities in Figure 8, the final route from the source
bus line (No. 942) to the destination bus line (No. 837) is
determined as follows: No. 942 (5) → No. 918K (5) → No.
915 (5) → No. 955 (5) → No. 988 (1) → No. 944 (1) →
No. 958 (1) → No. 830 (2) → No. 836K (2) → No. 837 (2),
where each number in the parenthesis denotes the community
that the bus line belongs to. There are 9 hops in the route.
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VI. PERFORMANCE EVALUATION

A. Experimental Setup

We conduct extensive trace-driven simulations to study the
performance of CBS. In the simulations, CBS is compared with
two routing schemes in bus-based VANETs [14] [15] and one
routing scheme in general VANETs [16]. The routing schemes
selected for comparison are briefly described as follows.

• BLER [14]. It first builds a graph in which each
node denotes a bus line and each edge of two nodes
indicates at least one contact between these two nodes
(i.e., bus lines). The weight of an edge is the contact
length which is defined as the length of overlapping
routes of the corresponding bus lines. The routing path
to the destination is computed in the graph such that
the sum of contact length of the route is maximized.

• R2R [15]. This scheme uses a similar graph as BLER
except that the weight of an edge is the frequency of
contacts between two bus lines.

• ZOOM [16]. In this scheme, each vehicle estimates
its delay to the destination vehicle based on historical
contact information. All vehicles are grouped into
communities by the Louvain algorithm [30] and ego-
betweenness is adopted to measure the centrity of the
vehicles. A vehicle, say u, delivers a message to a
relay vehicle, say v, if one of the following three
rules is satisfied. 1) v is the destination vehicle of
the message. 2) v has a shorter estimated delay to the
destination vehicle. 3) v has a larger ego-betweenness
than u if both u and v have no information about the
destination vehicle. The vehicles in ZOOM include
taxis and buses and the estimated delay of next contact
between two vehicles follows a specific probability
distribution. In contrast, the buses considered in this
work normally have fix routes/schedules and the prob-
ability model developed in [16] is not applicable to the
bus system. Therefore, we adopt only rules 1) and 3)
of ZOOM and name this modified scheme ZOOM-like
in our simulations.

We consider the following metrics in evaluating the per-
formance of the routing schemes.

1) Delivery ratio. It is defined as the ratio of the number
of successfully-delivered messages to the total number of
messages during the operation of the bus system.

2) Delivery latency. It is defined as the time it takes to
deliver the message from the source to the destination. It is
applicable to only successfully-delivered messages.

3) Number of hops. It is defined as the number of bus
lines it takes to deliver the message from the source to the
destination.

4) Message carrying time. It is defined as the average
duration that each relay vehicle carries the message.

In the simulations, we set the communication range to be
500m and adopt the real GPS traces of 2515 buses of 120 bus
lines in Beijing to build the graphs needed by the four routing
schemes (i.e., CBS, BLER, R2R, and ZOOM-like). Since CBS,

BLER and R2R depend on the relations of bus lines and the
contact relations of the bus lines are relatively stable, we use
one-hour traces to generate the graphs in CBS, BLER and
R2R. For CBS, we build the contact graph in Fig. 5 according
to Definitions 1-3. Then, the GN algorithm [27] is applied to
generate the community graph in Fig. 6. The backbone graph
is finally computed in Fig. 7. BLER and R2R build the contact
graphs in a similar way to CBS. The weight of each edge is
set to be the contact length and the frequency of the contact,
respectively, in BLER and R2R. ZOOM stems from mining
the relations of individual vehicles (e.g., taxies). Considering
that our data set includes only the traces of buses and daily
traces of individual buses normally are similar, we use one-
day traces of the buses to generate the graph of ZOOM-like
in which 49 communities of the 2515 buses are identified.

We study three cases of routing requests: 1) short distance
case, 2) long distance case, and 3) hybrid case. The source
and the destination are within a same community in the short
distance case while they are located in different communities
(i.e., the routing has to cross multiple communities) in the long
distance case. The hybrid case is the mixture of both the short
distance case and the long distance case. 6000 routing requests
are generated in the first 6000 seconds of the experiment, i.e.,
a new routing request is generated in every second of the
6000 seconds. For each routing request, the source vehicle
(i.e., the source bus) is randomly selected from the 2515
buses. In the short distance case, the destination location is
randomly selected from the joint routes of all the bus lines
which belong to the same community of the source bus. A
bus whose route covers this destination location acts as the
destination bus. In the long distance case, the destination bus is
selected in a similar way but the destination is located outside
the community of the source bus. The destination location
could appear in any place of the backbone in the hybrid case.
The experiment lasts 12 hours, i.e., the operation of the bus
system lasts 12 hours. A message that can be delivered to the
destination bus within 12 hours is counted as a successfully-
delivered message in calculation of the delivery ratio.

B. Delivery Ratio

Figure 9 shows the delivery ratio versus the operation
duration of the bus system in the three cases. From Figure
9(a) (i.e., the short distance case), we observe that CBS
gives the highest delivery ratio among all the schemes. For
instance, CBS successfully delivers 94% messages within 4
hours, while the corresponding delivery ratios of BLER, R2R,
and ZOOM-like are 54%, 46% and 48%, respectively. In the
long distance case shown in Figure 9(b), the curves of all
the schemes drop because it takes a longer time to deliver
a message to the destination bus when the routing distance
becomes larger. Nevertheless, CBS significantly outperforms
the other three schemes in the long distance case. A similar
conclusion can be drawn in the hybrid case in Figure 9(c).
Figure 10 shows the relation between the delivery ratio and
the communication range. We can see that the delivery ratio
of CBS retains stable at a high level, regardless of the change
of the communication range. For the other three schemes,
their delivery ratios improve as the communication range
increases. In particular, a significant increase is observed when
the communication range increases from 100m to 200m. The
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(c) Hybrid case

Fig. 9: Delivery ratio vs. operation duration of bus system.
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Fig. 10: Delivery ratio vs.
communication range.
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Fig. 11: Delivery latency vs. operation duration of bus system.
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Fig. 12: Delivery latency vs.
communication range.

delivery ratios of BLER, R2R, and ZOOM-like stabilize when
the communication range is greater than 500m.

C. Delivery Latency

Figure 11 shows the delivery latency versus the operation
duration of the bus system in the three cases. We can see
that CBS gives the shortest latency when the bus system lasts
over five hours. Its delivery latency increases slightly at the
first four hours and remains stable thereafter. Specifically, the
delivery latency of CBS is under 100 minutes, 155 minutes
and 127 minutes, respectively, in the short, long, and hybrid
distance cases. In contrast, the delivery latencies of the other
three schemes increase rapidly. The reasons are given in the
following. Since BLER is very similar to R2R, we take R2R
as an example for explanation. R2R simply computes the
routing path in the contact graph such that the sum of weights
(i.e., frequency of contacts) in the path is maximized. This
simple strategy may miss those crucial links which bridge
different groups (i.e., communities) of bus lines. As a result,
R2R may output the path containing an unreliable link with
a small frequency of contacts, which consequently increases
its delivery latency. ZOOM utilizes the relation of individual
vehicles for routing. So the routing efficiency of ZOOM is
highly dependent on the number of contacts of the vehicles.
However, we find that a bus can contact only 5% of all buses
in the Beijing bus system. The delivery latency of ZOOM-like
is high with this limited number of contacts.

Figure 12 shows the delivery latency versus the communi-
cation range in the three cases. It can be seen that all the four
schemes experience a decrease as the communication range
increases. Obviously, a large communication range facilitates
the contact of buses and increases the probability of multi-hop
forwarding. When the communication range increases from
100m to 800m, the delivery latencies of CBS, BLER, and R2R
decrease by 14.5%, 14%, and 16.6%, respectively. In contrast,
the decrease in the delivery latency of ZOOM-like is not
significant. Once again, CBS gives the shortest delivery latency

among all the schemes, which demonstrates the superiority of
routing over the backbone of the bus system.

D. Number of Hops and Message Carrying Time

Figure 13 shows the average number of hops of the
successfully-delivered messages. The hops are measured be-
tween the bus lines. In CBS, it needs about 6 hops on average
to deliver a message to the destination, which is larger than
the other three schemes. Notice that the delivery latency in
VANETs is mainly due to the latency in carrying the messages
instead of the latency in forwarding the messages. CBS gives
the highest delivery ratio as well as the shortest delivery
latency among all the schemes, regardless of its larger number
of bus lines in delivering the messages.
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Fig. 13: Average number of hops

Figure 14 shows the average carrying time of each message
in each bus line before it is delivered to the destination. The
average carrying time of CBS is below 20 minutes which is the
lowest among all the schemes. This is because CBS exploits
multi-hop transmissions among the buses for fast message
delivery. The average carrying time of ZOOM-like increases
significantly after nine hours elapse in the experiment. In
BLER and R2R, without the multi-hop transmissions, buses
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have to carry messages for a long time until they find suitable
relay buses.
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Fig. 14: Average carrying time

VII. CONCLUSION

This work is based on real GPS traces of 2515 buses
in Beijing, China. By analyzing these GPS traces, we have
found that the bus system can serve as a routing backbone of
VANETs. We have proposed a Community-based Bus System
(CBS) as routing backbone to support efficient message deliv-
ery in VANETs. CBS consists of a community-based backbone
and a routing scheme over the backbone. We have built a
community-based backbone by applying community detection
techniques in the Beijing bus system. We have presented a
two-level routing scheme that operates over the backbone.
The proposed routing scheme is able to deliver messages to
both mobile vehicles and specific locations/areas. Extensive
experiments have been conducted on the real trace data of the
Beijing bus system. The experimental results have shown that
CBS can significantly lower the delivery latency and improve
the delivery ratio, compared to the existing solutions.
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