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Abstract—Many recent deep learning platforms rely on third-
party libraries (such as cuBLAS) to utilize the computing power
of modern hardware accelerators (such as GPUs). However,
we observe that they may achieve suboptimal performance
because the library functions are not used appropriately. In this
paper, we target at optimizing the operations of multiplying a
matrix with the transpose of another matrix (referred to as NT
operation hereafter), which contribute half of the training time
of fully connected deep neural networks. Rather than directly
calling the library function, we propose a supervised learning
based algorithm selection approach named MTNN, which uses a
gradient boosted decision tree to select one from two alternative
NT implementations intelligently: (1) calling the cuBLAS library
function; (2) calling our proposed algorithm TNN that uses
an efficient out-of-place matrix transpose. We evaluate the
performance of MTNN on two modern GPUs: NVIDIA GTX
1080 and NVIDIA Titan X Pascal. MTNN can achieve 96%
of prediction accuracy with very low computational overhead,
which results in an average of 54% performance improvement
on a range of NT operations. To further evaluate the impact
of MTNN on the training process of deep neural networks, we
have integrated MTNN into a popular deep learning platform
Caffe. Our experimental results show that the revised Caffe can
outperform the original one by an average of 28%. Both MTNN
and the revised Caffe are open-source.

Index Terms—Linear Algebra; Matrix Multiplication; Trans-
pose; GPU; Deep Neural Networks

I. INTRODUCTION

Deep neural networks have recently achieved great suc-
cess in varieties of AI applications [1]. The forwarding and
backwarding phases in the backpropagation based training
process of a deep neural network require two different forms
of matrix multiplication C = A × B and C = A × BT , where
A ∈ Rm×k, B ∈ Rk×n (B ∈ Rn×k for the latter form) and
C ∈ Rm×n. In this paper, we call the first form NN operation
(N means no transpose) and the second form NT operation (T
means transpose). The time complexity of schoolbook matrix
multiplication is O(m × k × n), which makes it very time-
consuming for large matrices. Nowadays, there exist many
optimized software libraries for matrix operations, including
OpenBLAS, Intel MKL, cuBLAS, etc. As GPUs have become
mainstream hardware accelerators, the cuBLAS library from
NVIDIA becomes a major linear algebra library for many deep
learning software tools [2].

Some recent work have been proposed to understand and
improve the performance of NN operations on GPUs [3][4].
Considering the complexity of GPU architectures, it is very

challenging to design a single algorithm or a single set of
kernel configuration that is optimal for all cases; hence auto-
tuning method has become an attractive approach to choosing
the best algorithms or kernel configurations for GPUs [5][4].
However, the NT operations have not received much attention
from the research community. Our previous work show that
many state-of-the-art deep learning software tools overlook
the importance of NT operations and only achieve suboptimal
performance for some deep neural networks [2].

In this paper, we first show that the performance of NT
operation by cuBLAS is often much lower than that of
NN operation on recent GPUs. We then propose a simple
method called TNN which implements the NT operation by
carrying out efficient out-of-place matrix transpose first and
then performing an NN operation. In general, TNN outper-
forms cuBLAS for large matrices, but it is not as efficient
as cuBLAS for small matrices. In order to achieve the best
average performance, we design an algorithm selection method
named MTNN, which can intelligently select the appropriate
algorithm to carry out the NT operations based on some
GPU architecture information and matrix sizes. Notice that
the idea of algorithm selection dates back to 1976 [6] and
becomes very successful in recent years to choose optimal
implementation from a set of algorithms [7][8][9]. To verity
the effectiveness of MTNN, we integrate it into a popular
real world deep learning platform Caffe [10] which relies on
cuBLAS to accelerate its NN and NT operations on GPUs.
We evaluate the performance of MTNN and revised Caffe on
two modern GPUs: NVIDIA GeForce GTX1080 and Titan X
Pascal, and the experimental results show that (1) our MTNN
solution achieves up to 54.03% improvement on average over
the NT operation of cuBLAS; and (2) the revised Caffe1

achieves 28% speedup over the original Caffe on the tested
GPUs.

The rest of the paper is organized as follows. We present the
motivation of this work in Section II, and then introduce the
related work in Section III. The TNN method is described in
Section IV, followed by our MTNN framework in Section V.
Experimental results are presented in Section VI. We conclude
the paper and discuss our future work in Section VII.

1Our source codes can be found here: https://github.com/hclhkbu/
caffe-optimized

https://github.com/hclhkbu/caffe-optimized
https://github.com/hclhkbu/caffe-optimized


II. MOTIVATION

On deep neural networks, especially the fully connected
networks, matrix-matrix multiplication (i.e., NN operations)
and matrix-matrix-transpose multiplication (i.e., NT opera-
tions) are the two major computational tasks for the training
process. Both types of matrix multiplication are commonly
implemented by the SGEMM routine of BLAS library in
practice. The standard SGEMM has the form: C = α ·
op(A) × op(B) + β · C, where op represents whether the
matrix is transposed, and α and β are scalars. To simplify
the calculation, we ignore the second term (i.e., β = 0) and
set α = 1. In cuBLAS, the SGEMM API is “cublasSgemm”,
in which the second and the third parameters are the val-
ues of op for A and B respectively. The value of op can
be “CUBLAS OP T” (transpose) or “CUBLAS OP N” (no
transpose). To understand the performance difference between
NN and NT operations in cuBLAS, we conduct experiments
to evaluate the running time performance of SGEMM for NN
and NT operations with different sizes of input matrices. The
experiments are conducted on two NVIDIA Pascal GPUs:
GTX 1080 and GTX Titan X Pascal with CUDA-8.0.

TABLE I. THE EXPERIMENTAL GPU HARDWARE WITH CUDA-8.0

GPU Model Cores Memory OS Core frequency
GTX1080 2560 8 GB Ubuntu 14.04 1607 MHz
Titan X 3584 10 GB Ubuntu 14.04 1417 MHz

We use Palgorithm to denote the performance of a spe-
cific algorithm with the unit of GFLOPS. To illustrate the
difference between PNN and PNT , we run experiments for
1000 cases with different matrix sizes (i.e., both the width
and the height of A and B are 2k where k ranges from
7 to 16) and show the distribution of resulted PNN/PNT

in Fig. 1. It is noted that, in most cases, the performance
of NN is much better than that of NT because there is no
overhead of matrix transpose. The percentages of the number
of cases that PNN is higher than PNT are 71% and 62%
on GTX1080 and Titan X respectively. More surprisingly,
there are around 20% of cases with PNN/PNT ≥ 2.0 on
both GPUs. The low performance of NT of cuBLAS may be
caused by the inefficient memory access to the elements of B.
Another possible reason is that cuBLAS uses the slow in-place
matrix transpose algorithm to reduce the memory footprint
[11]. Observing this low efficiency issue, we are motivated to
propose a method (TNN) for NT operations which finds the
transpose of B first and then calls NN function of cuBLAS to
finish the calculation of A× BT on GPUs. The performance
of TNN is better than cuBLAS in most cases, but still there
exist cases that cuBLAS outperforms our TNN. To this end,
we further design an algorithm selection method to select an
appropriate algorithm from the set {TNN, NT of cuBLAS}
based on a supervised learning algorithm. Notice that TNN
requires that the GPU memory is large enough to store the
additional BT . If that is not the case, our framework will
simply choose the original NT operations.
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Fig. 1. The frequency of performance ratio of PNN over PNT among
1000 tested cases on each GPU. The last value (i.e., 2.0+) of x-axis means:
PNN/PNT ≥ 2.0.

III. RELATED WORK

SGEMM algorithm in cuBLAS has been highly optimized
on GPUs by kernel optimization [3][12][13][14] and auto-
tuning algorithms [15][5]. The information of different levels
of GPU memory access latency [16][12] and instruction com-
putation [3] are extracted to help increase the parallelism of
GPU kernels, which can achieve excellent performance that
is close to the theoretical hardware capacity based on the
block-based matrix-matrix multiplication algorithm. Targeting
at Fermi GPU of DGEMM (GEMM in double precision),
R. Nath et al. [13] propose a double blocking algorithm to
reduce the impact of latency in accessing registers and the
shared memory, which can achieve up to 58% of the peak
performance. Even though there is a well-designed kernel on
GPU, the discrepancy among distinct GPUs would require
different configurations to obtain best performance. Instead of
conducting detailed kernel analysis, auto-tuning methods have
been investigated to select the optimal configuration to achieve
better performance of the kernel [15][5].

However, little work has been done to evaluate the perfor-
mance of the NT operations. Since BT

ji = Bij , we can perform
NT by changing the access of a row to the corresponding
column of matrix B with SGEMM routine. However, it might
cause extra penalty due to uncoalesced global memory access
and conflicted shared memory access when fetching the col-
umn elements of matrix B. The kernel optimization of NT is
challenging because its performance depends not only on the
GPU architecture, but also on the input matrix size. Therefore,
instead of optimizing the kernel algorithm, we first propose a
simple approach called TNN as an alternative to SGEMM.
We notice that TNN can significantly outperform SGEMM in
many cases, but sometimes its performance could be worse
than SGEMM. To this end, we formulate an algorithm selec-
tion problem in order to select the appropriate algorithm for
each NT operation.

Machine learning approaches become useful in choos-
ing more efficient algorithms with high accuracy [7][9][8].
Spillinger et al. [7] exploit SVM model [17] to predict the
better implementation of matrix multiplication algorithm at
runtime among two implementations of MKL and CARMA on
three different CPU platforms, which achieves about 26% per-



formance improvement on average. Beside the SVM model ap-
plied to solve algorithm selection problem [7][9], the decision
tree classifier is also used to solve the automatic selection of
sparse matrix representation on GPUs and it obtains no more
than 1.05x average slowdown compared to the existing ideal
approach [9]. In this paper, we make use of machine learning
techniques to choose the more efficient algorithm between our
proposed TNN and the original cuBLAS implementation to
improve the performance in calculating C = A×BT .

IV. TNN: TRANSPOSE BEFORE MULTIPLY

As we already show in Fig. 1, directly calculating C =
A × BT through cuBLAS API is usually inefficient. We
propose a simple TNN method which replaces the one-step
NT operation by two-step operation, i.e., transposing B first
and then making use of NN. The overall performance can
be improved if TTNN = Ttranspose + TNN < TNT , where
Talgorithm is the computation time of algorithm. Noted that
Ttranspose includes the time of GPU memory allocation and
release.

Matrix transpose is a memory bound operation [18]. There
are two very different ways to perform matrix transpose: in-
place and out-of-place. The in-place matrix transpose does
not require extra memory space, but it is generally factored
as a product of disjoint cycles, which makes parallelization
so difficult in rectangular matrices [11]. The state-of-the-art
implementation of in-place matrix transposition achieves only
51.56 GB/s and 22.74 GB/s on GTX 980 (with a peak memory
bandwidth of 224 GB/s) and Telsa K20 (with a peak memory
bandwidth of 208 GB/s) respectively [11]. On the contrary, the
out-of-place matrix transposition can exploit the GPU shared
memory to achieve an efficient utilization of GPU memory
bandwidth. In [18], the optimized transpose kernel achieves
up to 80% of peak bandwidth on tested GPUs, which is much
higher compared to the in-place algorithm.

Algorithm 1 TNN
1: procedure TNN(A, B, C, m, n, k)
2: BT = cudaMemAlloc(n*k*sizeof(float));
3: transposeOnGPU(B, n, k, BT);
4: cublasSgemm(..., CUBLAS OP N, CUBLAS OP N, ...);
5: cudaFree(BT);

We conduct experiments with 1000 cases (m,n, k =
27, 28, ..., 216) for both TNN and NT methods. Experimental
results of NT and TNN are shown in Fig. 2. It is noticed that
there are some cases that NT outperforms the TNN method,
especially when k is small (e.g., there are up to half of the
cases that NT is better than TNN when k is 128 on both
GPUs). Among all the tested cases, the maximum speedup of
TNN over NT is 4.7x, whilst the maximum speedup of NT
over TNN is 15.39x. There is a great portion of cases (about
41.5% on GTX1080 and 43% on TitanX) that are shaded with
red rectangles. Therefore, to perform faster calculations of
C = A × BT , we should choose the NT algorithm or the
TNN algorithm appropriately.

V. MTNN: A SUPERVISED-LEARNING BASED
ALGORITHM SELECTION METHOD

In this section, we first formulate the algorithm selection
problem as a classification problem for two given input sizes
of matrices and a specific GPU platform. Let the class: −1
denote PTNN > PNT and the class: 1 denote PTNN ≤ PNT .
Given a GPU platform: G, size of matrix A (m× k) and size
of matrix B (n×k), there exists a function: f : (G,m, n, k) 7→
{−1, 1}. We need to learn a function f̂ such that: f̂ =
argmin

∑
(G,m,n,k)∈Ω ||f̂(G,m, n, k) − f(G,m, n, k)||. The

learning of function f̂ can be regarded as a binary classifi-
cation problem. There are 4 main steps of our supervised-
learning based method MTNN. First, we need to construct the
training and testing data set with proper preprocessing of data
by benchmarking the performance of NT and TNN. Second,
we learn a decision model (i.e., f̂) from training samples with
supervised machine learning algorithms. Third, we evaluate
the learned model on the testing data set. Lastly, we apply the
trained model to predict the better implementation (i.e., NT or
TNN) in calculating C = A×BT .

A. Data Collection

According to the results of Fig. 1, we choose a range of
matrices with sizes in S = {2i|i = 7, 8, ..., 16}. For all m, n
and k (m,n, k ∈ S), which has 1000 combinations, we test
the performance of NT and TNN in calculating C = A×BT .
Let PNT (m,n, k) and PTNN (m,n, k) denote the performance
of NT and TNN respectively with two matrices A and B,
where A ∈ Rm×k and B ∈ Rn×k. The difference between
PNT (m,n, k) and PTNN (m,n, k) is denoted by D(m,n, k).
If D(m,n, k) ≥ 0, then label = 1; otherwise label = −1.
Besides the variety of input size of matrices, the GPU platform
can also be different. Thus, we extract the features to repre-
sent different GPUs. Combined with different values of the
characteristics of GPU, the input sample x has 8 dimensions:
5 from GPU specification and 3 from matrix size. The first 5
dimensions are the size of GPU global memory (gm), the
number of SMs (sm), core clock (cc), memory bus width
(mbw) and the size of L2 cache (l2c). Note that the feature
generation is an O(1) computation, which is crucial to reduce
the overhead of the predictor in runtime. The format of input
sample x is: (gm, sm, cc,mbw, l2c,m, n, k), label. For each
type of GPU, 1000 cases are tested; but some samples that
cannot be fitted into memory are not included into evaluation.
So the number of valid samples on each GPU is less than 1000
(i.e., 891 on GTX1080 and 941 on TitanX). We do not need to
normalize the input feature by using decision tree. By contrast,
each dimension of the input feature should be normalized to
the range of (0, 1) when training SVMs.

B. Model Training

Given the training set: S = {x|x = (G,m, n, k)}, where G
represents GPU characteristics, the classifier f̂ is learned. If
f̂(x) = −1, then we choose TNN; otherwise we choose NT.



Fig. 2. The performance comparison between NT by cuBLAS and TNN in calculating C = A × BT . The red rectangle symbol in the legend indicates
that the performance of NT is better than TNN; the green cycle symbol indicates that the performance of NT is worse than TNN; and the blue dash symbol
indicates that the performances of NT and TNN are equal. The size of the rectangle and cycle symbols reflects the value of PNT /PTNN and PTNN/PNT

respectively: larger symbol size indicates higher ratio value. The top two rows are for GTX1080, and the bottom two rows are for Titan X.
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Fig. 3. The frequency of performance ratio of PTNN over PNT among
1000 tested cases on each GPU. The last value (i.e., 2.0+) of x-axis means:
PTNN/PNT is greater than or equal to that value

Learning Algorithm. SVM is a powerful learning algo-
rithm in solving classification problems. And it is success-
fully applied to solve algorithm selection problems related to
matrix-matrix multiplication [7][8]. Another powerful learning
algorithm: decision tree (DT) is also prosperously used in
solving the problem of automatic best algorithm selection
[9], and there is an extended algorithm of decision tree
named gradient boosted decision tree (GBDT) [19]. A flexible
framework XGBoost [20] of GBDT implementation is used
in this paper. We choose GBDT as our learning algorithm for
three main reasons: 1) It does not require the input feature
normalization since the decision tree is a recursive parti-
tioning based algorithm, which reduces the overhead of the
feature preprocess in runtime. 2) Among 10 popular supervised



learning algorithms, boosted decision tree outperforms other
algorithms, including SVM and traditional decision tree on
many tested dataset [21]. 3) The prediction time complexity
is acceptable, say O(h), where h is the depth of the trained
decision tree and can be restricted to a fixed value.

Parameter Configuration. We need to consider two main
impacts when setting the parameters. On one hand, it is
crucial that the depth of the decision tree should not be too
deep; otherwise it will increase the overhead of the predictor
in runtime. On the other hand, we need to set the proper
parameters such that the prediction accuracy is high enough.
In this paper, we set the maximum depth of the decision tree
to be 8 and the number of estimators for boosting is also 8.
We set step size shrinkage (eta) to be 1, and the minimum loss
reduction (gamma) to 0, which make the boosting algorithm
more progressive.

Training. Instead of training model separately for different
GPUs, we hope that the model is robust to different GPU
hardware, so we put all the input features (8-dimension vector,
including 5 characteristics of GPU) into one model. We ran-
domly split the dataset into training data set (80%) and testing
data set (20%). Note that in the 80% training data set, there
include 80% samples from each GPU, and the remainder is
used as testing data set. To validate whether the chosen model
can generalize our dataset or not, 5-fold cross-validation is
presented in this work. After the evaluation of cross-validation,
the whole data set is used as training data to learn the final
model that can be put into real-world applications.

Integration. We use the learned model as our predictor of
the selection system to choose the better algorithm between
NT and TNN. After the model has been well trained, the final
algorithm in calculating C = A×BT is derived, and we call
it MTNN which is shown in Algorithm 2.

Migration to Other Platforms. The MTNN method can
be migrated to other GPU platforms by repeating the model
training progress, which will generate the new selection model
on the target platform to predict the better algorithm in
calculating the matrix-matrix-transpose multiply.

Algorithm 2 MTNN
1: procedure MTNN(A, B, C, m, n, k, g)
2: int label = predictor(g, m, n, k);
3: if (label == 1) then
4: cublasSgemm(..., CUBLAS OP N, CUBLAS OP T, ...);
5: else
6: TNN(A, B, C, m, n, k);

VI. EVALUATION

We first evaluate the accuracy of the predictor, and then we
present the overall performance improvement with the trained
predictor (i.e., the performance of MTNN).

A. Performance of Classification

To evaluate the performance of the classification algorithm,
we use the metric of classification accuracy to measure the
classifiers. The average accuracy of our pre-defined 5-fold
cross-validation is 90.51%, which means that the predictor

makes the calculation of C = A × BT faster in 90.51%
cases. Since the testing data set is an imbalanced set with
a larger number of negative samples than positive samples,
both accuracies of the negative and the positive classes are
recorded. Table II shows the details of the accuracy of the
5-fold cross-validation.

TABLE II. ACCURACIES OF THE 5-FOLD CROSS-VALIDATION

Class Minimum Maximum Average
Negative 91.36% 93.30% 92.05%
Positive 86.49% 92.31% 88.39%
Total 89.40% 91.94% 90.51%

We also make a comparison with SVM algorithms, includ-
ing axial basis function kernel (SVM-RBF) and polynomial
kernel (SVM-Poly), both of which are commonly used in
supervised machine learning. We use libSVM [22] as SVM
implementation. The parameters for SVM are: C = 1000.0
and gamma = 0.01, and the input feature is normalized
to the range of (0, 1). The learning algorithm of traditional
decision tree (DT) is also included into the comparison to
show GBDT has a better performance in terms of accuracy
and running efficiency. In the tested experimental environment
(Table III) for learning algorithms, the performances of clas-
sifiers are shown in Table IV. From Table IV, in terms of

TABLE III. THE EXPERIMENTAL ENVIRONMENT FOR CLASSIFIERS

CPU Memory OS Frequency
Intel CPU i7-3820 64 GB Ubuntu 14.04 3.6 GHz

TABLE IV. COMPARISON WITH SVM AND DT

Classifier Accuracy (%) Train Time (ms) Predict Time (ms)
GBDT 90.51 7 0.005
SVM-RBF 81.66 47 1.2
SVM-Poly 77.68 30 1.07
DT 87.84 1 0.004

prediction accuracy, GBDT is much better than both SVM and
DT. Regarding the training and prediction efficiency, GBDT
outperforms both types of SVMs. Even though the prediction
time of GBDT is slightly longer than that of DT, it could be
neglectable (only 0.005 ms) compared with the overhead of
matrix-matrix-transpose multiplication.

B. Performance of Selection
In this section, we show how much performance can be

improved by MTNN, which is integrated with the trained
predictor. In MTNN, the integrated predictor is trained with
all the data set to achieve higher performance instead of
just using 80% data for training because the more data the
higher accuracy in general. With 100% data as training set,
the trained predictor with GBDT achieves 96.39% accuracy
in classification, which means the selection system makes the
correct decision to choose the better algorithm between NT
and TNN in 96.39% cases.

Before presenting the statistic results of MTNN compared
to NT and TNN, a visualized comparison between MTNN and



Fig. 4. The performance comparison between NT and MTNN method in calculating C = A × BT . The rectangle symbol in the legend indicates that the
performance of NT is better than MTNN, and the cycle symbol green color indicates that the performance of NT is worse than MTNN, and the dash symbol
with blue color indicates that the performances of NT and MTNN are equal.

NT on our tested GPUs is shown in Fig. 4. Compared to Fig. 2,
the red rectangles, which indicate that the performance of TNN
is worse than NT, are reduced to a very small portion by the
MTNN method. In other words, in most cases, the performance
of MTNN is better than or equal to NT; and only in a minority
of cases, the performance of MTNN is worse than NT. The
statistic frequency on the performance of MTNN over NT is
shown in Fig. 5, which shows that there is only a small portion
of cases that NT outperforms MTNN on both GPUs. In Fig.
2, the maximum value of PNT /PTNN is 15.394, while Fig.
4 displays that the maximum of PNT /PMTNN is only about
1.6.

Similar to the work in [7] and to make further comparisons
in a statistical way, we use GOW (Gain over Worst) to denote
Gain in performance of MTNN Over the Worst algorithm at
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Fig. 5. The frequency of performance ratio of PMTNN over PNT among
tested cases on each GPU. The last value (i.e., 2.0+) of x-axis means:
PMTNN/PNT is greater than or equal to that value.

each sample. GOW is calculated by:

GOW =
PMTNN −min(PNT , PTNN )

min(PNT , PTNN )
(1)



Let LUB (Loss under Best) denote the percent Loss of MTNN
Under the Best algorithm for each sample, which is calculated
by:

LUB =
PMTNN −max(PNT , PTNN )

max(PNT , PTNN )
(2)

We can define some metrics to measure the performance of
MTNN compared to NT and TNN. The description of metrics
is displayed in Table V. And the corresponding evaluated
values are shown in Table VI.

TABLE V. METRICS DESCRIPTION

Metric Description
MTNN vs NT Average percent improvement of using MTNN versus

versus always choosing TN
MTNN vs TNN Average percent improvement of using MTNN versus

versus always choosing TNN
GOWavg Average GOW in all samples
GOWmax Maximum GOW in all samples
LUBavg Average LUB in all samples
LUBmin Maximum LUB in all samples

TABLE VI. VALUES OF PERFORMANCE METRICS OF MTNN IN %

Metric GTX1080 TitanX Total
MTNN vs NT 57.78 50.48 54.03
MTNN vs TNN 21.51 22.31 21.92
GOWavg 79.44 73.20 76.23
GOWmax 1439.39 957.44 1439.39
LUBavg -0.15 -0.40 -0.28
LUBmin -25.07 -71.62 -71.62

From Table VI, we can see MTNN achieves 54.03% perfor-
mance improvement compared to using the NT algorithm only,
and 21.92% compared to TNN on average. Compared to the
worst cases of NT and TNN, MTNN achieves up to 76.23%
performance improvement on average and up to 1439.39% in
some particular cases. There are some cases that the predictor
makes the wrong decision, but the performance slowdown is
only about 0.28%. In other words, compared to the best cases
of NT and TNN, the performance of MTNN is only 0.28%
worse when the predictor makes a wrong choice. Between
these two GPUs, the speedup of time efficiency on GTX1080
is slightly higher than that on TitanX.

C. Evaluation with Caffe

TABLE VII. CONFIGURATION OF FULLY CONNECTED NETWORKS

Data set MNIST Synthetic

Input 784 26752
Output 10 26752
2 hidden layers 2048-1024 4096-4096
4 hidden layers 2048-2048-2048-1024 4096-4096-4096-4096

To test the performance of MTNN in the real-world ap-
plication, we integrate the MTNN algorithm into Caffe [10].
Two types of fully connected networks are used: one is with
the MNIST data set whose input and output dimensions are
small, and the other is with a synthetic data whose input
and output dimensions are large. For each type of fully
connected network, 2 and 4 hidden layers are configured.

The details of network configurations are shown in Table VII.
The performance comparison of these two types of networks
running on the original version of Caffe (CaffeNT) and Caffe
with MTNN (CaffeMTNN), are displayed in Fig. 6 and Fig.
7, respectively.
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Fig. 6. The performance comparison with MNIST between CaffeNT and
CaffeMTNN
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Fig. 7. The performance comparison on larger FCN between CaffeNT and
CaffeMTNN.

By integrating our method to Caffe, the performance of
the optimized Caffe accomplishes an overall improvement of
1.74% with MNIST data set, while the performance improve-
ment is 28.2% with synthetic data set.

On one hand, from Fig. 6, it is noted that the training time
speed of CaffeNT and CaffeMTNN is very close when the
mini-batch size is not greater than 4096. The main reason
of these phenomena is that with specific number of neurons



in two adjacent layers (e.g., l1 and l2) and the mini-batch
size (mb), the size of matrix-matrix-transpose multiplication is
decided by l1, l2 and mb. If the values of l1, l2 and mb are too
small, the performance of TNN has no advantage compared
to the original NT of cuBLAS, which can be explained with
the performance comparison in Fig. 4 (there are many dash
symbols on the left-bottom side of the figure, so MTNN
can only be on the par with NT of cuBLAS). There exists
a particular case that MTNN is slightly worse than NT of
cuBLAS. The reason of this minor slowdown is that the
predictor makes the wrong prediction, but it may occur in
a very small probability since the accuracy of the predictor is
up to 96%. On the other hand, from Fig. 7, with the larger
neural network (the input size and the output size are both
27652 in our tested case) and the larger mini-batch size (larger
than 512), the speedup of CaffeMTNN is significant. And the
matrix-matrix-transpose multiplication can be mapped to the
cases in the right-top side of Fig. 4 where it has numerous
green cycles, which means the deep neural networks can
benefit from the higher performance algorithm of MTNN.

VII. CONCLUSION AND FUTURE WORK

In this paper, we first illustrate the performance issue
of cuBLAS in calculating the matrix-matrix-transpose mul-
tiplication compared to the matrix-matrix multiplication by
benchmarking a variety of cases. Our experiments show the
universality of the limitation of cuBLAS on Pascal GPUs. To
avoid using the low performance NT operation of cuBLAS,
we propose a simple solution (named TNN) which carrys
out the efficient out-of-place tranpose algorithm first and then
makes use of matrix-matrix multiplication algorithm. TNN
can outperform cuBLAS in many cases, but sometimes it is
even worse. To the end, we formulate an algorithm selection
problem (or classification problem) which is solved by using
machine learning approaches. Using the boost gradient deci-
sion tree algorithm, we design the MTNN algorithm to work
out the matrix-matrix-transpose multiplication. Our MTNN
method achieves 54.03% performance improvement compared
to cuBLAS on Pascal GPUs. Last, the MTNN method is
applied to a deep learning toolkit: Caffe, and the optimized
Caffe achieves some speedup on fully connected networks,
and it achieves about 28.2% speedup on average with two
GPU cards of NVIDIA GTX 1080 and Titan X Pascal.

The transpose algorithm we used is an out-of-place method,
which results in double memory footprint and it cannot run
normally if there is no enough memory. Therefore, we plan to
exploit in-place matrix transpose algorithm and to find a good
trade-off between memory overhead and throughput.
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N. Guil, and W.-M. W. Hwu, “In-place matrix transposition on GPUs,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 3,
pp. 776–788, 2016.

[12] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear
algebra,” in High Performance Computing, Networking, Storage and
Analysis, 2008. SC 2008. International Conference for. IEEE, 2008,
pp. 1–11.

[13] R. Nath, S. Tomov, and J. Dongarra, “An improved MAGMA GEMM
for Fermi graphics processing units,” The International Journal of High
Performance Computing Applications, vol. 24, no. 4, pp. 511–515, 2010.

[14] G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao, and N. Sun, “Fast
implementation of DGEMM on Fermi GPU,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2011, p. 35.

[15] Y. Li, J. Dongarra, and S. Tomov, “A note on auto-tuning GEMM
for GPUs,” in International Conference on Computational Science.
Springer, 2009, pp. 884–892.

[16] X. Mei and X. Chu, “Dissecting gpu memory hierarchy through
microbenchmarking,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 1, pp. 72–86, Jan 2017.

[17] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[18] G. Ruetsch and P. Micikevicius, “Optimizing matrix transpose in
CUDA,” Nvidia CUDA SDK Application Note, vol. 18, 2009.

[19] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[20] T. Chen and C. Guestrin, “Xgboost: Reliable large-scale tree boosting
system,” in Proceedings of the 22nd SIGKDD Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, 2016, pp. 13–17.

[21] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” in Proceedings of the 23rd international
conference on Machine learning. ACM, 2006, pp. 161–168.

[22] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Motivation
	Related Work
	TNN: transpose before multiply
	MTNN: a Supervised-Learning Based Algorithm Selection Method
	Data Collection
	Model Training

	Evaluation
	Performance of Classification
	Performance of Selection
	Evaluation with Caffe

	Conclusion and Future Work
	Acknowledgements
	References

