
Online Procurement Auctions for Resource Pooling
in Client-Assisted Cloud Storage Systems

Jian Zhao, Xiaowen Chu, Hai Liu, Yiu-Wing Leung
Department of Computer Science

Hong Kong Baptist University
Email: {jianzhao, chxw, hliu, ywleung}@comp.hkbu.edu.hk

Zongpeng Li
Department of Computer Science

University of Calgary
Email: zongpeng@ucalgary.ca

Abstract—Latest developments in cloud computing technolo-
gies have enabled a plethora of cloud based data storage services.
Cloud storage service providers are facing significant bandwidth
cost as the user population scales. Such bandwidth cost can
be substantially slashed by exploring a hybrid cloud storage
architecture that takes advantage of under-utilized storage and
network resources at storage clients. A critical component in the
new hybrid cloud storage architecture is an economic mechanism
that incentivizes clients to contribute their local resources, while
at the same time minimizes the provider’s cost for pooling
those resources. This work studies online procurement auction
mechanisms towards these goals. The online nature of the
auction is in line with asynchronous user request arrivals in
practice. After carefully characterizing truthfulness conditions
under the online procurement auction paradigm, we prove that
truthfulness can be guaranteed by a price-based allocation rule
and payment rule. Our truthfulness characterization actually
converts the mechanism design problem into an online algorithm
design problem, with a marginal pricing function for resources
as variables set by cloud storage service providers for online
procurement auction. We derive the marginal pricing function
for the online algorithm. We also prove the competitive ratio of
the social cost of our algorithm against that of the offline VCG
mechanism and of the resource pooling cost of our algorithm
against that of the offline optimal auction. Simulation studies
driven by real-world traces are conducted to show the efficacy
of our online auction mechanism.

I. INTRODUCTION

Cloud storage service (e.g., Amazon S3 [1], Dropbox [2],
Google Drive [3], SkyDrive [4]) has gained widespread recog-
nition and adoption by Internet users, many of whom now
routinely execute online storage and online backup tasks over
the cloud. Cloud storage providers are facing two natural chal-
lenges. First, the storage service highly depends on centralized
datacenters in the cloud. Accidents and natural disasters (fire,
earthquake, power outage) will have significant impact on the
service performance. Second, the cloud storage providers face
significant cost in purchasing or renting real estate, cloud
infrastructures, hardware, power and network bandwidth. To
address these two challenges, the client-assisted (or user-
assisted) cloud storage paradigm is a promising choice to
guarantee high data availability and reliability while lower-
ing the operational cost [5]. The client-assisted design is a
complementary technology for cloud storage service that are
based solely on servers in datacenters.

Recent examples of client-assisted cloud storage architec-

ture include FS2You [6], AmazingStore [7], Wuala [8] [9],
Triton [10], and Symform [11], which have examined the
technical feasibility of the paradigm of client-assisted cloud
storage services. However, this line of work mostly ignore the
need of an incentive mechanism for users to contribute their re-
sources, and assume that unutilized resources in storage clients
can be used for client-assisted cloud storage architectures by
default, or use an unattractable one by providing more cloud
storage space for clients who contribute more local storage.
The reality is perhaps less optimistic, as autonomous and
selfish users do not have inner-incentive for contributing their
resources (e.g., casual mode in Wuala [8]). Experience from
private BitTorrent communities shows that a well designed
incentive mechanism can motivate users to contribute their
resources and significantly improve the overall system capacity
and performance [12] [13]. To help fully make client-assisted
cloud storage a reality, it is imperative to design appropriate
incentive mechanisms for users to engage. Online procurement
auction is a natural candidate that can act as the financial
catalyst for resource pooling transactions. The procurement
form of the auction is due to the multi-seller (cloud users)
one-buyer (storage service provider) nature of the auction, and
the online property is in line with asynchronous arrivals of
user bids and requests. The goals include not only optimized
resource utilization across the network, but also fundamental
changes in the ecosystem of cloud storage services leading to
a win-win strategy for both sides. Users can receive monetary
rewards for contributing their otherwise idling resources, while
cloud storage providers can cut their cost substantially.

The resource pooling market is modeled as an online pro-
curement auction market: cloud storage users are economically
motivated to contribute their local resources to the storage
pool. The storage pool constructed by cloud users can help
to reduce the network traffic as well as storage burden at
servers in datacenters. Cloud storage users are incentivized to
submit selling bids to the cloud storage provider, indicating
the amount of resources it plans to contribute, the time
window when they are available, and the desired remuneration.
Upon receiving a bid, the storage service provider makes a
decision on the amount of resources to be procured, based
on a pricing function. With the online procurement auction
model for resource pooling market, we face the following
two questions: 1) How should the mechanism guarantee the
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truthfulness property in such an online auction? 2) How well
does our mechanism perform when compared with an offline
Vickrey-Clarke-Groves (VCG) auction or an offline optimal
auction?

Our general solution framework is based on converting the
online procurement auction design problem into an online
algorithm design problem. This conversion is based on con-
straints that provide conditions characterizing the online auc-
tions’ truthfulness. Hence, we first characterize the truthfulness
for an online auction starting from Myerson’s principle of
truthfulness. We define the allocation monotonicity for online
procurement auctions, and prove the existence of a critical
payment scheme to guarantee truthfulness in two dimensions,
resource availability and resource marginal cost under the
corresponding monotone allocation rule. For convenient appli-
cations in online auction, we prove the equivalence of a price-
based allocation and payment rule in guaranteeing truthfulness.
With the price-based allocation rule and payment rule, we
convert the online procurement auction design problem into
an online algorithm design problem with marginal pricing
functions as variables. An integral equation is derived to
solve the marginal pricing function for guaranteeing a target
competitive ratio of γ in terms of the social cost of our
algorithm against that of the offline VCG mechanism, and in
terms of the resource pooling cost of our algorithm against that
of the offline optimal auction, and discuss the relation between
the optimal target competitive ratio γ0 and resource pool
capacity, number of bids. We summarize our contributions as
follows.

• We prove the equivalence of a price-based allocation rule
and payment rule with those derived from Myerson’s clas-
sic principle of truthfulness, for guaranteeing truthfulness
in our online auction.

• With the marginal-price based allocation and payment
rule, we convert an online procurement auction design
into an online algorithm design problem.

• We derive an integral equation of the marginal pricing
function that can guarantee our mechanism’s performance
with a target competitive ratio γ of the social cost of our
algorithm against that of the offline VCG mechanism, and
of the resource pooling cost of our algorithm against that
of the offline optimal auction, and yield the range for the
optimal target competitive ratio γ0.

The rest of the paper is organized as follows. Sec. II presents
related work. Sec. III describes the system model for client-
assisted cloud storage systems and the online procurement
auction for resource pooling. Sec. IV characterizes truthfulness
for our online auctions. Sec. V presents the online algorithm
design problem converted from the online auction problem,
and proves the competitive ratio achieved by our algorithm.
Sec. VI is performance evaluation of our algorithm under dy-
namic online storage clients extracted from real-world traces.
Sec. VII concludes the paper.

II. RELATED WORK

Client-assisted cloud storage paradigm design motivates
much research work [6] [7] [8] [10]. Sun et al. [6] are
the first to design, implement, and deploy a peer-assisted
semi-persistent online storage system with client storage and
bandwidth assistance. They make use of unstructured P2P
overlay construction, sequential block scheduling mechanism,
and server strategies. The design objective is to achieve a
tradeoff between file availability and server cost. Yang et
al. [7] propose a peer-assisted online storage architecture,
AmazingStore, for cloud-based infrastructures. They organized
nodes using DHT and gave the number of required replicas
for gaining the required data availability. High fraction of data
access requests are served by peers so as to reduce the server
cost and improve the data availability. Mager et al. [8] conduct
a measurement study of Wuala, a popular P2P-assisted online
storage and sharing system. Toka et al. [14] study the impact of
data placement and bandwidth allocation on the time required
to complete a backup and restore operation and the clients’
costs. Davoli et al. [10] propose solutions for acceleration on
data sharing, improving the consistency, and reducing latency
for agreement protocol preventing concurrent accesses on
shared data. This group of work proposes P2P-assisted online
storage system design or conducts measurement work on such
designs based on an assumption that peers contribute their
resources by default. Only Mager et al. [8] and Toka et al.
[14] mention the incentive problem of peers contributing local
resources. There are two modes for peers in Wuala. One type
of peers are casual peers who contribute little storage and the
other is storage peers who trade local storage for increased
cloud storage space or reduced cloud storage cost. In this
paper, we propose an online procurement auction for trading
peers’ local resource, which serves as an incentive mechanism
for peers to contribute their local resources.

Auction mechanisms have been studied by some researchers
[15] [16] and been used in some scenarios such as P2P
streaming [17], WiFi pricing [18], spectrum auctions [19] [20],
cloud computing pricing [21] [22] [23]. Lavi et al. [15] present
competitive analysis for truthful online auctions. Their method
is based on a threat-based approach proposed by Yaniv et
al. [24]. Our competitive analysis is based on deriving and
solving an integral equation, which is quite different from
theirs. Hajiaghayi et al. [16] study the online auctions for
reusable goods. They propose similar truthfulness conditions
for online auctions, but they do not form an online algorithm
design framework for the online auction mechanism design.
Friedman et al. [18] consider extending the standard results of
offline mechanism design to apply to mechanism design for
online problems such as WiFi Pricing for users arriving over
time. Deek et al. [20] study the online auction for spectrum
allocation. They propose a 3D bin-packing based allocation
and time-smoothed critical value based pricing scheme, and
evaluate its performance through experiments. Zhang et al.
[21] and Shi et al. [22] study the online auction for cloud
computing resource allocation. Zhang et al. [21] propose the
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conditions of payment to ensure the truthfulness. Our method
propose the allocation monotonicity, which is the necessary
and sufficient condition to guarantee the truthfulness. Shi et
al. [22] apply the threat-based approach for the competitive
analysis.

Our online procurement auction design framework can be
seen as an optimal online auction design, which expands
Myerson’s framework on optimal auction design [25].

III. MODEL FORMULATION

In a client-assisted cloud storage system, the storage service
provider aims to procure its clients’ unused resources to
compliment server resources in its own datacenters. Such a
hybrid, distributed storage architecture helps achieve higher
storage cost efficiency and robustness against single point of
failure. The cloud service provider needs storage and network
bandwidth from clients to deploy such client-assisted storage
service. Resource is assumed as a combination of storage and
network bandwidth at a calculated ratio for file availability and
accessibility.

Let S be the resource capacity that the service provider
aims to procure during time [0, T ]. In the online procurement
auction mechanism M, the cloud storage provider acts as the
auctioneer. Storage clients on the Internet are bidders who may
sell their own resources to the auctioneer. Clients are dynamic
in that they may arrive and depart at any time. The set of
bidders is unknown to the auctioneer a priori, and a bidder
learns its type at the time of bidding. Consequently, the storage
provider receives a stream of bids, B = (b1, b2, . . . , bj , . . .),
from dynamic clients, and needs to make decisions on each bid
upon its submission. The bid specifies the available resource
the bidder can contribute and the monetary remuneration asked
in return. More specifically, the j-th received bid is a tuple
bj = (âj , d̂j , Q̂j , ĉj), where âj is announced arrival time of
available resources, d̂j is announced departure time of avail-
able resources, Q̂j is announced available resource capacity,
and ĉj is announced marginal cost, which is the cost for bidder
to provide one more unit of resource for one time unit. The
type of the bidder submitting bid bj (referred to as bidder j) is
denoted by vj = (aj , dj , Qj , cj), which is private information
known to bidder j only. Let B−j denote all other bids except
the j-th bid. When the auctioneer receives bid bj , it determines
the resource capacity to procure, qj(t, bj ,B−j), 0 ≤ qj ≤ Q̂j
during time t ∈ [âj , d̂j ], and the corresponding payment,
pj(t, bj ,B−j). We call (qj , pj) the allocation rule and payment
rule of the online procurement auction. We will use qj(t, bj),
pj(t, bj) instead of qj(t, bj ,B−j), pj(t, bj ,B−j) when there is
no confusion.

Bidder j’s total utility is the total payment it receives minus
its total cost to offer the procured resources, integrated over the
time window [âj , d̂j ]: Uj(qj , pj) =

∫ d̂j
âj
uj(t, qj , pj)dt, where

uj(t, qj , pj) = pj(t, bj)− cjqj(t, bj) ≥ 0. (1)

Eqn. (1) ensures individual rationality of bidders.
We are interested in mechanisms with the truthfulness

property. We first examine the bidders’ strategy space. For aj ,

dj , Qj , bidders can not report an earlier arrival time âj < aj ,
a later departure time d̂j > dj , a capacity larger than what is
available Q̂j > Qj , as such false reports are easily detected.
Hence, the bidders’ strategy space is âj ≥ aj , d̂j ≤ dj ,
Q̂j ≤ Qj , ĉj 6= cj . The definition of truthfulness for online
auction mechanisms is as follows.

Definition 1 (Truthfulness). An online auction mechanismM
is truthful, if for any bidder j, regardless of the type reports of
other bidders, i.e., past and future bids, declaring a bid that
reveals its true type can maximize its utility. I.e., for a bidder
with type vj = (aj , dj , Qj , cj), every bid bj = (âj , d̂j , Q̂j , ĉj)
of the bidder satisfying âj ≥ aj , d̂j ≤ dj , Q̂j ≤ Qj , ĉj 6= cj ,
we have

U(qj(t, vj), pj(t, vj)) ≥ U(qj(t, bj), pj(t, bj)). (2)

The definition of truthfulness for our model is two-fold: one
is to reveal resource availability, i.e., aj , dj , Qj , truthfully; the
other is to reveal resource cost, i.e., cj , truthfully.

Let Bt be the set of stream bids received by time t, Bt =
{bj |âj ≤ t}. With Bt, we can define the service provider’s
completeness ratio for any time t′’s resource pooling after
receiving streaming bids Bt, R(t′, t),

R(t′, t) =

∑
j∈Bt qj(t

′, bj)

S
∈ [0, 1], t ≤ t′ ≤ T. (3)

When the required capacity S is not achieved by time t
through client-assisted resources at time t, i.e., R(t, t) < 1,
it will need to use the storage and bandwidth from servers in
the datacenters to compensate. Let cs be the marginal resource
cost from servers.

The cost of the cloud provider for providing a capacity of S
resource under a bidding sequence B under mechanism M :
(qj , pj) is denoted by CM(B). The resource pooling cost is
the total payment he pays for resource pooling plus the server
cost for compensating the remaining resource.

CM(B) =
∑
j∈B

∫ d̂j

âj

pj(t, bj)dt+

∫ T

0

cs · S[1−R(t, t)]dt. (4)

The online procurement auction mechanism design problem
can be modeled as an online optimization problem as follows,

min CM(B)

s.t. (1)(2)(3)

The objective function CM(B) can be rearranged as follows:

CM(B) =

∫ T

0

[
∑
j∈Bt

pj(t, bj) + cs · S[1−R(t, t)]]dt

And the constraints about the allocation rule and payment rule
are also decoupled at different time points. The optimization
problem is equivalent to minimizing the following problem for
any time t ∈ [0, T ],

min
∑
j∈Bt

pj(t, bj) + cs · S[1−R(t, t)]

s.t. (1)(2)

R(t, t) ∈ [0, 1]. (5)

Optimization problem (5) can be seen as a sub-problem of
resource pooling for time t ∈ [0, T ]. Table I summarizes
important notations for ease of reference.
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TABLE I: Important Notations
S resource pool capacity. T time span of resource.
WM(B) the total social cost. B stream of bids.

M the online procurement auction mechanism.
B−j all other bids except the j-th bid.
bj the j-th bid in the bid stream.
vj true type of the j-th bid.
aj true arrival time of bidder j’s resource.
dj true departure time of bidder j’s resource.
Qj true available resource of bidder j.
cj true unit resource cost for unit time of bidder j.

qj(t, bj) resource capacity procured from bidder j.
pj(t, bj) payment to bidder j for time t’s resource.
Uj(qj , pj) bidder j’s utility.

Bt streaming bids received by time t.
R(t′, t) completeness ratio of time t′’s resource pooling based on

procurement by t.
cs unit resource cost for unit time of storage provider.

CM(B) cloud storage provider’s total cost.

IV. TRUTHFULNESS CHARACTERIZATION FOR ONLINE
AUCTIONS

A. Revisiting Myerson’s Principle of Truthfulness

Myerson [25] formulated the classic characterization of
offline truthful mechanisms in a general Bayesian setting, for
auctions of a single indivisible good.

Lemma 1 (Myerson, 1981). Let Pi(bi) be the probability
of bidder i with bid bi winning an auction. A mechanism is
truthful if and only if the followings hold for a fixed b−i:

• Pi(bi) is monotonically non-decreasing in bi;
• Bidder i bidding bi is charged biPi(bi)−

∫ bi
0
Pi(b)db

Gopinathan et al. [26] pointed out the two interpretations
of Myerson’s principle: (i) there exists a minimum bid b′i such
that i will win only if it bids at least b′i, and (ii) the payment
charged to i for a fixed b−i is independent of bi.

We will first present the truthfulness characterization for
our online procurement auction by adapting and extending
Myerson’s principle of truthfulness. In our online procurement
auction, to guarantee truthfulness is to guarantee that bidders
bid their true types in both resource availability and resource
marginal cost, i.e., bj = vj(âj = aj , d̂j = dj , Q̂j = Qj , ĉj =
cj), regardless of past and future streams of other bids.

Myerson’s principle of truthfulness first points out the
monotonicity criterion of allocation rule Pi(bi) under a
Bayesian game model for auctions of a single indivisible good.
Our online procurement auction is an online reverse auction
for a divisible good with quantity S. Hence, we first define a
corresponding allocation monotonicity for our auction, which
is necessary and sufficient for the existence of a payment rule
eliciting truthful bids.

Definition 2 (Allocation Monotonicity). Consider two bids
b′j = (a′j , d

′
j , Q

′
j , c
′
j) and bj = (âj , d̂j , Q̂j , ĉj) in the online

procurement auction. If âj ≤ a′j , d̂j ≥ d′j , Q̂j ≥ Q′j , ĉj ≤ c′j ,
i.e., bid b′j’s resource availability is a subset of that of bid bj ,
and bid b′j’s resource marginal cost is no smaller than that of
bid bj , we say bid bj dominates bid b′j , denoted by bj � b′j .

An allocation rule q is monotone if∫ d̂j

âj

qj(t, bj)dt ≥
∫ d′j

a′j

qj(t, b
′
j)dt ∀j, if bj � b′j . (6)

Let us examine the difference between the allocation mono-
tonicity criterion between Myerson’s principle and our defini-
tion. Myerson considers a bayesian game model for auctions of
one single indivisible good. Hence, the allocation probability
to one bidder when having its bid bi, Pi(bi), is used to
represent the allocation rule. This allocation probability is
used because we consider other bids satisfy a probability
distribution and the probability distribution of other bids
is a priori. In our online procurement auction for divisible
good with quantity S, we use the allocation quantity to one
bidder when having its bid bj ,

∫ d̂j
âj
qj(t, bj)dt, to represent

the allocation rule, given other bids are fixed. When other
bids vary according to a priori probability distribution, the
expectation of the allocation quantities is still monotone with
bj . This is consistent with Pi(bi)’s monotonicity in a single
indivisible good’s auction.

Given allocation monotonicity, we present the payment
scheme to implement a truthful online procurement auction
in Theorem 1.

Theorem 1. There is a payment rule p such that the mecha-
nism M : (q, p) is truthful if and only if the allocation rule
q is monotone. And the payment scheme can be expressed as
follows,

pj(t, bj) = ĉj · qj(t, bj) +

∫ +∞

ĉj

qj(t, (âj , d̂j , Q̂j , x))dx. (7)

Theorem 1 can be seen as an extension of Myerson’s
principle of truthfulness to online procurement auctions of a
divisible good. We prove the truthfulness of resource availabil-
ity and resource marginal cost under conditions in Theorem
1. Details of its proof are in Appendix IX-A.

B. A Price-based Allocation and Payment Rule

Theorem 1’s characterization of truthfulness stands in the
viewpoint of the allocation rule. Once the allocation rule
is determined, the payments are correspondingly determined.
This characterization is convenient for offline auctions where
all bids are collected simultaneously and then the allocation
decisions for all related bids are made at the same time. In such
cases, the allocation rule is obvious. However, this does not
apply to online auctions where bids arrive at different times,
with allocation decisions made at realtime.

We will present an equivalent condition to guarantee truth-
fulness of online procurement auction mechanisms, in which
a marginal pricing function will be introduced. The allocation
and payment are based on the pricing function.
Price-based Allocation and Payment: Let Ψ(t, R) be the
marginal pricing function of the cloud storage provider for
procuring time t’s resources from clients when the complete-
ness ratio of time t’s resource pooling is R. It is easy to see
that Ψ(t, R) is bid-independent .
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In an online procurement auction for S resource capac-
ity, when the cloud storage provider receives a bid bj =
(âj , d̂j , Q̂j , ĉj), it procures qj(t, bj) resource from the bidder
and pays pj(t, bj) to the bidder. qj(t, bj) and pj(t, bj) are
determined as follows,

qj(t, bj) =


0, if ĉj ≥ Ψ(t, R);
min{Q̂j , S · [Ψ−1(t, ĉj)−R(t, â−j )]},

if ĉj < Ψ(t, R).
(8)

pj(t, bj) =

∫ R(t,âj)

R(t,â−j )

S ·Ψ(t, R)dR (9)

Here, R(t, â−j ) =
∑
k∈B

â
−
j

qk(t, bk)/S is the completeness

ratio for time t’s resource pooling, just before receiving bid
bj .

We have Theorem 2 for the truthfulness of price-based
online procurement auctions.

Theorem 2. When a cloud storage provider determines its
allocation and payment according to Eqn. (8) and (9) when
receiving a bid, where Ψ(t, R) is non-increasing in complete-
ness ratio R, the mechanism M : (q, p) is truthful.

Proof: We first prove monotonicity of the allocation rule.
Given two bids bi = (âi, d̂i, Q̂i, ĉi), b′i = (a′i, d

′
i, Q
′
i, c
′
i), bi �

b′i from a bidder i, we will prove qi(t, bi) ≥ qi(t, b′i).
Let us examine the allocation under a new bid b̃i =

(a′i, d
′
i, Q̂i, ĉi). It is easy to verify that bi � b̃i � b′i.

As the resource availability of bi dominates b̃i, we have
âi ≤ a′i. As bid b̃i arrives later, the completeness ratio of time
t’s resource pooling before receiving bid bi is smaller than or
equal to that before receiving bid b̃i, i.e.,

S ·R(t, â−i ) =
∑

k∈B
â
−
i

qk(t, bk) ≤
∑

k∈B
a
′−
i

qk(t, bk) = S ·R(t, a
′−
i )

The available resource and resource marginal cost is the same
for bi and b̃i. According to Eqn. 8, we have qi(t, bi) ≥ qi(t, b̃i).

As for bid b′i and b̃i, the resource arrival times are the same
for the two bids. Hence, the completeness ratio of time t’s
resource pooling when receiving bid b′i or b̃i are the same. As
Ψ(t, R) is non-increasing with R, we can verify that its inverse
function Ψ−1(t, c) is also non-increasing with c. Because ĉi ≤
c′i, we have

Ψ−1(t, ĉi) ≥ Ψ−1(t, c′i)

We also have Q̂i ≥ Q′i, this results in qi(t, b̃i) ≥ qi(t, b
′
i)

according to Eqn. (8).
In conclusion, we proved qi(t, bi) ≥ qi(t, b′i). The allocation

rule based on the marginal pricing function Ψ(t, R)is mono-
tone. With the monotone allocation rule, based on Theorem
1, we know that the payment rule in Eqn. (7) truthfully
implements the allocation rule. The price-based payment Eqn.
(9) can be derived by rearranging Eqn. (7) based on the price-
based allocation Eqn. (8).

V. A COMPETITIVE ONLINE PROCUREMENT ALGORITHM

The price-based allocation rule and payment rule work in
concert to not only guarantee the truthfulness of an online
auction mechanism, but also help us convert an online auction
design problem into an online algorithm design problem. The
online algorithm design problem has the marginal pricing
function as its variable. Using an offline VCG auction and
an offline optimal auction as benchmarks for social cost and
cloud storage provider’s pooling cost respectively, we derive
an integral equation for guaranteeing a target competitive ratio
γ, and further derive the marginal pricing function from the
integral equation.

A. Online Algorithm Design Problem Converted from Online
Auction Design

By substituting the price-based payment rule (9) into the
optimization problem (5), we obtain the following online
algorithm design problem,

min
∑
j∈Bt

∫ R(t,âj)

R(t,â−j )

Ψ(t, R)S · dR+ cs · S[1−R(t, t)]

s.t. Ψ(t, R) is a non-increasing function
Ψ(t, 1) ≤ cmin (10)

Condition (2) of optimization problem (5), i.e., property
of truthfulness, can be guaranteed based on the price-based
allocation and payment rule. Ψ(t, 1) ≤ cmin guarantees
condition R(t, t) ∈ [0, 1] of (5). Condition (1) is satisfied as
the price-based allocation rule and payment rule only procure
resource from clients with resource marginal cost for time t
smaller than Ψ(t, R), and pay clients prices that are higher
than the resource marginal cost. Hence, for any bidder j,
Uj(qj , pj) ≥ 0.

We summarize our algorithm framework for the online
procurement auction in Algorithm 1.

B. Marginal Pricing Function Derivation and Competitive
Ratio Analysis

To implement Algorithm 1, we need to give the marginal
pricing function. We will see the pricing function will affect
the competitive ratio of our online procurement auction. In our
online procurement auction design, we aim at minimizing the
cloud provider’s resource pooling cost, which is the summation
of the payment of the cloud storage provider for procuring
resource from clients and the cost of providing complimentary
resource from servers. With the social cost of offline VCG
auction as a lower bound of the resource pooling cost of the
offline optimal auction, we analyze the competitive ratio of
the resource pooling cost against that of the offline optimal
auction. Besides the resource pooling cost, another important
metric is the social cost, i.e., the total cost for clients and
servers to provide S resource. We benchmark our online
algorithm against the offline VCG auction that achieves the
minimum social cost.
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Algorithm 1 Cloud Storage Provider’s Algorithm for the
Online Procurement Auction
Input: Marginal pricing function Ψ(t, R), S, T .
Output: qj(t, bj), pj(t, bj)

1: Initialize the completeness ratio of time t ∈ [0, T ]’s
resource pooling Rt = 0

2: while Receive a bid bj do
3: for t ∈ [âj , d̂j ] do
4: if Rt = 1 then
5: Continue
6: end if
7: if ĉj < Ψ(t, Rt) then
8: if Ψ−1(t, ĉj) > 1 then
9: Set Ψ−1(t, ĉj) = 1

10: end if
11: Procure qj(t, bj) resource from bidder j according

to Eqn.(8)
12: Pay pj(t, bj) to bidder j according to Eqn.(9)
13: Update Rt = Rt +

qj(t,bj)
S

14: end if
15: end for
16: end while

The social cost for providing time t’s S resource under our
online algorithm is

WM(t,B) =
∑
j∈Bt

cjqj(t, bj) + cs · S[1−R(t, t)]. (11)

The total social cost is the integration of WM(t,B) among
time [0, T ], i.e., WM(B) =

∫ T
0
WM(t,B)dt.

Theorem 3. When the cloud storage provider uses the
marginal pricing function as Ψ(t, R) = cs − cs(1 − 1

γ )e
R
γ ,

where R is the completeness ratio of procured resource
for time t, our price-based online procurement auction will
achieve the resource pooling cost no larger than γ times that
of an offline optimal auction, i.e., CM(B) ≤ γ · Copt(B) and
achieve the social cost no larger than γ times that of the offline
VCG auction, i.e., WM(B) ≤ γ · Wvcg(B). The optimal γ
should be among the range of [γ0,min, γ0,max]. Here γ0,min
and γ0,max are the solutions to equations (1 − 1

γ ) · e
1
γ =

1 − cmax
cs

, (1 − 1
γ ) · e

1
γ = 1 − cmin

cs
respectively. Copt(B),

Wvcg(B) is the cloud storage provider’s resource pooling cost
under offline optimal auction and the social cost under offline
VCG auction respectively.

Proof: We first check the social cost under our online
procurement auction and offline VCG auction. Given some
bidding sequence B, let qj(t, bj) be the quantity procured from
bidder j for pooling time t’s resource, and Ψ(t, R(t, âj)) the
lowest procurement price for pooling time t’s unit resource of
unit time from bidder j. Let l be the last bidder with resource
procured, the corresponding lowest procurement price for
pooling time t’s resource from bidder l is Ψ(t, R(t, âl)). Let
R(t, âl) be the final completeness ratio for time t’s resource
procurement after procuring bidder l’s resource.

The pooling cost for time t’s resource is

CM(t,B) =

∫ R(t,âl)

0

Ψ(t, R)S · dR+ cs · [S − S ·R(t, âl)]

When the cloud provider procures resource, it pays more
than the bidders’ cost. Hence, the social cost for providing S
resource will be no larger than the cloud provider’s resource
pooling cost, i.e., WM(t,B) ≤ CM(t,B).

An offline auction mechanism can collect all bids B =
(b1, b2, . . . , bj , . . .), then make allocation and payment deci-
sions. As in our procurement auction, servers’ resource can
be utilized as a reserved backup resource. Correspondingly,
we add a new bid b0 with announced cost cs and unbounded
resource capacity.

For procuring time t’s resource, let (b
(vcg)
1 , b(vcg)2 , b(vcg)3 ,

. . ., b(vcg)x ) be the ascending sequence of procured bids ac-
cording to the announced cost under offline VCG auction.
The price paid to bidders is no smaller than the announced
cost of bid b

(vcg)
x . As the offline VCG auction procure the

total S capacity, this means the total resource capacity of
the bids procured in offline VCG auction is no smaller than
the procured resource capacity from clients in our online
procurement auction. Hence, the announced cost of bvcgx is
larger than or equal to Ψ(t, R(t, âl)). Otherwise, all bids in
(b

(vcg)
1 , b

(vcg)
2 , b

(vcg)
3 , . . . , b

(vcg)
x ) have announced cost smaller

than Ψ(t, R(t, âl)). our online algorithm will procure more
than S resource capacity. Hence, the social cost under offline
VCG auction for providing time t’s resource is Wvcg(t,B) ≥
S · c(vcg)x ≥ S · Ψ(t, R(t, âl)). Here c(vcg)x is the announced
cost of bid b(vcg)x .

With the social cost for providing time t’s resource under
our online procurement auction and offline VCG auction, the
competitive ratio in terms of the total social cost can be
calculated as follows,

WM(B)

Wvcg(B)
=

∫ T

0
WM(t,B)∫ T

0
Wvcg(t,B)

≤
∫ T

0
[
∫ R(t,âl)

0
Ψ(t, R)S · dR+ cs · (S − S ·R(t, âl))]dt∫ T

0
[S ·Ψ(t, R(t, âl))]dt

To guarantee a competitive ratio of γ, we can let∫ R(t,âl)

0
Ψ(t, R)S · dR+ cs · (S − S ·R(t, âl))

S ·Ψ(t, R(t, âl))
= γ (12)

By solving the integral equation (12), we can derive the
expression of Ψ(t, R) as:

Ψ(t, R) = cs − cs(1− 1

γ
) · e

R
γ

Let us consider the bound condition of the marginal pricing
function:

(i) If Ψ(t, 1) < cmin, this means Ψ(t, R) will becomes
equal to cmin at a point R < 1, and the cloud storage provider
will stop procuring resources from bidders as the completeness
ratio does not reach 1. This may waste the chances to procure
resource with lower announced cost. use lower cost than server
cost to buy coming bidders’ resources. Hence, this is not
optimal for setting target competitive ratio, γ.
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(ii) If cmax > Ψ(t, 1) > cmin, this means the marginal
pricing function will not be continuous at R = 1. The cloud
storage provider needs to set the price as cmin when R = 1.
But the useful scenarios for setting cmax > Ψ(t, 1−) > cmin is
when the number of bidders is small enough or target resource
pool capacity S is large enough. In such scenarios, R can not
reach 1 due to scare resource from storage clients. Hence,
the optimal choice is to accept as many bids as possible. The
optimal bound condition is setting Ψ(t, 1) = cmax. (1 − 1

γ ) ·
e

1
γ = 1 − cmax

cs
. We can get the optimal target competitive

ratio is γ0,min = 1

W0(
cmax/cs−1

e )+1
, here, W0(x) is a Lambert

W function and W0(x) ≥ −1.
(iii) If the number of bids is large enough or target resource

pool capacity S is small enough, R can easily reach 1, the
optimal solution is setting Ψ(t, 1) = cmin. The optimal target
competitive ratio γ0,max = 1

W0(
cmin/cs−1

e )+1
.

Summarizing the above analysis, we can see the optimal
target competitive ratio is in the range γ0 ∈ [γ0,min, γ0,max].

Next, let us see the resource pooling cost under our online
procurement auction and offline optimal auction.

As the cloud storage provider pays more than bidders’ an-
nounced cost for procuring resource from clients, the resource
pooling cost under the offline optimal auction should be larger
than or equal to the social cost under the offline VCG auction,
i.e., we have Copt(t,B) ≥Wvcg(t,B) ≥ S ·Ψ(t, R(t, âl)).

Hence, the competitive ratio of our online procurement
auction, in terms of resource pooling cost, is:

CM(B)

Copt(B)
=

∫ T

0
CM(t,B)∫ T

0
Copt(t,B)

≤
∫ T

0
[
∫ R(t,âl)

0
Ψ(t, R)S · dR+ cs · (S − S ·R(t, âl))]dt∫ T

0
[S ·Ψ(t, R(t, âl))]dt

which equals the competitive ratio γ of social cost.

VI. PERFORMANCE EVALUATIONS

In this section, we study the social cost and resource pooling
cost achieved by our online procurement algorithm in the
context of real-world traces.

A. Experiment Settings

The clients’ arrival/departure time and available band-
width are extracted from real-world traces [27]. We use
the session 29 trace for client level data collected from
transamrit.net with 5 minute sampling intervals, and
plot the online statistical information in Fig. 1.

By default, the cost of clients’ unit resource for a unit time is
generated randomly in the range of [0.01, 0.05]$/GB per hour.
The cloud storage provider’s server cost for providing resource
is 0.1$/GB per hour. The total resource pooling capacity of the
cloud storage provider is 50KB/s. We consider a time range
of 7 days. The number of bids is 7000.

We compare the social cost achieved by our online pro-
curement with that of the offline VCG auction. We compare
the resource pooling cost by our online procurement with that

of optimal auction indirectly. As the resource pooling cost
of offline optimal auction should be larger than the social
cost achieved by offline VCG auction, we use the social cost
achieved by offline VCG auction as a lower bound for it.
Hence, in our experiments, the social cost and resource pooling
cost of our online procurement auction are both compared with
the social cost of the offline VCG auction.

B. Performance of Our Online Procurement Mechanism

Fig. 2 compares the resource pooling cost and social cost of
our online procurement auction mechanism with offline auc-
tions. We make comparisons under different resource pooling
capacity, number of bids, and ratio of server cost and average
bidding cost. We use the target competitive ratio γ0,max in
the marginal pricing function. Fig. 2a varies the resource
capacity among [10, 100]KB/s. Fig. 2b varies the number
of bids among [1000, 7000]. Fig. 2c varies the ratio between
marginal server cost cs and average bidding cost among [2, 6].
Our online procurement auction achieves the social cost and
resource pooling cost within the target competitive ratio. In
most cases, our online procurement auction’s resource pooling
cost is lower than that of the offline VCG auction.

C. How Does Performance Change with γ?

Fig. 3 & Fig. 4 show the change of real cost ratio with
the target competitive ratio. The black star lines in Fig. 3a &
Fig. 3b are the position of γ0,min. In Fig. 3a, S = 5KB/s,
which means clients’ resource is enough, we can see as the
target competitive ratio equals γ0,max, our online procurement
auction achieves the optimal competitive ratio. In Fig. 3b, S =
80KB/s, which means clients’ resource is not enough, we can
see the real cost ratio is not sensitive to the target competitive
ratio. These two figures verify the optimal target competitive
ratio is among [γ0,min, γ0,max].

Fig. 3c, Fig. 3d and Fig. 4 show the real ratio for resource
pooling (upper one) and the real ratio for social cost (lower
one) under different target competitive ratio and changing
resource pool capacity, number of bids, and ratio of server cost
and average bidding cost, ratio of the maximum and minimum
bidding cost. We can see when our algorithm achieves the
best performance, the target competitive ratio is no larger than
γ0,max. As the target competitive ratio becomes small enough,
the real cost ratio may even become higher, which means
the target competitive ratio should not be too small. As S
is large enough, or number of bids is small enough, the real
performance is insensitive to γ.

VII. CONCLUSIONS

Client-assisted cloud storage is emerging as a new, exciting
hybrid architecture for online storage systems that represent
a potential win-win solution for both cloud storage providers
and cloud users. While recent research along this thread have
focused on technical challenges, this work represents the first
effort that examines the economic side of the picture. We
design an online procurement auction for resource pooling by
the provider, which serves as a financial catalyst for bringing
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Fig. 1: Statistical Information of Client Online Behavior
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Fig. 2: Performance of our online procurement auction under varying resource pooling capacity S, No. of bids, and ratio among
server cost and average bidding cost
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client-assisted cloud storage into reality. The auction proposed
is truthful and guarantees a provable competitive ratio against
optimal offline algorithms.
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IX. APPENDIX

A. Proof of Theorem 1

Proof: (a) We first prove the “if” part. Let q be a mono-
tone allocation rule and consider a bid bj = (aj , dj , Qj , cj).
We show that the allocation rule q in combination with the
payment rule p in Eqn. 7 constitute a truthful mechanism. We
prove the truthfulness for resource availability and resource
cost respectively.

(i) We first prove the truthfulness for resource cost rev-
elation, i.e., bidders bidding their true cost will maximize
their utility. We prove it by contradiction. If the mechanism
is not truthful, there is a bidder i, with a true type vi =
{ai, di, Qi, ci}, and a non-truthful bid bi = (âi, d̂i, Q̂i, ĉi),
bi 6= vi such that the utility U [qi(t, bi), pi(t, bi)] of bidder i if

it bids bi is strictly greater than the utility U [qi(t, vi), pi(t, vi)],
which can be written as follows,∫ d̂i

âi

[
(ĉi − ci)qi(t, bi) +

∫ +∞

ĉi

qi(t, (âi, d̂i, Q̂i, x))dx

]
dt

>

∫ di

ai

∫ +∞

ci

qi(t, (ai, di, Qi, x))dxdt

As the allocation rule is monotone, and âi ≥ ai, d̂i ≤ di,
Q̂i ≤ Qi, we have∫ di

ai

∫ +∞

ci

qi(t, (ai, di, Qi, x))dxdt

≥
∫ d̂i

âi

∫ +∞

ci

qi(t, (âi, d̂i, Q̂i, x))dxdt

With the above two inequalities, we get the following rela-
tionship,∫ d̂i

âi

(ĉi − ci)qi(t, bi)dt >
∫ d̂i

âi

∫ ĉi

ci

qi(t, (âi, d̂i, Q̂i, x))dxdt

Hence, if ĉi > ci, by dividing both sides by ĉi − ci

we get
∫ d̂i
âi
qi(t, bi)dt is strictly larger than the average of∫ d̂i

âi
qi(t, (âi, d̂i, Q̂i, x))dt over x ∈ [ci, ĉi], which contradicts

the monotonicity of q. If ĉi < ci, by dividing both sides by
ĉi − ci, we get

∫ d̂i
âi
qi(t, bi)dt is strictly less than the average

of
∫ d̂i
âi
qi(t, (âi, d̂i, Q̂i, x))dt over x ∈ [ĉi, ci], which again

contradicts the monotonicity of q. This contradiction proves
the truthfulness of the mechanism M : (q, p) for resource
cost.

(ii) Secondly, we prove the truthfulness for resource avail-
ability. As we have prove the truthfulness for resource
cost, i.e., for any bid bi = (âi, d̂i, Q̂i, ĉi), the bid b′i =
(âi, d̂i, Q̂i, ci) with the same resource availability and the true
cost value will achieve a larger utility. Next we will prove the
utility under bid vi will be larger than that under bid b′i.

It is obvious that

U [qi(t, vi), pi(t, vi)] =

∫ di

ai

∫ +∞

ci

qi(t, (ai, di, Qi, x))dxdt

≥
∫ d̂i

âi

∫ +∞

ci

qi(t, (âi, d̂i, Q̂i, x))dxdt = U [qi(t, b
′
i), pi(t, b

′
i)]

Hence, we prove the truthfulness for resource availability.
(b) We then prove the ”only if” part. We have a truthful

mechanism M : (q, p). Consider a bidder i and its two
possible types vi = (ai, di, Qi, ci), v′i = (a′i, d

′
i, Q
′
i, c
′
i).

vi � v′i, and B−i are the same. If the scenario is that vi
is bidder i’s true type, according to the truthfulness, we have∫ di

ai

[pi(t, vi)− ciqi(t, vi)]dt ≥
∫ d′i

a′i

[pi(t, v
′
i)− ciqi(t, v′i)]dt

If the scenario is that v′i is bidder i’s true type, we have∫ d′i

a′i

[pi(t, v
′
i)− c′iqi(t, v′i)]dt ≥

∫ di

ai

[pi(t, vi)− c′iqi(t, vi)]dt

By adding the two inequalities above and using c′i > ci,
we have

∫ di
ai
qi(t, vi)dt >

∫ d′i
a′i
qi(t, v

′
i)dt. Therefore q is

monotone.


