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Abstract—System virtualization provides low-cost, flexible and powerful executing 

environment for virtualized data centers, which plays an important role in the infrastructure of 

Cloud computing. However, the virtualization also brings some challenges, particularly to the 

resource management and task scheduling. This paper proposes an efficient dynamic task 

scheduling scheme for virtualized data centers. Considering the availability and responsiveness 

performance, the general model of the task scheduling for virtual data centers is built and 

formulated as a two-objective optimization. A graceful fuzzy prediction method is given to model 

the uncertain workload and the vague availability of virtualized server nodes, by using the type-I 

and type-II fuzzy logic systems. An on-line dynamic task scheduling algorithm named SALAF is 

proposed and evaluated. Experimental results show that our algorithm can improve the total 

availability of the virtualized data center while providing good responsiveness performance. 

Keywords—Virtualized data center; Task scheduling; Fuzzy logic; Availability; Load-balance  

1. INTRODUCTION 

The trend toward server-side computing and the exploding popularity of Internet services has 

made data centers become an integral part of the Internet fabric rapidly. Data centers become 

increasingly popular in large enterprises, banks, telecom, portal sites, etc [1-3]. As data centers are 

inevitably growing more complex and larger, it brings many challenges to the deployment, resource 

management and service dependability, etc [4]. Virtualization is viewed as an efficient way against 

these challenges. Server virtualization opens up the possibility of achieving higher server 
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consolidation and more agile dynamic resource provisioning than is possible in traditional platforms 

[5]. A data center built using server virtualization technology with virtual machines (VMs) as the 

basic processing elements is called a virtualized (or virtual) data center (VDC) [6-8]. Due to the 

advantages in deployment, management, dependability and cost, VDCs become the next 

infrastructure trend with the popularity of Cloud computing and IaaS (Infrastructure as a Service) [9, 

10], such as Amazon EC2 [11] and VMware vCloud [12]. 

However, the characteristics of virtualization also bring new challenges to VDCs, particularly to 

the task scheduling and resource management. Server consolidation [13, 14] makes many VMs run 

in a physical server. VMs are loosely coupled with the underlying hardware and share the hardware 

resources of the physical server such as CPU, memory and network. The loosely-coupled and highly-

shared features of virtualization make it difficult to accurately measure the running parameters and 

resources usage information of each VM, which cause some complexity in resource management and 

task scheduling in VDCs. In addition, the mechanism of live migration [15] makes it possible for 

VM appliance to move between different physical servers in a VDC. It further exacerbates the 

dynamicity and nondeterminacy of VDCs. Such characteristics bring challenges for the traditional 

task scheduling schemes to work well in VDCs. 

We focus on the task scheduling problem of VDCs in this paper. Some performance metrics, such 

as high throughput, low response delay and short makespan, are the conventional optimization goals 

for task scheduling. The traditional scheduling algorithms usually assume that all server nodes are 

always available for processing. In practice, this assumption is often not plausible in some scenarios 

where certain breakdowns, requirements for maintenance, or other constraints that make the server 

nodes unavailable for processing exist [16]. For example, in VDCs, a node is sometimes unavailable 

during the processes of backup, update maintenance or live migration. However many service 

applications require data center platform with high availability, particularly for some critical services 

such as military, healthcare applications [16]. So availability is also a critical metric that a scheduling 

policy in VDCs should take into considerations. But in practical applications, it is unpractical for 

users to accurately specify their availability requirements in the SLAs (Service Layer Agreements) 

for their submitted tasks. A more friendly way is to let users designate a fuzzy level of availability 



 

requirements, such as high, medium or low level. Then, how to deal with the vagueness of 

availability requirements in the task scheduling is also a challenge. Moreover, to improve the 

availability needs more extra processing overhead that may impact on the scheduling performance. 

So achieving high performance and availability simultaneously is also a concern, as they are usually 

conflicting with each other [16].  

Furthermore, the existing researches on the scheduling in VDCs mostly focus on the infrastructure 

layer, such as resource provisioning and VMs placement [7, 8, 17-19]. They are dedicated to improve 

the performance of the data center infrastructure, but the service layer requirements specified by 

SLAs are ignored. Different task classes for different applications (FTP, streaming media, etc.) often 

have distinct requirements in the SLAs such as response time and availability, which are closely 

related to the Quality of Service (QoS) from the users’ view. To improve the user experience, it 

motivates us to study the task scheduling problem from the service layer by considering different 

requirements of performance and availability in the SLAs.  

In this paper, we propose an effective task scheduling scheme for VDCs, which makes a good 

trade-off between availability and performance. The multiclass tasks model is introduced in our 

scheme, and different classes of tasks are characterized by their distinct arrival rates, service time, 

and availability requirements. The contributions are concluded as the following aspects: 1) We build 

a general model for the task scheduling in VDCs and formulate it as a two-objective optimization 

problem; 2) We give a graceful fuzzy prediction method to model the uncertain workload and the 

vague  availability of virtualized server nodes, using the type-I and type-II fuzzy logic systems; 3) 

We design and evaluate a dynamic task scheduling algorithm which could efficiently improve the 

total availability of the VDC while maintaining good responsiveness performance. 

The rest of this paper is organized as follows. Section 2 introduces the background. The general 

formal model of the task scheduling system in VDCs is introduced in section 3. In section 4, 

availability and load-balance predictors are constructed using type-I and interval type-II fuzzy logic 

systems, respectively. Section 5 presents the new dynamic scheduling algorithm. Section 6 gives the 

performance evaluation of the algorithm, followed with the conclusions in Section 7. 
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2. BACKGROUND 

2.1 Task Scheduling in Virtualized Data Centers 

Task scheduling is to assign tasks to different executive units while satisfying some constraints. In 

VDCs, a VM with the corresponding VMM and HW works as the basic executive unit called virtual 

executive unit (VEU), which is the provider of services specified in the SLAs. Task scheduling 

techniques can be either static or dynamic. Static scheduling schemes assume a fixed tasks set and a 

priori knowledge of the characteristics of the workload with respect to the systems. It is usually 

impractical in real systems, particularly for the VDCs. In VDCs, server consolidation [13, 14] 

enables that several VMs run on the same hardware machine and share the underlying hardware 

resources through the VMM, which helps increasing the utilization of server resources. Moreover, 

virtualization provides a good isolation between different VMs, and VM appliance can dynamically 

migrate to another machine through live migration [15]. These characteristics and mechanisms bring 

dynamicity and nondeterminancy to task scheduling in VDCs, and it is hard for the static scheduling 

schemes to get detailed prior knowledge. So we attempt to design an effective dynamic task 

scheduling scheme to assign tasks to different executive entities (VMs) for improving satisfaction 

degree of the availability requirements in SLAs while maintaining good responsiveness. 

2.2 Type-I and Type-II Fuzzy Logic Systems 

We turn to the fuzzy logic system (FLS) to deal with the challenges caused by the dynamicity of 

virtualization and the vagueness of availability requirements in the scheduling strategy of VDCs. A 

FLS is particularly good at handling uncertainty, vagueness and imprecision. FLSs are widely used 

in many areas, and could also efficiently deal with the uncertainty in task scheduling [20]. The 

concept of type-II fuzzy sets was introduced by Zadeh as an extension of the concept of an ordinary 

fuzzy set, i.e. the type-I fuzzy set [21]. The membership grades of type-II fuzzy sets are themselves 

type-I fuzzy sets, which include a primary membership and a secondary membership. Type-II fuzzy 

logic systems are very useful in the scenario where it is difficult to determine an exact membership 

function for a fuzzy set; hence, they are useful for incorporating uncertainties. In [22], three cases 

under which type-II FLS is more suitable for use than type-I are summarized. General type-II FLSs 



 

are computationally intensive, so a special case with the secondary MFs be interval sets called 

Interval Type-II FLSs (IT2-FLSs) were studied. Liang et al. [23] proposed an efficient and simplified 

method to compute the input and antecedent operations for IT2-FLSs. Hereafter, the IT2-FLS 

becomes a powerful and popular tool that is widely used in recent years, and we first introduce it to 

the task scheduling in VDCs. For the high dynamicity of virtual machines, the workload data 

sampled from each server node are usually noisy too. It causes difficulties to make a good decision in 

the process of task scheduling. To deal with the noise in the training data, the IT2-FLS is applied in 

the task scheduling policy of the VDCs.  

3. MODEL DESCRIPTIONS AND FORMULATIONS 

3.1 The Framework of Task Scheduling in Virtualized Data Centers 

We use the MSQMS-LQ (Multi-classes Single Queue to Multiple Servers with Local Queues) 

model for the task scheduling in a VDC (see Fig. 1). There is a shared waiting queue before entering 

the scheduler. Each virtual machine acts as the server with a local queue for arrived tasks. Since 

different class of tasks may have different characteristics and availability requirements, multiclass 

task model [16, 24] is applied in our framework. Assume that there are K classes of non-preemptive 

tasks, where K stands for the number of different levels of task availability requirement specified by 

SLAs. In this paper, we consider K=5, which stands for 5-levels of availability requirements: very 

high, high, medium, low and very low. There are m physical servers in the data center, and the Virtual 

Serveri consists of a HW, a VMM and ni VMs. Then, there are totally 
1

m

ii
n N

=
=∑  virtual machines.  
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Fig.  1. The framework of the task scheduling in a virtualized data center. 

 
Table I. Notations and definitions. 
 

Notation Definition 

m Total number of the virtual servers 

N Total number of the virtual machines. 

K Total number of the task classes 

ni Total number of VMs hosted in the ith virtual server 

iHWf ,
iVMMf ,

ikVMf  Failure rates of the HWi, VMMi, VMik 

iHWr ,
iVMM

r ,
ikVM

r  Repair rates of the HWi, VMMi, VMik 

iHWA ,
iVMMA ,

ikVMA  Availability of the HWi, VMMi, VMik 

( )LA
µ ⋅  Membership function of low availability nodes set 

( )MAµ ⋅  Membership function of medium availability nodes set 

( )HAµ ⋅  Membership function of high availability nodes set 

iHW
x ,

iVMM
x ,

ikVM
x  The availability  inputs of membership function for HWi, VMMi, VMik 

i
λ  Average arrival rate of the ith class tasks 

ij
µ  Service rate when the ith class tasks are  dispatched on VEUj 

ij
p  Probability of that the ith class tasks are dispatched to VEUj  

j
Λ  Aggregate task arrival rate of the VEUj 

j
ρ  The server utilization of VEUj 

j
S  The expectation value of service time on VEUj 

jS
σ  Standard deviation of service time on VEUj 

j
T  The service time of VEUj 

iα  Availability requirement level of the ith class tasks specified in the SLA. 

jβ  Availability level provided by the VEUj  

 



 

The model of the scheduling system, depicted in Fig. 1, is composed of a scheduling queue, a task 

scheduler using the algorithm of SALAF (Scheduling Algorithm based on Load-balance and 

Availability Fuzzy prediction), and local task queue for each VM. The goal of SALAF is to make a 

good task allocation decision for each arrived task to satisfy its availability requirement and maintain 

a good performance in response time. The core of the framework is the SALAF task scheduler, which 

consists of two important components: Availability Fuzzy Predictor (AFP) and Load-balance Fuzzy 

Predictor (LFP). The AFP computes the availability of each virtual execution unit (VEU), by 

combing the availability of HW, VMM and VM. It predicts that which VEU could satisfy the 

availability requirement of each arrival task. The LFP predicts the load-balance status through 

autoregression model AR(16) and interval type-II FLS. The details will be introduced in the section 4. 

3.2 Model Formulations 

At first, we build a general formal model for the task scheduling in a virtualized data center. We 

summarize the notations and their definitions used throughout this paper in Table I. There are K 

classes of tasks, and each class has an availability level specified by SLAs. Values of availability 

levels are in the range {very low, low, medium, high, very high}. There are N virtual execution units, 

and VEUj = {HWi, VMMi, VMik}, where1 i m≤ ≤ , 1 ik n≤ ≤  and 1 j N≤ ≤ . We assume that the 

arrival of the tasks of the ith (1 i K≤ ≤ ) class conforms to a Poisson process with rate iλ . The 

interval arrival time of Poisson arrival tasks conforms to the exponential distribution. According to 

the additive property of exponential distribution, the aggregate tasks arrival of all classes is also a 

Poisson process with rate
1

K

ii
λ λ

=
=∑ .We model the sub-system of VEUj which includes a VM and a 

local queue by an M/G/1 queue model. We assume that pij is the probability that the tasks of the ith 

class are dispatched to VEUj, where 1 j N≤ ≤ .Then the aggregate task arrival rate for VEUj is 

expressed as
1

K

j i iji
pλ

=
Λ =∑ . Let ijµ be the service rate of tasks in class i allocated into VEUj. Then 

the server utilization of VEUj is ( )
1

/
K

j ij i ij

i

pρ λ µ
=

=∑ , where K is the total number of the task classes. 
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The expectation value and standard deviation of service time for the tasks of K classes dispatched on 

jVEU are 

1

1 K
ij i

j

ij ij

p
S

λ

µ=

 
=   Λ  

∑ and

2

1

1 1

1j

K

S j

i ij

S
k

σ
µ=

 
= −  −  

∑                                     (1) 

Hence, according to the Pollaczek-Khinchin mean-value formula [25], we obtain the service time of 

j
VEU  as 

( )
2

1 /

2(1 )

jj j S j

j j

j

S S

T S

ρ σ

ρ

 + 
 = +

−
                                                             (2) 

Therefore, the expected response time of all the K classes tasks can be expressed as 

( )
1 1

K N
i

ij j

i j

T p T
λ

λ= =

 
= ⋅ 

 
∑ ∑                                                               (3) 

    Let 
iα denote the availability requirement level of the ith class tasks, which could be specified in 

the SLA. Let 
jβ denote the availability level provided by the 

jVEU , so ,i jα β ∈ {very low, low, 

medium, high, very high}. We assign the numbers of 0-4 to the availability level very low to very 

high. If 
i jα β≤ , the availability requirement of the task can be satisfied by the 

j
VEU . Hence, the 

probability that the ith class task is distributed to the 
j

VEU  and the availability requirement can be 

satisfied is { }ij i j
p Prob α β⋅ ≤ . Therefore, the total satisfaction probability of all the K classes tasks’ 

availability requirement is  

{ }( )
1 1

K N
i

ij i j

i j

A p Prob
λ

α β
λ= =

 
= ⋅ ⋅ ≤ 

 
∑ ∑                                                  (4) 

We formulate the scheduling problem as a trade-off between availability and the average response 

time, and obtain the formalized optimization problem as: 



 

{ }( )

( )

1 1

1 1

1

1
. .

1 ,1

K N
i

ij i j

i j

K N
i

ij j

i j

N

ij

j

Max A p Prob

Min T p T

p
s t

i K j N

λ
α β

λ

λ

λ

= =

= =

=

 
= ⋅ ⋅ ≤ 

 

 
= ⋅ 

 


=


∀ ≤ ≤ ≤ ≤

∑ ∑

∑ ∑

∑

 

The key is to determine the assignment probability pij considering the dynamicity of the virtual 

machines and the availability levels specified in the SLAs. In the following sections, we will develop 

a dynamic scheduling algorithm to find a trade-off solution which maximizes the availability 

satisfaction probability A as well as minimizes the response time T. Prior to that there are still two 

critical problems. One is how to get the availability level provided by VEUj, i.e. 
j

β . On the other 

hand, we pursue the minimum average response time, and it is usually achieved with good load-

balance which means allocating more tasks to the VEUs with relatively lighter load. So the load 

status of each VEU and the load-balance of the VDC should be determined in the process of dynamic 

scheduling. To deal with the dynamicity of VEUs’ load status and the vagueness of the tasks’ 

availability requirement level, we turn to fuzzy logic systems. 

4. AVAILABILITY AND LOAD-BALANCE FUZZY PREDICTION 

4.1 Availability Fuzzy Prediction 

This subsection presents the construction of the Availability Fuzzy Predictor (AFP) shown in Fig. 

1. Availability is defined as the ratio of the time period when a server node is functional during a 

given interval. For simplicity, the concept of Intrinsic Availability [26] is used commonly in 

engineering, which is defined as  

/( )IA MTBF MTBF MTTR= +                                                          (5) 

where MTBF is the Mean Time Between Failures and MTTR  is the Mean Time To Repair. 

In the scheduling model of virtualized data centers, the availability requirement level of each class 

tasks iα is specified in the SLA, and we need to get the availability level j
β provided by each VEUj. 

Each VEU consists of a VM and the corresponding VMM and HW. We turn to fuzzy logic system, 
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and the common type-I FLS is used. The key is to determine the input and output fuzzy variables, 

and construct the fuzzy inference rules. 

1) Define the input and output fuzzy variables 

A VEU is the set of one HW, one VMM and one of the VMs that run on the VMM. To get the 

availability of the VEU, the inputs of the fuzzy logic system include the intrinsic availability of HW, 

VMM and the corresponding VM. In reliability engineering, the failure rate and repair rate of a 

component can be obtained by statistical methods. It is normally assumed that the time to fail and the 

time to repair conform to exponential distribution [26]. Therefore, according to Eq. (5), we can get 

the intrinsic availability of 
i

HW  by the following Proposition 1.The availability of 
i

VMM  and 
ik

VM  

can be gotten similarly. 

[PROPOSITION 1]: Given the failure rate of the hardware machine 
i

HW  is
iHW

f , and the repair rate 

is
iHW

r , then the intrinsic availability can be expressed by  

/( )
i i i iHW HW HW HW

A r r f= +                                                                 (6) 

PROOF: Under the assumption of exponential distribution, the expectation value of the time 

between failures is 1/
iHWMTBF f=  and the expectation value of the time to repair is 1/

iHW
MTTR r= .  

According to Eq. (5), we have /( )
i i i iHW HW HW HW

A r r f= + .                                                                    □ 

In engineering, the availability measure of a component is usually not so accurate. It is often 

expressed by the count of ‘9’ after the decimal point of the availability value. For example, saying 

the availability of a component is three ‘9’ stands for the ratio of the time period when the 

component is functional during a given interval is about 0.999. It means that the downtime is no 

more than 8.76 hours in a year. For hardware and software, there are different de facto standards 

about the availability level. Generally, if a hardware component has the availability of three ‘9’ to 

four ‘9’, it is considered as an acceptable availability. In regard to the software, the standard may 

lower to about two ‘9’, because of the vulnerability of software.  To make the different levels of 

availability inputs uniformly-spaced, we make logarithmic transformation to the inputs while 

keeping the monotonicity. Taking the HW as an example, the input variable form is  



 

                ( )1
i iHW HW

x log A= − −                                                           (7) 

Therefore, we can define the membership functions (MFs) of the hardware component (
i

HW ) and 

the software components (
i

VMM and
ik

VM ) in the form of piecewise function, shown in Fig. 2. 

Taking the 
i

HW  as an example, the MFs of the fuzzy sets of low availability (
LA

µ ), medium 

availability (
MA

µ ) and high availability (
HA

µ ) are separately defined as follows: 

( )
1 0.99

(1 ) 3 0.99 0.999

0

i

i i i

HW

LA HW HW HW

A

A log A A

Other

µ

≤


= − + < ≤



                                       (8) 

  ( )
(1 ) 2 0.99 0.999

(1 ) 4 0.999 0.9999

0

i i

i i i

HW HW

MA HW HW HW

log A A

A log A A

Other

µ

− − − < ≤


= − + < ≤



                                (9)   

( )
(1 ) 3 0.999 0.9999

1 0.9999

0

i i

i i

HW HW

HA HW HW

log A A

A A

Other

µ

− − − < ≤


= >



                                 (10) 
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Fig.  2. Membership functions of low, medium and high availability fuzzy sets for hardware and software. 

2) Construct the fuzzy inference rules 

Since the availability of one VEU is related to the corresponding HW, VMM and VM, we 

construct the fuzzy inference rules each of which have three antecedents and one consequent: 1) 

Antecedent 1: Availability of the
i

HW ; 2) Antecedent 2: Availability of the
i

VMM ; 3) Antecedent 3: 

Availability of the 
ik

VM ; 4) Consequent: Availability level of the virtual execution unit 
j

VEU . 

Where,1 i m≤ ≤ , 1 i
k n≤ ≤  and 1 j N≤ ≤ . 



 12

According to the membership function (8)-(10), each of antecedents has three values. So there are 

total 27 items of rules. For example, if A(
i

HW )=low and A(
i

VMM )=low and A(
ik

VM )=low, then 

A(
j

VEU )=very low. Due to the limited space for this paper, we omit the complete rules table. 

4.2 Load-balance Fuzzy Prediction 

In this subsection, we use the fuzzy logic system to get the candidate VEU sets that satisfy the 

load-balancing status in VDC, which implements the Load-balance Fuzzy Predictor (LFP) shown in 

Fig. 1. The responsiveness performance is closely related to the processing capacity and workload of 

each VEU, while a VEU consists of a VM, a VMM and the sharing HW of the corresponding 

physical server. The VMM contributes little to the task workload of VEU. We only use the workload 

of VM and physical server to distinguish the workload status of different VEUs in VDC, and select 

the candidate VEU set considering the overall load-balancing status of the VDC. Because of the 

loosely-coupled relation between HW and VMs and the dynamicity of VMs, the workload data 

sampled from each server node are usually noisy. So we turn to the interval type-II fuzzy logic 

systems (IT2-FLSs). Four steps are applied to get the candidate VEU sets for each arrived task.  

1) Get the load indicators by auto-regression model 

The CPU process queue length and memory utilization are usually used as indicators to reflect the 

workload status of a server node [27]. In our scheduling scheme, we sample these two load indicators 

of each node periodically. Due to transmission delay before a task arriving at a VEU, the load status 

when the scheduling decision is made is always different from the load status when the task is 

actually executed in the VEU. The high dynamicity of virtual machines amplifies this difference. So 

we first need to predict the workload when a task arrives at one VEU in the scheduling. 

Dinda and O’Hallaron [28] studied the prediction power of several models and show that simple 

practical models such as auto-regression (AR) are sufficient for load prediction. AR(n) is a common 

linear forecast model where n represents the number of steps which are used for forecasting a new 

one. In this paper, we use the AR(16) model to get the load indicators of a VEU node in the VDC, 

including CPU process queue length and memory utilization. 
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Fig. 3. The workload prediction results of AR(16) vs. the actual load of the ChinaGrid nodes. 

In order to acquire the more reasonable model parameters which approach the realistic systems, we 

develop a sensor program and deploy it to eight server nodes in a practical data center of ChinaGrid 

[29]. Every second, the sensors record the workload data including CPU process queue length and 

memory utilization. The sensors totally collect the records for 5 hours. We use the multi-steps load 

prediction technology [27]. Fig. 3 shows the testing result of prediction of the AR(16) model. The 

mean absolute measurement errors of the prediction results of CPU process queue length and 

memory utilization are 3.17% and 2.85%, which are with an acceptable error range (less than 5%). 

2) Infer the load status of each server node 

We use the two load indicators, the CPU process queue length and memory utilization, to infer the 

overall load status of a server node, and then we will determine the load-balancing status of the 

whole virtualized data centers and select the candidate VEUs set. Interval type-II FLS (IT-2 FLS) is 

used, and we only need to determine the form of the primary membership function (MF) (because the 

secondary MF is interval sets in IT-2 FLS). We analyze the data traces of the server nodes in the 

practical data center of ChinaGrid to get the information of parameters distribution.  

The statistical distribution curves of the CPU process queue length and memory utilization are 

respectively shown in Fig. 4. We can approximately fit them with Gaussian distribution curves. Then 

we partition the data into segments, and compute the mean value and standard deviation for each 

segment. Table Ⅱalso shows that the variation of standard deviation is much bigger than the 

variation of mean value. So the primary membership can be modelled by a type-II Gaussian MF with 

uncertain variance [23] (see Fig. 5).  
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Fig.  4. The statistical distribution of CPU queue length and memory usage of the server nodes in ChinaGrid. 

 
Table ⅡⅡⅡⅡ．．．． The statistical analysis of CPU and memory load of the server node in ChinaGrid. 
 

 CPU process queue length Memory utilization 

Data set Mean Std Mean (%) Std 

Segment 1 1.9815 0.083972 79.0952 0.30745 

Segment 2 2.0451 0.073998 79.1565 0.59859 

Segment 3 1.9736 0.121144 79.0798 0.37352 

Segment 4 2.0048 0.085025 79.1543 0.35758 

Segment 5 1.9408 0.077651 79.2661 0.33718 

Segment 6 2.0062 0.067939 79.2671 0.34818 

Segment 7 1.9549 0.085049 79.3451 0.35803 

Segment 8 1.9912 0.048164 79.433 0.58207 

Segment 9 2.0205 0.112657 79.349 0.37335 

Segment 10 1.9538 0.057133 79.449 0.33759 

Entire Data Set 1.9872 0.0809 79.2595 0.38997 

Normalized Std 0.01650 0.276175 0.001695 0.26069 

 

We construct the rules set of the FLS. Antecedent and consequent membership functions are 

chosen based on the statistical analysis of the data traces. The load level is divided into: Light, 

Medium_to_Light, Medium, Medium_to_Heavy, Close_to_Heavy, and Heavy. We construct the 

fuzzy inference rules set which has 36 items. For example, under the condition that CPU process 

queue length is more than Close_to_Heavy, CPU process queue length has a more important 

influence over memory utilization. However, when CPU process queue length is equal to or less than 

Medium, memory utilization plays a more important role to system load status. We omit the 

complete rule table here for the space limitation. Then we get six candidate sets of the VEUs with the 

load levels from Light to Heavy. 



 

 
Fig.  5. Membership functions of the IT-2 FLS for predicting the load status of each server node. 

3) Infer the load-balancing status of virtualized data center 

The concept of load-balance is inherently vague. In this subsection, based on the load status 

prediction of each server node using IT-2 FLS in step 2, we use a simple type-I FLS to infer the 

overall load-balancing status of the whole virtualized data center. The inputs of the FLS are the 

percentage of the server nodes which have load status from Light to Heavy gotten in step 2, and the 

membership functions of the load-balancing status are shown in Fig. 6. There are total 55 items in 

the fuzzy inference rules table. For the space limitation, we don’t list it here.  
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Fig.  6. Membership functions of the load-balancing status of the VDC. 

4) Pick out the candidate sets according to load-balancing status 

We pick out the candidate set from the six sets of VEUs gotten in step 2, according to the load-

balancing status of the VDC in step 3. An intuitive idea is to dispatch the new coming task to the 

nodes with relatively lightweight load. In most cases, the more unbalanced the data center is, the 

larger the node set with lightweight load is. So when the system is in the VeryUnbalance status, the 
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node set with lightweight load is large enough in most cases. When the data center is relatively 

balanced, the nodes set with lightweight load is small and we can expand the candidate nodes set 

appropriately. According to this idea, we construct the rules for the FLS to select candidate nodes set 

as shown in Table Ⅲ. 

Table ⅢⅢⅢⅢ. Candidate sets for different load-balance status. 
 

Balance status candidate machine set 

veryUnbalance Light 

unBalance Light,  Medium_to_Light      

ClosetoBalance Light,  Medium_to_Light,  Medium  

Balance Light,  Medium_to_Light,  Medium,  Medium_to_Heavy   

We have shown how to determine the candidate VEU nodes set for each arrived task of the 

virtualized data center, considering the availability requirements and workload status. Then, which 

VEU node is selected from the candidate set as the scheduling aim depends on the certain scheduling 

algorithm. In next section, we will propose a novel dynamic task scheduling algorithm for VDCs.  

5. THE PROPOSED SCHEDULING ALGORITHM: SALAF 

5.1 The dynamic task scheduling algorithm 

After building the availability and the load-balance fuzzy predictors, we use them in the general 

scheduling framework of virtualized data center, as shown in Fig. 1. We propose an on-line dynamic 

task scheduling algorithm called SALAF (Scheduling Algorithm based on Load-balance and 

Availability Fuzzy prediction). The details of the algorithm are depicted in Fig. 7.  

Every arrived task is placed in the scheduling queue after it is submitted to the VDC. The 

scheduler gets tasks from the FIFO (First-In First-Out) queue. For each task at the head of the 

waiting queue, steps 4-10 select the candidate VEU set ΑΑΑΑ , which can satisfy the availability 

requirements of the task specified in the SLA. The FLS AFP (Availability Fuzzy Predictor) is 

applied to get availability level of each VEU. Steps 11-15 determine the candidate VEU set L , which 

can meet the load-balance requirement. The FLS LFP (Load-balance Fuzzy Predictor) is used to get 

candidate VEU set that satisfy the load-balance requirement. After that, step 17 finds the intersection 

set C  which can both satisfy the two requirements of availability and load-balance. If the set C  is 

not null, steps 18-24 select the VEU which has the minimum excepted response time from C  as the 



 

pre-allocated aim VEU. When the set C  is null, the scheduler gives priority to the satisfaction of the 

availability requirement. If ΑΑΑΑ  is not null, steps 26-31 select a VEU which has the minimum excepted 

response time in the set ΑΑΑΑ  as the pre-allocated aim. Otherwise, scheduler selects a VEU which has 

the highest availability level to satisfy the availability requirement as much as possible by steps 32-

34. At last, the current task is allocated to the selected aim VEU in step 35. 

1. Let ΩΩΩΩ  denote the set of all VEUs; 

2. Initialize the availability demand level for each class of tasks when they are submitted; 

3. For each task at the head of the queue Do 

4.       Create two empty candidate sets of VEUs ΑΑΑΑ  and L ; 

5.     For each { }
j i i ik

VEU  = HW , VMM ,VM in ΩΩΩΩ  Do 

6. Calculate the current availability of each component
iHWA ,

iVMMA  and 
ikVMA ; 

7.           Apply the FLS ( ), ,
i i ikHW VMM VM

AFP A A A (see subsection 4.1) to get the availability level of the 
j

VEU ; 

8.                 If the 
j

VEU can satisfy  the task availability requirements Then 

9.                       Add 
jVEU to set ΑΑΑΑ ; 

10.              End if 

11.              Apply AR(16) to predict the CPU process queue length(
i

CPU ) and memory utilization (
i

MEM ); 

12.              Apply ( ),
i i

LFP CPU MEM to infer the load-balancing status of VDC if the task is assigned to 
j

VEU ; 

13.              If the 
j

VEU can satisfy the load-balancing demand Then 

14.                       Add 
jVEU to set L ; 

15.              End if 

16.         End for 

17.         Let = ∩C A L , 
minT INFINITE= ; 

18.         If ≠ ∅C Then 

19.            For each 
jVEU ∈ C Do 

20.                  Let 1ijp = ; calculate expected response time T (see Eq. 3); 

21.                  IF 
min

T T<  Then 

22.                        
min

;T T aim j= = ; 

23.                  End if 

24.            End for 

25.         Else if ≠ ∅A Then 

26.            For each 
jVEU ∈ A Do 

27.                  Let 1ijp = ; calculate expected response time T; 

28.                  IF 
min

T T<  Then 

29.                        
min

;T T aim j= = ; 

30.                  End if 

31.            End for 

32.         Else 

33.            Select one of the VUEs which have the highest availability level as the aim ; 

34.         End if 

35.         Allocate current taski to the 
aimVEU  

36.     End for 

Fig.  7. The scheduling algorithm SALAF. 
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5.2 Algorithm analysis 

SALAF is an on-line dynamic task scheduling algorithm. We analyze its worst-case time 

complexity to get the computational overhead for each arriving task in the VDC.  

[THEOREM 1]: The algorithm SALAF has approximate linear worst-case time complexity with the 

total number of the virtual machines in the VDC. 

PROOF: The most time-consuming operations are the steps to find the candidate VEU set from step 

5 to 16. There are N rounds for the N VEUs. In each round, the fuzzy predictors AFP and LFP are 

used. As shown in section 4, the time complexity of the fuzzy prediction process is ( )Kτ ⋅O  for K 

classes of tasks, where τ  is a constant and it is in proportion to the number of rules in the FLSs. So 

the worst-case time complexity of the steps 5-16 is ( )N Kτ ⋅ ⋅O . Steps 17-24, steps 25-31 and steps 

32-34 are to select a VEU in some subset of the candidate VEU set. The worst-case time complexity 

of them is all ( )NO .  Hence the total worst-case time complexity of SALAF is ( )N K Nτ ⋅ ⋅ +O . Since 

τ  is a constant and the number of task classes K is a non-big integer in practical VDCs, SALAF can 

be approximately considered having linear worst-case time complexity algorithms which is 

positively related to the numbers of VEUs N in the VDC. And the number of VEUs equal to the 

number of virtual machines, so SALAF has approximate linear worst-case time complexity with the 

total number of the virtual machines in the VDC.                                                                               �  

6. SIMULATIONS 

In this section, we evaluate the SALAF using simulation experiments. It is assumed that the task 

arrival conforms to Poisson process, and the task execution times are uniformly distributed. The 

parameters related to the availability including the failure rate and repair rate of HW, VMM and VM 

are chosen to represent the characteristics of software and hardware for real-world systems [26]. The 

parameter settings are shown in Table Ⅳ. 

Table ⅣⅣⅣⅣ. The parameter settings of experiment environment. 
 

Parameters Values (Fixed)→(Varied) 

Number of virtual servers (i.e., number of HW and VMM) (10)→(4,6,8,10,12,14) 

Total Number of VEUs (30)→(10,20,30,40,50,60) 

Average task arrival rates (1.0)→(0.4,0.6,0.8,1.0,1.2,1.4) 

Average failure rates of hardware (0.00001:0.0001:0.001) 



 

Average failure rates of VMM and VM (0.001:0.01:0.1) 

Average repair rate of hardware 0.1 

Average repair rate of VMM and VM 1 

Average process rates of VEU (0.1:0.05:0.01) 

Average transmission delay 10 

We select two scheduling algorithms in common use to compare with the SALAF. They are Min-

min and Sufferage [16, 30]. These two algorithms are selected because they are two representative 

dynamic scheduling algorithms and have been widely used in real systems. They are described in 

brief as follows: 

(1) Min-min: For each submitted task, the VEU providing the earliest completion time is tagged. 

Among all of the mapped tasks, the one that has the minimal earliest completion time is chosen and 

then allocated to the tagged VEU. 

(2) Sufferage: A VEU is assigned to a task that would “suffer” most in terms of completion time 

if that VEU is not allocated to the task. 

There are two major evaluating indicators: Average Response Time (ART) of each task, and the 

Availability Satisfaction Percentage (ASP) that is the percentage of the tasks whose availability 

requirements can be satisfied by the assigned VEUs. We study the performance of the three 

scheduling algorithms under different task arrival rates and different structure parameters of the data 

center. The parameter settings of the experimental environment are shown in table Ⅳ. 

Fig. 8 (a) and (b) show the changes of ASP and ART respectively when the tasks arrival rate varies 

from 0.4 to 1.4. We can see that the ASP of the SALAF is considerably higher than Min-min and 

Sufferage, while the ART of the SALAF is close to those of Min-min and Sufferage. It is because that 

Min-min and Sufferage take the best time performance as the only goal and ignore the availability 

requirements of tasks. It shows that the SALAF scheme can improve the system availability while 

maintaining good responsiveness. 

Fig. 9 (a) and (b) show the changes of ASP and ART respectively when the number of hardware 

machines varies from 4 to 14. It also shows the advantages of the SALAF in ASP while keeping a 

good ARP. Besides, Fig. 9 (a) and (b) also show that both ASP and ART are enhanced rapidly, with 

increasing the number of hardware machines. It matches the common sense: the more the hardware 

machines, the less the average number of virtual machines on each machine, so each machine has 
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lighter workload, and it is easier to guarantee better availability and responsiveness performance. 

However, using more machines means more construction cost of VDC and worse utilization of 

hardware resource, so it needs a trade-off for building a VDC. 

The VMs are the main executive units in a VDC. There are usually several VMs running on each 

hardware server, called server consolidation. We study the impact of the average number of VMs on 

each server (called consolidation ratio) on the availability and performance of task scheduling 

schemes. Fig. 10 (a) and (b) show the changes of ASP and ART respectively when the average 

number of VMs on each virtual server varies from 1 to 6. As more virtual machines are consolidated 

into each server, the availability and responsiveness are improved. Comparing with the way to 

increase the number of machines, server consolidation is a much cost-saving way. On the other hand, 

the consolidation ratio is not the bigger the better. Fig. 10 (a) and (b) show that when the 

consolidation ratio exceeds a threshold value, the improvement of availability and response time is 

not obvious. Considering the cost of consolidation, it seems that there exists an optimal consolidation 

ratio in a VDC that may be related to the hardware resource and the workload, which is another issue 

to be considered in our future works. 
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Fig.  8. ASP (a) and ART (b) vary with the tasks arrival rate. 
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Fig.  9. ASP (a) and ART (b) vary with the number of hardware machines. 
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Fig.  10. ASP (a) and ART (b) vary with the average number of VMs on each server. 

7. CONCLUSIONS 

In this paper, we have studied the task scheduling problem in virtual data centers, considering the 

performance and availability requirements of SLAs. The general model of the task scheduling in 

VDC is built by MSQMS-LQ, and the problem is formulated as an optimization problem with two 

objectives: average response time and availability satisfaction percentage. Then we give a graceful 

fuzzy prediction method to model the uncertain workload and the vague availability of virtualized 

server nodes, by using the type-I and type-II fuzzy logic systems. Based on the fuzzy prediction 

systems, an on-line dynamic task scheduling algorithm named SALAF is proposed. The worst-case 

time complexity of SALAF is analyzed. The experimental results show that the proposed algorithm 



 22

could efficiently improve the total availability of VDCs while maintaining good responsiveness 

performance.  
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