

Efficient Dynamic Task Scheduling in

Virtualized Data Centers with Fuzzy Prediction

Xiangzhen Kong
1
, Chuang Lin

1
, Yixin Jiang

1
, Wei Yan

1
, and Xiaowen Chu

2

1
 Department of Computer Science and Technology, Tsinghua University

Beijing, 100084, P. R. China
Email:xiangzhen1985@gmail.com,{clin,yxjiang}@csnet1.cs.tsinghua.edu.cn,

yanw08@mails.tsinghua.edu.cn

2
 Department of Computer Science, Hong Kong Baptist University,

Hong Kong, P.R. China
Email: chxw@comp.hkbu.edu.hk

Abstract—System virtualization provides low-cost, flexible and powerful executing

environment for virtualized data centers, which plays an important role in the infrastructure of

Cloud computing. However, the virtualization also brings some challenges, particularly to the

resource management and task scheduling. This paper proposes an efficient dynamic task

scheduling scheme for virtualized data centers. Considering the availability and responsiveness

performance, the general model of the task scheduling for virtual data centers is built and

formulated as a two-objective optimization. A graceful fuzzy prediction method is given to model

the uncertain workload and the vague availability of virtualized server nodes, by using the type-I

and type-II fuzzy logic systems. An on-line dynamic task scheduling algorithm named SALAF is

proposed and evaluated. Experimental results show that our algorithm can improve the total

availability of the virtualized data center while providing good responsiveness performance.

Keywords—Virtualized data center; Task scheduling; Fuzzy logic; Availability; Load-balance

1. INTRODUCTION

The trend toward server-side computing and the exploding popularity of Internet services has

made data centers become an integral part of the Internet fabric rapidly. Data centers become

increasingly popular in large enterprises, banks, telecom, portal sites, etc [1-3]. As data centers are

inevitably growing more complex and larger, it brings many challenges to the deployment, resource

management and service dependability, etc [4]. Virtualization is viewed as an efficient way against

these challenges. Server virtualization opens up the possibility of achieving higher server

 2

consolidation and more agile dynamic resource provisioning than is possible in traditional platforms

[5]. A data center built using server virtualization technology with virtual machines (VMs) as the

basic processing elements is called a virtualized (or virtual) data center (VDC) [6-8]. Due to the

advantages in deployment, management, dependability and cost, VDCs become the next

infrastructure trend with the popularity of Cloud computing and IaaS (Infrastructure as a Service) [9,

10], such as Amazon EC2 [11] and VMware vCloud [12].

However, the characteristics of virtualization also bring new challenges to VDCs, particularly to

the task scheduling and resource management. Server consolidation [13, 14] makes many VMs run

in a physical server. VMs are loosely coupled with the underlying hardware and share the hardware

resources of the physical server such as CPU, memory and network. The loosely-coupled and highly-

shared features of virtualization make it difficult to accurately measure the running parameters and

resources usage information of each VM, which cause some complexity in resource management and

task scheduling in VDCs. In addition, the mechanism of live migration [15] makes it possible for

VM appliance to move between different physical servers in a VDC. It further exacerbates the

dynamicity and nondeterminacy of VDCs. Such characteristics bring challenges for the traditional

task scheduling schemes to work well in VDCs.

We focus on the task scheduling problem of VDCs in this paper. Some performance metrics, such

as high throughput, low response delay and short makespan, are the conventional optimization goals

for task scheduling. The traditional scheduling algorithms usually assume that all server nodes are

always available for processing. In practice, this assumption is often not plausible in some scenarios

where certain breakdowns, requirements for maintenance, or other constraints that make the server

nodes unavailable for processing exist [16]. For example, in VDCs, a node is sometimes unavailable

during the processes of backup, update maintenance or live migration. However many service

applications require data center platform with high availability, particularly for some critical services

such as military, healthcare applications [16]. So availability is also a critical metric that a scheduling

policy in VDCs should take into considerations. But in practical applications, it is unpractical for

users to accurately specify their availability requirements in the SLAs (Service Layer Agreements)

for their submitted tasks. A more friendly way is to let users designate a fuzzy level of availability

requirements, such as high, medium or low level. Then, how to deal with the vagueness of

availability requirements in the task scheduling is also a challenge. Moreover, to improve the

availability needs more extra processing overhead that may impact on the scheduling performance.

So achieving high performance and availability simultaneously is also a concern, as they are usually

conflicting with each other [16].

Furthermore, the existing researches on the scheduling in VDCs mostly focus on the infrastructure

layer, such as resource provisioning and VMs placement [7, 8, 17-19]. They are dedicated to improve

the performance of the data center infrastructure, but the service layer requirements specified by

SLAs are ignored. Different task classes for different applications (FTP, streaming media, etc.) often

have distinct requirements in the SLAs such as response time and availability, which are closely

related to the Quality of Service (QoS) from the users’ view. To improve the user experience, it

motivates us to study the task scheduling problem from the service layer by considering different

requirements of performance and availability in the SLAs.

In this paper, we propose an effective task scheduling scheme for VDCs, which makes a good

trade-off between availability and performance. The multiclass tasks model is introduced in our

scheme, and different classes of tasks are characterized by their distinct arrival rates, service time,

and availability requirements. The contributions are concluded as the following aspects: 1) We build

a general model for the task scheduling in VDCs and formulate it as a two-objective optimization

problem; 2) We give a graceful fuzzy prediction method to model the uncertain workload and the

vague availability of virtualized server nodes, using the type-I and type-II fuzzy logic systems; 3)

We design and evaluate a dynamic task scheduling algorithm which could efficiently improve the

total availability of the VDC while maintaining good responsiveness performance.

The rest of this paper is organized as follows. Section 2 introduces the background. The general

formal model of the task scheduling system in VDCs is introduced in section 3. In section 4,

availability and load-balance predictors are constructed using type-I and interval type-II fuzzy logic

systems, respectively. Section 5 presents the new dynamic scheduling algorithm. Section 6 gives the

performance evaluation of the algorithm, followed with the conclusions in Section 7.

 4

2. BACKGROUND

2.1 Task Scheduling in Virtualized Data Centers

Task scheduling is to assign tasks to different executive units while satisfying some constraints. In

VDCs, a VM with the corresponding VMM and HW works as the basic executive unit called virtual

executive unit (VEU), which is the provider of services specified in the SLAs. Task scheduling

techniques can be either static or dynamic. Static scheduling schemes assume a fixed tasks set and a

priori knowledge of the characteristics of the workload with respect to the systems. It is usually

impractical in real systems, particularly for the VDCs. In VDCs, server consolidation [13, 14]

enables that several VMs run on the same hardware machine and share the underlying hardware

resources through the VMM, which helps increasing the utilization of server resources. Moreover,

virtualization provides a good isolation between different VMs, and VM appliance can dynamically

migrate to another machine through live migration [15]. These characteristics and mechanisms bring

dynamicity and nondeterminancy to task scheduling in VDCs, and it is hard for the static scheduling

schemes to get detailed prior knowledge. So we attempt to design an effective dynamic task

scheduling scheme to assign tasks to different executive entities (VMs) for improving satisfaction

degree of the availability requirements in SLAs while maintaining good responsiveness.

2.2 Type-I and Type-II Fuzzy Logic Systems

We turn to the fuzzy logic system (FLS) to deal with the challenges caused by the dynamicity of

virtualization and the vagueness of availability requirements in the scheduling strategy of VDCs. A

FLS is particularly good at handling uncertainty, vagueness and imprecision. FLSs are widely used

in many areas, and could also efficiently deal with the uncertainty in task scheduling [20]. The

concept of type-II fuzzy sets was introduced by Zadeh as an extension of the concept of an ordinary

fuzzy set, i.e. the type-I fuzzy set [21]. The membership grades of type-II fuzzy sets are themselves

type-I fuzzy sets, which include a primary membership and a secondary membership. Type-II fuzzy

logic systems are very useful in the scenario where it is difficult to determine an exact membership

function for a fuzzy set; hence, they are useful for incorporating uncertainties. In [22], three cases

under which type-II FLS is more suitable for use than type-I are summarized. General type-II FLSs

are computationally intensive, so a special case with the secondary MFs be interval sets called

Interval Type-II FLSs (IT2-FLSs) were studied. Liang et al. [23] proposed an efficient and simplified

method to compute the input and antecedent operations for IT2-FLSs. Hereafter, the IT2-FLS

becomes a powerful and popular tool that is widely used in recent years, and we first introduce it to

the task scheduling in VDCs. For the high dynamicity of virtual machines, the workload data

sampled from each server node are usually noisy too. It causes difficulties to make a good decision in

the process of task scheduling. To deal with the noise in the training data, the IT2-FLS is applied in

the task scheduling policy of the VDCs.

3. MODEL DESCRIPTIONS AND FORMULATIONS

3.1 The Framework of Task Scheduling in Virtualized Data Centers

We use the MSQMS-LQ (Multi-classes Single Queue to Multiple Servers with Local Queues)

model for the task scheduling in a VDC (see Fig. 1). There is a shared waiting queue before entering

the scheduler. Each virtual machine acts as the server with a local queue for arrived tasks. Since

different class of tasks may have different characteristics and availability requirements, multiclass

task model [16, 24] is applied in our framework. Assume that there are K classes of non-preemptive

tasks, where K stands for the number of different levels of task availability requirement specified by

SLAs. In this paper, we consider K=5, which stands for 5-levels of availability requirements: very

high, high, medium, low and very low. There are m physical servers in the data center, and the Virtual

Serveri consists of a HW, a VMM and ni VMs. Then, there are totally
1

m

ii
n N

=
=∑ virtual machines.

 6

1
λ

2
λ

K
λ

Fig. 1. The framework of the task scheduling in a virtualized data center.

Table I. Notations and definitions.

Notation Definition

m Total number of the virtual servers

N Total number of the virtual machines.

K Total number of the task classes

ni Total number of VMs hosted in the ith virtual server

iHWf ,
iVMMf ,

ikVMf Failure rates of the HWi, VMMi, VMik

iHWr ,
iVMM

r ,
ikVM

r Repair rates of the HWi, VMMi, VMik

iHWA ,
iVMMA ,

ikVMA Availability of the HWi, VMMi, VMik

()LA
µ ⋅ Membership function of low availability nodes set

()MAµ ⋅ Membership function of medium availability nodes set

()HAµ ⋅ Membership function of high availability nodes set

iHW
x ,

iVMM
x ,

ikVM
x The availability inputs of membership function for HWi, VMMi, VMik

i
λ Average arrival rate of the ith class tasks

ij
µ Service rate when the ith class tasks are dispatched on VEUj

ij
p Probability of that the ith class tasks are dispatched to VEUj

j
Λ Aggregate task arrival rate of the VEUj

j
ρ The server utilization of VEUj

j
S The expectation value of service time on VEUj

jS
σ Standard deviation of service time on VEUj

j
T The service time of VEUj

iα Availability requirement level of the ith class tasks specified in the SLA.

jβ Availability level provided by the VEUj

The model of the scheduling system, depicted in Fig. 1, is composed of a scheduling queue, a task

scheduler using the algorithm of SALAF (Scheduling Algorithm based on Load-balance and

Availability Fuzzy prediction), and local task queue for each VM. The goal of SALAF is to make a

good task allocation decision for each arrived task to satisfy its availability requirement and maintain

a good performance in response time. The core of the framework is the SALAF task scheduler, which

consists of two important components: Availability Fuzzy Predictor (AFP) and Load-balance Fuzzy

Predictor (LFP). The AFP computes the availability of each virtual execution unit (VEU), by

combing the availability of HW, VMM and VM. It predicts that which VEU could satisfy the

availability requirement of each arrival task. The LFP predicts the load-balance status through

autoregression model AR(16) and interval type-II FLS. The details will be introduced in the section 4.

3.2 Model Formulations

At first, we build a general formal model for the task scheduling in a virtualized data center. We

summarize the notations and their definitions used throughout this paper in Table I. There are K

classes of tasks, and each class has an availability level specified by SLAs. Values of availability

levels are in the range {very low, low, medium, high, very high}. There are N virtual execution units,

and VEUj = {HWi, VMMi, VMik}, where1 i m≤ ≤ , 1 ik n≤ ≤ and 1 j N≤ ≤ . We assume that the

arrival of the tasks of the ith (1 i K≤ ≤) class conforms to a Poisson process with rate iλ . The

interval arrival time of Poisson arrival tasks conforms to the exponential distribution. According to

the additive property of exponential distribution, the aggregate tasks arrival of all classes is also a

Poisson process with rate
1

K

ii
λ λ

=
=∑ .We model the sub-system of VEUj which includes a VM and a

local queue by an M/G/1 queue model. We assume that pij is the probability that the tasks of the ith

class are dispatched to VEUj, where 1 j N≤ ≤ .Then the aggregate task arrival rate for VEUj is

expressed as
1

K

j i iji
pλ

=
Λ =∑ . Let ijµ be the service rate of tasks in class i allocated into VEUj. Then

the server utilization of VEUj is ()
1

/
K

j ij i ij

i

pρ λ µ
=

=∑ , where K is the total number of the task classes.

 8

The expectation value and standard deviation of service time for the tasks of K classes dispatched on

jVEU are

1

1 K
ij i

j

ij ij

p
S

λ

µ=

 
=   Λ  

∑ and

2

1

1 1

1j

K

S j

i ij

S
k

σ
µ=

 
= −  −  

∑ (1)

Hence, according to the Pollaczek-Khinchin mean-value formula [25], we obtain the service time of

j
VEU as

()
2

1 /

2(1)

jj j S j

j j

j

S S

T S

ρ σ

ρ

 + 
 = +

−
 (2)

Therefore, the expected response time of all the K classes tasks can be expressed as

()
1 1

K N
i

ij j

i j

T p T
λ

λ= =

 
= ⋅ 

 
∑ ∑ (3)

 Let
iα denote the availability requirement level of the ith class tasks, which could be specified in

the SLA. Let
jβ denote the availability level provided by the

jVEU , so ,i jα β ∈ {very low, low,

medium, high, very high}. We assign the numbers of 0-4 to the availability level very low to very

high. If
i jα β≤ , the availability requirement of the task can be satisfied by the

j
VEU . Hence, the

probability that the ith class task is distributed to the
j

VEU and the availability requirement can be

satisfied is { }ij i j
p Prob α β⋅ ≤ . Therefore, the total satisfaction probability of all the K classes tasks’

availability requirement is

{ }()
1 1

K N
i

ij i j

i j

A p Prob
λ

α β
λ= =

 
= ⋅ ⋅ ≤ 

 
∑ ∑ (4)

We formulate the scheduling problem as a trade-off between availability and the average response

time, and obtain the formalized optimization problem as:

{ }()

()

1 1

1 1

1

1
. .

1 ,1

K N
i

ij i j

i j

K N
i

ij j

i j

N

ij

j

Max A p Prob

Min T p T

p
s t

i K j N

λ
α β

λ

λ

λ

= =

= =

=

 
= ⋅ ⋅ ≤ 

 

 
= ⋅ 

 


=


∀ ≤ ≤ ≤ ≤

∑ ∑

∑ ∑

∑

The key is to determine the assignment probability pij considering the dynamicity of the virtual

machines and the availability levels specified in the SLAs. In the following sections, we will develop

a dynamic scheduling algorithm to find a trade-off solution which maximizes the availability

satisfaction probability A as well as minimizes the response time T. Prior to that there are still two

critical problems. One is how to get the availability level provided by VEUj, i.e.
j

β . On the other

hand, we pursue the minimum average response time, and it is usually achieved with good load-

balance which means allocating more tasks to the VEUs with relatively lighter load. So the load

status of each VEU and the load-balance of the VDC should be determined in the process of dynamic

scheduling. To deal with the dynamicity of VEUs’ load status and the vagueness of the tasks’

availability requirement level, we turn to fuzzy logic systems.

4. AVAILABILITY AND LOAD-BALANCE FUZZY PREDICTION

4.1 Availability Fuzzy Prediction

This subsection presents the construction of the Availability Fuzzy Predictor (AFP) shown in Fig.

1. Availability is defined as the ratio of the time period when a server node is functional during a

given interval. For simplicity, the concept of Intrinsic Availability [26] is used commonly in

engineering, which is defined as

/()IA MTBF MTBF MTTR= + (5)

where MTBF is the Mean Time Between Failures and MTTR is the Mean Time To Repair.

In the scheduling model of virtualized data centers, the availability requirement level of each class

tasks iα is specified in the SLA, and we need to get the availability level j
β provided by each VEUj.

Each VEU consists of a VM and the corresponding VMM and HW. We turn to fuzzy logic system,

 10

and the common type-I FLS is used. The key is to determine the input and output fuzzy variables,

and construct the fuzzy inference rules.

1) Define the input and output fuzzy variables

A VEU is the set of one HW, one VMM and one of the VMs that run on the VMM. To get the

availability of the VEU, the inputs of the fuzzy logic system include the intrinsic availability of HW,

VMM and the corresponding VM. In reliability engineering, the failure rate and repair rate of a

component can be obtained by statistical methods. It is normally assumed that the time to fail and the

time to repair conform to exponential distribution [26]. Therefore, according to Eq. (5), we can get

the intrinsic availability of
i

HW by the following Proposition 1.The availability of
i

VMM and
ik

VM

can be gotten similarly.

[PROPOSITION 1]: Given the failure rate of the hardware machine
i

HW is
iHW

f , and the repair rate

is
iHW

r , then the intrinsic availability can be expressed by

/()
i i i iHW HW HW HW

A r r f= + (6)

PROOF: Under the assumption of exponential distribution, the expectation value of the time

between failures is 1/
iHWMTBF f= and the expectation value of the time to repair is 1/

iHW
MTTR r= .

According to Eq. (5), we have /()
i i i iHW HW HW HW

A r r f= + . □

In engineering, the availability measure of a component is usually not so accurate. It is often

expressed by the count of ‘9’ after the decimal point of the availability value. For example, saying

the availability of a component is three ‘9’ stands for the ratio of the time period when the

component is functional during a given interval is about 0.999. It means that the downtime is no

more than 8.76 hours in a year. For hardware and software, there are different de facto standards

about the availability level. Generally, if a hardware component has the availability of three ‘9’ to

four ‘9’, it is considered as an acceptable availability. In regard to the software, the standard may

lower to about two ‘9’, because of the vulnerability of software. To make the different levels of

availability inputs uniformly-spaced, we make logarithmic transformation to the inputs while

keeping the monotonicity. Taking the HW as an example, the input variable form is

 ()1
i iHW HW

x log A= − − (7)

Therefore, we can define the membership functions (MFs) of the hardware component (
i

HW) and

the software components (
i

VMM and
ik

VM) in the form of piecewise function, shown in Fig. 2.

Taking the
i

HW as an example, the MFs of the fuzzy sets of low availability (
LA

µ), medium

availability (
MA

µ) and high availability (
HA

µ) are separately defined as follows:

()
1 0.99

(1) 3 0.99 0.999

0

i

i i i

HW

LA HW HW HW

A

A log A A

Other

µ

≤


= − + < ≤



 (8)

 ()
(1) 2 0.99 0.999

(1) 4 0.999 0.9999

0

i i

i i i

HW HW

MA HW HW HW

log A A

A log A A

Other

µ

− − − < ≤


= − + < ≤



 (9)

()
(1) 3 0.999 0.9999

1 0.9999

0

i i

i i

HW HW

HA HW HW

log A A

A A

Other

µ

− − − < ≤


= >



 (10)

 One '9' Two '9' Three '9' Four '9' Five '9'
0

0.2

0.4

0.6

0.8

1

1.2

The availability of the hardware component
(after logarithmic transformation)

T
h

e
 g

ra
d

e
 o

f
m

e
m

b
e
rs

h
ip

 o
f

th
e

 a
v
a
il
a
b

il
it

y

Membership function of low availability

Membership function of medium availability

Membership function of high availability

 One '9' Two '9' Three '9' Four '9'
0

0.2

0.4

0.6

0.8

1

1.2

The availability of the software component
(after logarithmic transformation)

T
h

e
 g

ra
d

e
 o

f
m

e
m

b
e
rs

h
ip

 o
f

th
e

 a
v
a
il
a
b

il
it

y

Membership function of low availability

Membership function of medium availability

Membership function of high availability

Fig. 2. Membership functions of low, medium and high availability fuzzy sets for hardware and software.

2) Construct the fuzzy inference rules

Since the availability of one VEU is related to the corresponding HW, VMM and VM, we

construct the fuzzy inference rules each of which have three antecedents and one consequent: 1)

Antecedent 1: Availability of the
i

HW ; 2) Antecedent 2: Availability of the
i

VMM ; 3) Antecedent 3:

Availability of the
ik

VM ; 4) Consequent: Availability level of the virtual execution unit
j

VEU .

Where,1 i m≤ ≤ , 1 i
k n≤ ≤ and 1 j N≤ ≤ .

 12

According to the membership function (8)-(10), each of antecedents has three values. So there are

total 27 items of rules. For example, if A(
i

HW)=low and A(
i

VMM)=low and A(
ik

VM)=low, then

A(
j

VEU)=very low. Due to the limited space for this paper, we omit the complete rules table.

4.2 Load-balance Fuzzy Prediction

In this subsection, we use the fuzzy logic system to get the candidate VEU sets that satisfy the

load-balancing status in VDC, which implements the Load-balance Fuzzy Predictor (LFP) shown in

Fig. 1. The responsiveness performance is closely related to the processing capacity and workload of

each VEU, while a VEU consists of a VM, a VMM and the sharing HW of the corresponding

physical server. The VMM contributes little to the task workload of VEU. We only use the workload

of VM and physical server to distinguish the workload status of different VEUs in VDC, and select

the candidate VEU set considering the overall load-balancing status of the VDC. Because of the

loosely-coupled relation between HW and VMs and the dynamicity of VMs, the workload data

sampled from each server node are usually noisy. So we turn to the interval type-II fuzzy logic

systems (IT2-FLSs). Four steps are applied to get the candidate VEU sets for each arrived task.

1) Get the load indicators by auto-regression model

The CPU process queue length and memory utilization are usually used as indicators to reflect the

workload status of a server node [27]. In our scheduling scheme, we sample these two load indicators

of each node periodically. Due to transmission delay before a task arriving at a VEU, the load status

when the scheduling decision is made is always different from the load status when the task is

actually executed in the VEU. The high dynamicity of virtual machines amplifies this difference. So

we first need to predict the workload when a task arrives at one VEU in the scheduling.

Dinda and O’Hallaron [28] studied the prediction power of several models and show that simple

practical models such as auto-regression (AR) are sufficient for load prediction. AR(n) is a common

linear forecast model where n represents the number of steps which are used for forecasting a new

one. In this paper, we use the AR(16) model to get the load indicators of a VEU node in the VDC,

including CPU process queue length and memory utilization.

0 500 1000 1500 2000 2500
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Time (sec)

C
P

U
 p

ro
c
e
s
s
e
s
 q

u
e
u

e
 l
e
n

g
th

Predicted value

Actual value

0 500 1000 1500 2000 2500
77

78

79

80

81

82

83

Time (sec)

M
e
m

o
ry

 u
s
a
g

e
 (

%
)

Predicted value

Actual value

Fig. 3. The workload prediction results of AR(16) vs. the actual load of the ChinaGrid nodes.

In order to acquire the more reasonable model parameters which approach the realistic systems, we

develop a sensor program and deploy it to eight server nodes in a practical data center of ChinaGrid

[29]. Every second, the sensors record the workload data including CPU process queue length and

memory utilization. The sensors totally collect the records for 5 hours. We use the multi-steps load

prediction technology [27]. Fig. 3 shows the testing result of prediction of the AR(16) model. The

mean absolute measurement errors of the prediction results of CPU process queue length and

memory utilization are 3.17% and 2.85%, which are with an acceptable error range (less than 5%).

2) Infer the load status of each server node

We use the two load indicators, the CPU process queue length and memory utilization, to infer the

overall load status of a server node, and then we will determine the load-balancing status of the

whole virtualized data centers and select the candidate VEUs set. Interval type-II FLS (IT-2 FLS) is

used, and we only need to determine the form of the primary membership function (MF) (because the

secondary MF is interval sets in IT-2 FLS). We analyze the data traces of the server nodes in the

practical data center of ChinaGrid to get the information of parameters distribution.

The statistical distribution curves of the CPU process queue length and memory utilization are

respectively shown in Fig. 4. We can approximately fit them with Gaussian distribution curves. Then

we partition the data into segments, and compute the mean value and standard deviation for each

segment. Table Ⅱalso shows that the variation of standard deviation is much bigger than the

variation of mean value. So the primary membership can be modelled by a type-II Gaussian MF with

uncertain variance [23] (see Fig. 5).

 14

1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

CPU processes queue length

P
ro

b
a
b

il
it

y
 D

is
tr

ib
u

ti
o

n

70 75 80 85 90
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Memory Usage

P
ro

b
a
b

il
it

y
 D

is
tr

ib
u

ti
o

n

Fig. 4. The statistical distribution of CPU queue length and memory usage of the server nodes in ChinaGrid.

Table ⅡⅡⅡⅡ．．．． The statistical analysis of CPU and memory load of the server node in ChinaGrid.

 CPU process queue length Memory utilization

Data set Mean Std Mean (%) Std

Segment 1 1.9815 0.083972 79.0952 0.30745

Segment 2 2.0451 0.073998 79.1565 0.59859

Segment 3 1.9736 0.121144 79.0798 0.37352

Segment 4 2.0048 0.085025 79.1543 0.35758

Segment 5 1.9408 0.077651 79.2661 0.33718

Segment 6 2.0062 0.067939 79.2671 0.34818

Segment 7 1.9549 0.085049 79.3451 0.35803

Segment 8 1.9912 0.048164 79.433 0.58207

Segment 9 2.0205 0.112657 79.349 0.37335

Segment 10 1.9538 0.057133 79.449 0.33759

Entire Data Set 1.9872 0.0809 79.2595 0.38997

Normalized Std 0.01650 0.276175 0.001695 0.26069

We construct the rules set of the FLS. Antecedent and consequent membership functions are

chosen based on the statistical analysis of the data traces. The load level is divided into: Light,

Medium_to_Light, Medium, Medium_to_Heavy, Close_to_Heavy, and Heavy. We construct the

fuzzy inference rules set which has 36 items. For example, under the condition that CPU process

queue length is more than Close_to_Heavy, CPU process queue length has a more important

influence over memory utilization. However, when CPU process queue length is equal to or less than

Medium, memory utilization plays a more important role to system load status. We omit the

complete rule table here for the space limitation. Then we get six candidate sets of the VEUs with the

load levels from Light to Heavy.

Fig. 5. Membership functions of the IT-2 FLS for predicting the load status of each server node.

3) Infer the load-balancing status of virtualized data center

The concept of load-balance is inherently vague. In this subsection, based on the load status

prediction of each server node using IT-2 FLS in step 2, we use a simple type-I FLS to infer the

overall load-balancing status of the whole virtualized data center. The inputs of the FLS are the

percentage of the server nodes which have load status from Light to Heavy gotten in step 2, and the

membership functions of the load-balancing status are shown in Fig. 6. There are total 55 items in

the fuzzy inference rules table. For the space limitation, we don’t list it here.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VeryUnbalanceBalance ClosetoBalance Unbalance

Fig. 6. Membership functions of the load-balancing status of the VDC.

4) Pick out the candidate sets according to load-balancing status

We pick out the candidate set from the six sets of VEUs gotten in step 2, according to the load-

balancing status of the VDC in step 3. An intuitive idea is to dispatch the new coming task to the

nodes with relatively lightweight load. In most cases, the more unbalanced the data center is, the

larger the node set with lightweight load is. So when the system is in the VeryUnbalance status, the

 16

node set with lightweight load is large enough in most cases. When the data center is relatively

balanced, the nodes set with lightweight load is small and we can expand the candidate nodes set

appropriately. According to this idea, we construct the rules for the FLS to select candidate nodes set

as shown in Table Ⅲ.

Table ⅢⅢⅢⅢ. Candidate sets for different load-balance status.

Balance status candidate machine set

veryUnbalance Light

unBalance Light, Medium_to_Light

ClosetoBalance Light, Medium_to_Light, Medium

Balance Light, Medium_to_Light, Medium, Medium_to_Heavy

We have shown how to determine the candidate VEU nodes set for each arrived task of the

virtualized data center, considering the availability requirements and workload status. Then, which

VEU node is selected from the candidate set as the scheduling aim depends on the certain scheduling

algorithm. In next section, we will propose a novel dynamic task scheduling algorithm for VDCs.

5. THE PROPOSED SCHEDULING ALGORITHM: SALAF

5.1 The dynamic task scheduling algorithm

After building the availability and the load-balance fuzzy predictors, we use them in the general

scheduling framework of virtualized data center, as shown in Fig. 1. We propose an on-line dynamic

task scheduling algorithm called SALAF (Scheduling Algorithm based on Load-balance and

Availability Fuzzy prediction). The details of the algorithm are depicted in Fig. 7.

Every arrived task is placed in the scheduling queue after it is submitted to the VDC. The

scheduler gets tasks from the FIFO (First-In First-Out) queue. For each task at the head of the

waiting queue, steps 4-10 select the candidate VEU set ΑΑΑΑ , which can satisfy the availability

requirements of the task specified in the SLA. The FLS AFP (Availability Fuzzy Predictor) is

applied to get availability level of each VEU. Steps 11-15 determine the candidate VEU set L , which

can meet the load-balance requirement. The FLS LFP (Load-balance Fuzzy Predictor) is used to get

candidate VEU set that satisfy the load-balance requirement. After that, step 17 finds the intersection

set C which can both satisfy the two requirements of availability and load-balance. If the set C is

not null, steps 18-24 select the VEU which has the minimum excepted response time from C as the

pre-allocated aim VEU. When the set C is null, the scheduler gives priority to the satisfaction of the

availability requirement. If ΑΑΑΑ is not null, steps 26-31 select a VEU which has the minimum excepted

response time in the set ΑΑΑΑ as the pre-allocated aim. Otherwise, scheduler selects a VEU which has

the highest availability level to satisfy the availability requirement as much as possible by steps 32-

34. At last, the current task is allocated to the selected aim VEU in step 35.

1. Let ΩΩΩΩ denote the set of all VEUs;

2. Initialize the availability demand level for each class of tasks when they are submitted;

3. For each task at the head of the queue Do

4. Create two empty candidate sets of VEUs ΑΑΑΑ and L ;

5. For each { }
j i i ik

VEU = HW , VMM ,VM in ΩΩΩΩ Do

6. Calculate the current availability of each component
iHWA ,

iVMMA and
ikVMA ;

7. Apply the FLS (), ,
i i ikHW VMM VM

AFP A A A (see subsection 4.1) to get the availability level of the
j

VEU ;

8. If the
j

VEU can satisfy the task availability requirements Then

9. Add
jVEU to set ΑΑΑΑ ;

10. End if

11. Apply AR(16) to predict the CPU process queue length(
i

CPU) and memory utilization (
i

MEM);

12. Apply (),
i i

LFP CPU MEM to infer the load-balancing status of VDC if the task is assigned to
j

VEU ;

13. If the
j

VEU can satisfy the load-balancing demand Then

14. Add
jVEU to set L ;

15. End if

16. End for

17. Let = ∩C A L ,
minT INFINITE= ;

18. If ≠ ∅C Then

19. For each
jVEU ∈ C Do

20. Let 1ijp = ; calculate expected response time T (see Eq. 3);

21. IF
min

T T< Then

22.
min

;T T aim j= = ;

23. End if

24. End for

25. Else if ≠ ∅A Then

26. For each
jVEU ∈ A Do

27. Let 1ijp = ; calculate expected response time T;

28. IF
min

T T< Then

29.
min

;T T aim j= = ;

30. End if

31. End for

32. Else

33. Select one of the VUEs which have the highest availability level as the aim ;

34. End if

35. Allocate current taski to the
aimVEU

36. End for

Fig. 7. The scheduling algorithm SALAF.

 18

5.2 Algorithm analysis

SALAF is an on-line dynamic task scheduling algorithm. We analyze its worst-case time

complexity to get the computational overhead for each arriving task in the VDC.

[THEOREM 1]: The algorithm SALAF has approximate linear worst-case time complexity with the

total number of the virtual machines in the VDC.

PROOF: The most time-consuming operations are the steps to find the candidate VEU set from step

5 to 16. There are N rounds for the N VEUs. In each round, the fuzzy predictors AFP and LFP are

used. As shown in section 4, the time complexity of the fuzzy prediction process is ()Kτ ⋅O for K

classes of tasks, where τ is a constant and it is in proportion to the number of rules in the FLSs. So

the worst-case time complexity of the steps 5-16 is ()N Kτ ⋅ ⋅O . Steps 17-24, steps 25-31 and steps

32-34 are to select a VEU in some subset of the candidate VEU set. The worst-case time complexity

of them is all ()NO . Hence the total worst-case time complexity of SALAF is ()N K Nτ ⋅ ⋅ +O . Since

τ is a constant and the number of task classes K is a non-big integer in practical VDCs, SALAF can

be approximately considered having linear worst-case time complexity algorithms which is

positively related to the numbers of VEUs N in the VDC. And the number of VEUs equal to the

number of virtual machines, so SALAF has approximate linear worst-case time complexity with the

total number of the virtual machines in the VDC. �

6. SIMULATIONS

In this section, we evaluate the SALAF using simulation experiments. It is assumed that the task

arrival conforms to Poisson process, and the task execution times are uniformly distributed. The

parameters related to the availability including the failure rate and repair rate of HW, VMM and VM

are chosen to represent the characteristics of software and hardware for real-world systems [26]. The

parameter settings are shown in Table Ⅳ.

Table ⅣⅣⅣⅣ. The parameter settings of experiment environment.

Parameters Values (Fixed)→(Varied)

Number of virtual servers (i.e., number of HW and VMM) (10)→(4,6,8,10,12,14)

Total Number of VEUs (30)→(10,20,30,40,50,60)

Average task arrival rates (1.0)→(0.4,0.6,0.8,1.0,1.2,1.4)

Average failure rates of hardware (0.00001:0.0001:0.001)

Average failure rates of VMM and VM (0.001:0.01:0.1)

Average repair rate of hardware 0.1

Average repair rate of VMM and VM 1

Average process rates of VEU (0.1:0.05:0.01)

Average transmission delay 10

We select two scheduling algorithms in common use to compare with the SALAF. They are Min-

min and Sufferage [16, 30]. These two algorithms are selected because they are two representative

dynamic scheduling algorithms and have been widely used in real systems. They are described in

brief as follows:

(1) Min-min: For each submitted task, the VEU providing the earliest completion time is tagged.

Among all of the mapped tasks, the one that has the minimal earliest completion time is chosen and

then allocated to the tagged VEU.

(2) Sufferage: A VEU is assigned to a task that would “suffer” most in terms of completion time

if that VEU is not allocated to the task.

There are two major evaluating indicators: Average Response Time (ART) of each task, and the

Availability Satisfaction Percentage (ASP) that is the percentage of the tasks whose availability

requirements can be satisfied by the assigned VEUs. We study the performance of the three

scheduling algorithms under different task arrival rates and different structure parameters of the data

center. The parameter settings of the experimental environment are shown in table Ⅳ.

Fig. 8 (a) and (b) show the changes of ASP and ART respectively when the tasks arrival rate varies

from 0.4 to 1.4. We can see that the ASP of the SALAF is considerably higher than Min-min and

Sufferage, while the ART of the SALAF is close to those of Min-min and Sufferage. It is because that

Min-min and Sufferage take the best time performance as the only goal and ignore the availability

requirements of tasks. It shows that the SALAF scheme can improve the system availability while

maintaining good responsiveness.

Fig. 9 (a) and (b) show the changes of ASP and ART respectively when the number of hardware

machines varies from 4 to 14. It also shows the advantages of the SALAF in ASP while keeping a

good ARP. Besides, Fig. 9 (a) and (b) also show that both ASP and ART are enhanced rapidly, with

increasing the number of hardware machines. It matches the common sense: the more the hardware

machines, the less the average number of virtual machines on each machine, so each machine has

 20

lighter workload, and it is easier to guarantee better availability and responsiveness performance.

However, using more machines means more construction cost of VDC and worse utilization of

hardware resource, so it needs a trade-off for building a VDC.

The VMs are the main executive units in a VDC. There are usually several VMs running on each

hardware server, called server consolidation. We study the impact of the average number of VMs on

each server (called consolidation ratio) on the availability and performance of task scheduling

schemes. Fig. 10 (a) and (b) show the changes of ASP and ART respectively when the average

number of VMs on each virtual server varies from 1 to 6. As more virtual machines are consolidated

into each server, the availability and responsiveness are improved. Comparing with the way to

increase the number of machines, server consolidation is a much cost-saving way. On the other hand,

the consolidation ratio is not the bigger the better. Fig. 10 (a) and (b) show that when the

consolidation ratio exceeds a threshold value, the improvement of availability and response time is

not obvious. Considering the cost of consolidation, it seems that there exists an optimal consolidation

ratio in a VDC that may be related to the hardware resource and the workload, which is another issue

to be considered in our future works.

0.4 0.6 0.8 1.0 1.2 1.4
0

0.2

0.4

0.6

0.8

1

Tasks arrival rate
(a)

A
v
a
il
a
b

il
it

y
 s

a
ti

s
fa

c
ti

o
n

 p
e
rc

e
n

ta
g

e

0.4 0.6 0.8 1.0 1.2 1.4
0

0.5

1

1.5

2

2.5

3

3.5

4

Tasks arrival rate
(b)

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 o

f
p

e
r

ta
s
k

 Min-min

 Sufferage

 SALAF

 Min-min

 Sufferage

 SALAF

Fig. 8. ASP (a) and ART (b) vary with the tasks arrival rate.

4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of hardware machines
(a)

A
v
a
il
a
b

il
it

y
 s

a
ti

s
fa

c
ti

o
n

 p
e
rc

e
n

ta
g

e

4 6 8 10 12 14
0

1

2

3

4

5

6

7

Number of hardware machines
(b)

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 o

f
p

e
r

ta
s
k

 Min-min

 Sufferage

 SALAF

 Min-min

 Sufferage

 SALAF

Fig. 9. ASP (a) and ART (b) vary with the number of hardware machines.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Average number of VMs on each server
(a)

A
v
a
il
a
b

il
it

y
 s

a
ti

s
fa

c
ti

o
n

 p
e
rc

e
n

ta
g

e

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

Average number of VMs on each server
(b)

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 o

f
p

e
r

ta
s
k

 Min-min

 Sufferage

 SALAF

 Min-min

 Sufferage

 SALAF

Fig. 10. ASP (a) and ART (b) vary with the average number of VMs on each server.

7. CONCLUSIONS

In this paper, we have studied the task scheduling problem in virtual data centers, considering the

performance and availability requirements of SLAs. The general model of the task scheduling in

VDC is built by MSQMS-LQ, and the problem is formulated as an optimization problem with two

objectives: average response time and availability satisfaction percentage. Then we give a graceful

fuzzy prediction method to model the uncertain workload and the vague availability of virtualized

server nodes, by using the type-I and type-II fuzzy logic systems. Based on the fuzzy prediction

systems, an on-line dynamic task scheduling algorithm named SALAF is proposed. The worst-case

time complexity of SALAF is analyzed. The experimental results show that the proposed algorithm

 22

could efficiently improve the total availability of VDCs while maintaining good responsiveness

performance.

ACKNOWLEDGMENTS

We are much obliged to Prof. Zuhtu Hakan Akpolat (Firat University, TURKEY) for the interval

type-II FLS Matlab toolbox.

This work is financially supported by the National Grand Fundamental Research 973 Program of

China (No. 2010CB328105, No. 2009CB320504), and the National Natural Science Foundation of

China (No.60932003, No. 90718040).

REFERENCES

[1] Joseph D, Tavakoli A, Stoica I. “A Policy-aware Switching Layer for Data Centers”. ACM SIGCOMM Computer Communication

Review, Vol. 38, Issue 4, pp. 51-62, 2008.

[2] Arregoces M, and Portolani M. “Data Center Fundamentals”. Cisco Press, 2003.

[3] Snevely R. “Enterprise Data Center Design and Methodology”. Sun Microsystems, Inc. Prentice Hall. 2002.

[4] Snyder J. “Data Center Growth Defies Moore's Law”. InfoWorld, 2007. http://www.pcworld.com/article/id,130921/article.html.

[5] S. Govindan et al. “Xen and Co.: Communication-Aware CPU Management in Consolidated Xen-Based Hosting Platforms”.

IEEE Transactions on Computers, vol 58 , issue 8, 2009

[6] Graupner S, Kotov V, Trinks H. “Resource-Sharing and Service Deployment in Virtual Data Centers”. In Proceedings of the

22nd International Conference on Distributed Computing Systems, pp. 666 – 674, 2002

[7] Xu J, Zhao M, Fortes J, Carpenter R, Yousif M. “On the Use of Fuzzy Modeling in Virtualized Data Center Management”. In

Proceedings of the 4th International Conference on Autonomic Computing (ICAC '07), 2007.

[8] Zhu X et al. “1000 Islands: An Integrated Approach to Resource Management for Virtualized Data Centers”. Cluster Computing,

Vol 12, No 1, pp. 1573-7543 (Online), 2009.

[9] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, Maik Lindner. “A break in the clouds: towards a cloud definition”. ACM

SIGCOMM Computer Communication Review, Vol. 39, Issue 1, pp. 50-55 Jan 2009.

[10] Xiangzhen Kong, Jiwei Huang, Chuang Lin, Peter Ungsunan. “Performance, Fault-tolerance and Scalability Analysis of Virtual

Infrastructure Management System”. IEEE International Symposium on Parallel and Distributed Processing with Applications

(ISPA’09), Auguest, 2009.

[11] Amazon, “Amazon Elastic Compute Cloud (Amazon EC2)”. http://aws.amazon.com/ec2/

[12] VMware, “VMware vCloud”. http://www.vmware.com/technology/cloud-computing.html

[13] Marty M and Hill M. “Virtual Hierarchies to Support Server Consolidation”. in Proceedings of the 34th annual international

symposium on Computer architecture, pp. 46-56, 2007.

[14] VMware Server Consolidation, 2009. http://www.vmware.com/solutions/consolidation

[15] Clark C, Fraser K, Hand S, Hansen J, Jul E, Limpach C, Pratt I, and Warfield A. “Live migration of virtual machines”. In

Proceedings of the Second Symposium on Networked Systems Design and Implementation (NSDI’05), May 2005.

[16] Qin X, Xie T. “An Availability-Aware Task Scheduling Strategy for Heterogeneous Systems”. IEEE Transactions on Computers,

Vol. 57, No. 2, Feb, pp. 188-199, 2008.

[17] Wood T, Shenoy P, Venkataramani A, and Yousif M. “Black-box and Gray-box Strategies for Virtual Machine Migration”. In

Proceedings of the Fourth Symposium on Networked Systems Design and Implementation (NSDI’07), Cambridge, MA, April

2007.

[18] Ying Song, Hui Wang Yaqiong Li,Binquan Feng,Yuzhong Sun. “Multi-Tiered On-Demand Resource Scheduling for VM-Based

Data Center”. In Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid’09),

2009, pp. 148-155.

[19] Xiaoqiao Meng,Vasileios Pappas, Li Zhang,Thomas J. Watson. “Improving the Scalability of Data Center Networks with Traffic-

aware Virtual Machine Placement”. The 29th Conference on Computer Communications (Infocom’10), March, 2010. To appear,

[online] http://www.cs.ucla.edu/~xqmeng/paper/TVMPP.pdf

[20] Dubois D, Fargier H, Fortemps P. “Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge”.

European Journal of Operational Research, Vol.147, Issue 2, pp. 231–252, 2003.

[21] Zadeh L. “The concept of a linguistic variable and its application to approximate reasoning—I”. Inform. Sci., Vol. 8, pp. 199–249,

1975.

[22] Karnik N, Mendel J, and Liang Q. “Type-2 Fuzzy Logic Systems”. IEEE Transactions on Fuzzy System, Vol. 7, No, 6, pp. 643-

658, Dec. 1999.

[23] Liang Q and Mendel J. “Interval type-2 fuzzy logic systems: theory and design”. IEEE Transactions on Fuzzy System, Vol. 8, No.

5, pp. 535–550, Oct. 2000.

[24] Sethuraman J and Squillante M. “Optimal Stochastic Scheduling in Multiclass Parallel Queues”. In Proc. ACM SIGMETRICS,

1999.

[25] Kleinrock L. “Queueing Systems: Volume I: Theory”, John Wiley & Sons, New York, 1975, pp. 187.

[26] Birolini A. “Reliability Engineering Theory and Practice”, Springer-Verlag Berlin Heidelberg, 2007.

[27] Wu Y, Yuan Y, Yang G, Zheng W. “Load prediction using hybrid model for computational grid”. In Proc. 8th IEEE/ACM

International Conference on Grid Computing (GRID), pp. 235-242, 2007.

[28] Dinda P and O'Hallaron D, “Host load prediction using linear models”. Cluster Computing ,3, 4 (2000).

[29] The ChinaGrid website. [Online]. Available: http://www.chinagrid.edu.cn.

[30] Song S, Hwang K, and Kwok Y. “Risk-Resilient Heuristics and Genetic Algorithms for Security-Assured Grid Job Scheduling”.

IEEE Transactions on Computers, Vol. 55, No. 6, pp. 703-719, June 2006.

