
 1

Constructing Connected-Dominating-Set with
Maximum Lifetime in Cognitive Radio Networks

Zhiyong Lin1,2, Hai Liu2, Xiaowen Chu2, Yiu-Wing Leung2, Ivan Stojmenovic3,4
1Dept of Computer Science, GuangDong Polytechnic Normal University, China

2Dept of Computer Science, Hong Kong Baptist University
3SITE, University of Ottawa; 4School of Software, Tsinghua University, Beijing 100084, China

Abstract—Connected-dominating-set (CDS) is a representative technique for constructing virtual backbones of wireless
networks and thus facilitates implementation of many tasks including broadcasting, routing, etc. Most of existing works on
CDS aim at constructing the minimum CDS (MCDS), so as to reduce the communication overhead over the CDS. However,
MCDS may not work well in cognitive radio networks (CRNs) where communication links are prone to failure due to stochastic
activities of primary users (PUs). A MCDS without consideration of the stochastic activities of PUs easily becomes invalid
when the PUs become active. This study addresses a new CDS construction problem by considering the PUs’ activities. Our
problem is to maximize the lifetime of the CDS while minimizing the size of the CDS, where the lifetime of a CDS is defined as
the expected duration that the CDS is maintained valid. We show that the problem is NP-hard and propose a three-phase
centralized algorithm. Given a CRN, the centralized algorithm can compute a CDS such that the lifetime of the CDS is
maximized (optimal), and the size of the CDS is upper-bounded. We further present a two-phase localized algorithm which
requires 2-hop information. Extensive simulations are conducted to evaluate the proposed algorithms.

Index Terms—cognitive radio, connected-dominating-set, lifetime, fault tolerance.

——————————  ——————————

1 INTRODUCTION

OGNITIVE Radio Network (CRN) has been pro-
posed as a new kind of wireless networking paradigm,
aiming at alleviating the severe scarcity in unlicensed
spectrum as well as improving the efficiency of li-
censed spectrum usage. A CRN is a group of unli-
censed users (or cognitive users, CUs) equipped with
cognitive radios who coexist with the licensed users
(or primary users, PUs) in the same geographic area.
With cognitive radios, CUs are able to sense the li-
censed spectrum and opportunistically access the idle
channels in the licensed spectrum of PUs without caus-
ing interference to the PUs. CUs must vacate all the
related channels once these channels are reclaimed by
PUs for their transmissions. In a CRN, therefore, the
set of available channels for a CU dynamically changes
over time due to unpredictable activities of PUs. Such
a unique characteristic distinguishes CRNs from con-
ventional wireless networks where all nodes usually
operate over the same and static channels.

The concept of connected-dominating-set (CDS)
plays a crucial role in the management and mainte-
nance of wireless networks, e.g., wireless ad hoc net-
works. A dominating set (DS) of a given graph G is a
set of nodes such that each node of G is either in the set
or is adjacent to a node of the set. A CDS is defined as
a connected DS. The nodes in a CDS are referred to as
dominators and the nodes other than dominators are
referred to as dominatees. A CDS usually serves as vir-
tual backbone in conventional wireless networks to
facilitate tasks such as broadcasting, routing, and con-
nectivity management [1] [2]. For instance, broadcast-
ing in a wireless ad hoc network could be simplified

by letting each node of a CDS transmit the broadcast
message once. Such benefit brought from CDS could
be extended to the broadcasting in CRNs. Currently,
study of broadcasting in CRNs is still in its infant stage
(see [3] and the relevant references therein). The exist-
ing broadcasting protocols for CRNs are all non-CDS-
based. These non-CDS-based approaches are compli-
cated, and on the other hand, may not be efficient,
since all CUs in the network are potentially requested
to complete the broadcasting operation. CDS-based
approaches provide a promising way to the broadcast-
ing problem. For example, if a CDS of a CRN is availa-
ble, we can restrict the broadcasting operation to only
the CUs in the CDS and let each dominator transmit
the broadcast message to all its 1-hop neighbors (Mul-
tiple transmissions may be required at each dominator
in the multi-channel environment of CRNs). With the
CDS-based approaches, only a small fraction of CUs is
involved in the broadcasting operation which makes
the operation simpler and more efficient. However, the
CDS-based broadcasting approaches raise a new issue
of constructing CDS in CRNs. In this study, we take
the first step toward addressing the CDS construction
problem in CRNs.

Extensive works have been done in constructing
CDS for ad hoc networks, wireless sensor networks,
and wireless mesh networks. Most of these works aim
to construct the minimum CDS (MCDS), i.e., the CDS
with the minimum size. Notice that the communica-
tion tasks are normally undertaken by the nodes in
CDS. A CDS with the minimum size reduces the over-
all communication overhead and thus prolongs the

C

2

network lifetime. In this sense, MCDS does work well
in the wireless networks, where all the nodes operate
over the same and static channels and the communica-
tion links are usually static.

However, the robustness of the MCDS is a very se-
rious problem in CRNs, compared with conventional
ad hoc networks. Notice that available channels of
each CU dynamically change over time due to unpre-
dictable activities of PUs. The communication link be-
tween two adjacent CUs is broken once there is no
channel commonly-available to the CUs. Failure of
communication links could cause invalidity of the pre-
viously-constructed MCDS. A CDS becomes invalid
whenever 1) it is no longer connected (i.e., the domina-
tors are not connected); or 2) it is no longer a dominat-
ing set (i.e., some dominatees cannot be dominated by
the dominators). Thus, a MCDS without consideration
of dynamic activities of PUs easily becomes invalid
when some PUs become active and reclaim the related
channels. Notice that it takes considerable communica-
tion overhead to maintain or re-construct a CDS if the
CDS becomes invalid. Rather than the MCDS with the
minimum size, the CDS with the maximum operation
duration (lifetime) is more desired in CRNs.

This work addresses the problem of constructing
the CDS with the maximum lifetime in CRNs. We as-
sume that a PU behaves in status of ON (active on the
channel) or OFF (inactive on the channel) with respec-
tive probabilities, and the time duration of the ON and
OFF statuses follows a specific distribution (e.g., the
exponential distribution [4] [5]). A channel is said to be
available to a CU if the CU can operate over this chan-
nel without causing harmful interference to any PU
being active on this channel (ON status). The commu-
nication link of two adjacent CUs is broken if there is
no channel commonly-available to the CUs. In this
sense, the lifetime of a communication link is the max-
imum duration that there exists at least one channel
which is commonly-available to the endpoints of the
link. Given a CRN, the problem of our concern is to
compute a CDS such that the lifetime of the CDS is
maximized and the size of the CDS is minimized,
where the lifetime of a CDS is defined as the expected
duration that the CDS is maintained valid. We prove
the NP-hardness of the problem and propose a three-
phase centralized algorithm as well as a two-phase
localized algorithm (distributed algorithm using 2-hop
neighborhood information) to the problem.

The contribution of this work is three-fold.
1) New concept and new problem: We introduce a

new concept of lifetime for CDS which takes the sto-
chastic activities of PUs into account. Based on this
new concept, we address a new problem of maximiz-
ing the lifetime of the CDS for CRNs.

2) New centralized algorithm with theoretically prov-
able properties: We propose a three-phase centralized
algorithm to the problem. Given a CRN, the proposed
centralized algorithm can compute a CDS, such that

the lifetime of the CDS is maximized (optimal) and the
size of the CDS is upper-bounded by an approxima-
tion ratio.

3) New localized algorithm requiring 2-hop neighbor-
hood information: We propose a localized algorithm
which requires 2-hop neighborhood information of
CUs. Simulation results show that the proposed local-
ized algorithm achieves a good trade-off between the
lifetime of CDS and the size of CDS.

A preliminary version of this work was published
in [6].

2 RELATED WORK

Numerous works have been done on constructing
MCDS in conventional wireless networks. Basically,
the existing works can be classified into centralized [7]
[8] and distributed approaches. The distributed ap-
proaches can be further divided into two categories:
addition-based algorithms [9] [10] [11] [12] and prun-
ing-based algorithms [1] [2]. Due to limited space, we
move the detailed discussion to the supplementary file.

3 SYSTEM MODEL, DEFINITIONS AND PROBLEM

FORMULATION

We consider a CRN consisting of N, N≥2, CUs who
coexist with M, M≥1, PUs in the same geographical
area. The PUs independently operate over non-
overlapping licensed spectrum. For simplicity, the li-
censed spectrum of PU m, 1≤m≤M, is denoted by chan-
nel cm. The whole set of potentially available channels
is denoted by C={c1, c2,  , cM}, where channel cm is
exclusively licensed to PU m and is called channel m
for convenience. We assume that each CU is equipped
with one cognitive radio, by which the CU can oppor-
tunistically access the licensed spectrum of the PUs.

A CRN is modeled by a graph G(V, E), where V={v1,
v2,  , vN} denotes the set of CUs (node vi correspond-
ing to CU i, i=1, 2,  , N) and E is the set of communi-
cation links. We assume that PU m behaves in status of
ON (active on channel cm) or OFF (inactive on channel
cm) with respective probabilities. Channel cm is said to
be available to CU vi if and only if vi can operate over cm
without causing interference to PU m which is in ON
status. There is a link ei,j between vi and vj if and only if
vi and vj are within the transmission range of each oth-
er and there is at least one channel commonly-
available to vi and vj. Due to the stochastic activities of
PUs, the duration (lifetime) that a channel is being
available on link ei,j is a random variable. Link ei,j is
maintained as long as there is at least one channel
available on link ei,j. Thus, the lifetime of link ei,j can be
determined by the expected duration of the channel
which is being available on link ei,j for the longest time.
Formally, we define the lifetime of a link as follows.

Definition 1 (Lifetime of a Link). Suppose that CUs
vi and vj are within the transmission range of each oth-
er. The lifetime of link ei,j between vi and vj, denoted by

 3

ρ(ei,j), is defined as the expected value of max{ (1)
,i jx , (2)

,i jx ,
 , ()

,
M
i jx } (i.e., E(max{ (1)

,i jx , (2)
,i jx ,  , ()

,
M
i jx })), where ran-

dom variable ()
, 0m
i jx  denotes the duration that channel

m is being commonly-available to vi and vj from the
reference point of time (m=1, 2,  , M).

Remarks:
1) In Definition 1, the reference point of time is the

starting point of the lifetime of a link, and this refer-
ence point is the same to all links in the network. For
example, we suppose that PUs’ activities follow a
probabilistic model (e.g., the exponential distribution).
In centralized CRNs, at the moment that the central
controller collects all required information, the control-
ler can estimate the lifetime of each link from this mo-
ment which serves as the reference point of time.
Therefore, lifetimes of all links start at the same refer-
ence point of time when their lifetimes are concerned.

2) Definition 1 gives one possible definition of
the lifetime of a link. Our proposed algorithms in this
work are independent of this definition. That is, as long
as lifetime of each link (could be “average” lifetime in
Definition 1 or other forms of lifetime) is determined,
the proposed algorithms are valid and applicable and
all the corresponding analytical results still hold. For
example, the lifetime of link ei,j could be affected by
movement of nodes vi and vj. In this study, we assume
that the nodes are static or move with relatively low
speeds and the change of channel availability is the
dominating factor to the link failure, since we believe
that this unique characteristic of CRNs is more im-
portant.

3) Given a probabilistic model of PUs’ activities,
the lifetime of a link can be determined by either ana-
lytical calculation or numerical methods (e.g., the
Monte Carlo method [16]). For instance, if the time du-
ration of the ON/OFF statuses of PUs follows the ex-
ponential distribution [4] [5], ρ(ei,j) can be mathemati-
cally computed. Readers can refer to the Appendix in
the supplementary file for more details on how to de-
rive mathematic formulation of ρ(ei,j). In the simulation,
we adopt the Monte Carlo method to estimate lifetimes
of links.

4) When PU m is in ON status, to avoid harmful
interference to PU m, any CU in PU m’s interference
range is usually prohibited to access channel m. That is,

()
,
m
i jx is zero if vi or vj is located in PU m’s interference

range when PU m is active. When PU m is in OFF sta-
tus, it is safe for the CUs to operate over channel m. In
this case, ()

,
m
i jx is essentially determined by the duration

of PU m being in OFF status.
Given a connected network, with each link associat-

ed with a lifetime, we define the lifetime of the net-
work as the duration that this network is maintained
connected.

Definition 2 (Lifetime of a Connected Network).
Given a connected network G(V, E), where V is the set
of nodes and E is the set of links with lifetime values,
the lifetime of G, denoted by ρ(G), is determined as

follows: 1) Deleting all the links with lifetime less than
ρ(G) cannot cause G disconnected; 2) Deleting all the
links with lifetime less than or equal to ρ(G) leads to
disconnection of G. That is, ρ(G)=max{ ρ| deleting in G
all the links with lifetime less than ρ cannot cause G
disconnected}.

(a) (b)

Fig. 1. An illustrative example.

Intuitively, the lifetime of a network indicates the
duration that the network is maintained connected.
Taking example in Fig. 1(a), the number associated
with each link denotes the lifetime of the link (in time
unit/slot). Notice that the lifetimes of all the links are
counted starting from the same reference point of time.
Lifetime of link e1,4 (between node v1 and node v4) is 1.
It implies that link e1,4 is available in the 1st time slot
and is broken in the 2nd time slot. Similarly, since life-
time of link e2,4 is 2, link e2,4 is available in time slots 1
and 2 and is broken in the 3rd time slot. After 2 time
units elapse, all the links with lifetime less than or
equal to 2 are assumed to be broken and the network
consequently becomes disconnected. That is, the con-
nected topology in Fig. 1(a) can last for at most 2 time
units. It is easy to identify that the lifetime of the net-
work in Fig. 1(a) is 2 (time units).

Based on Definitions 1 and 2, we introduce a new
concept of lifetime for CDS. Notice that a CDS becomes
invalid whenever 1) it is no longer connected, i.e., the
internal connectivity of the dominators is not preserved;
or 2) it is no longer a dominating set, i.e., some external
links (between the dominators and the dominatees) are
broken and some dominatees cannot be dominated by
the dominators. Therefore, the lifetime of a CDS not
only depends on its internal lifetime (the robustness of
its internal connectivity), but also its external lifetime
(the robustness of its external links). Accordingly, we
have the following definitions.

Definition 3 (Internal Lifetime of a CDS). Let S be
a CDS of G(V, E). The internal lifetime of S is defined
as ρin(S)=ρ(G[S]), where G[S] denotes the subgraph of
G induced by S1.

Definition 4 (External Lifetime of a CDS). Let S be
a CDS of G(V, E). The external lifetime of S is defined
as ρex(S)=min{ τ(v)|vV–S}, where τ(v)=max{ ρ(e)|eE,
one endpoint of e is dominatee v and the other end-
point is a dominator in S}, which denotes the longest
duration that dominatee v can be dominated by S.

We use Fig. 1(a) to illustrate Definitions 3 and 4. Let
S={v1, v2, v3} be a CDS of G, i.e., any node of G is either
in S or is adjacent to a node in S. Nodes of {v1, v2, v3}
are dominators and nodes of {v4, v5, v6, v7} are domi-

1 In the graph theory, given G(V, E) and SV, the induced subgraph G[S]

consists of all the nodes in S and all edges in E whose endpoints are in S.

4

natees. The subgraph induced by S, i.e. G[S], contains
three nodes {v1, v2, v3} and three links {e1,2, e1,3, e2,3}. It is
easy to identify that the lifetime of G[S] is 3. According
to Definition 3, the internal lifetime of CDS S, i.e. ρin(S),
is equal to 3. That is, nodes in S are no longer connect-
ed after 3 time units elapse. Node v4 is a dominatee
and is dominated by dominators v1 and v2. We have
τ(v4)=max{ρ(e1,4), ρ(e2,4)}=max{1, 2}=2. That is, v4 can no
longer be dominated by CDS S after 2 time units elapse.
Similarly, we can identify that τ(v5)=2, τ(v6)=3, and
τ(v7)=2. Hence, according to Definition 4, the external
lifetime of CDS S, i.e. ρex(S), is equal to min{τ(v4), τ(v5),
τ(v6), τ(v7)}=2. It implies that at least one dominatee
cannot be dominated by any dominators (S becomes
invalid) after 2 time units elapse.

A CDS becomes invalid when either its internal life-
time or its external lifetime expires. We define the life-
time of a CDS as the smaller one of its internal lifetime
and external lifetime to ensure the validity of the CDS.

Definition 5 (Lifetime of a CDS). The lifetime of a
CDS S is defined as ρ(S)=min{ρin(S), ρex(S)}.

The lifetime of CDS S ρ(S) is not necessarily com-
puted by ρin(S) and ρex(S). In fact, ρ(S) can be easily de-
termined by the subgraph spanned by S which is de-
fined as follows.

Definition 6 (Subgraph Spanned by a CDS). Let S
be a CDS of G(V, E). The subgraph spanned by S, de-
noted by G<S>, is the graph which contains all nodes
in V and the only links associated with at least one
endpoint in S. That is, G<S>=(V, E’), where E’={ e|eE,
at least one endpoints of e is a dominator in S}.

The following theorem states that the lifetime of a
CDS equals the lifetime of the subgraph spanned by
the CDS.
Theorem 1. Let S be a CDS of G(V, E). We have
ρ(S)=ρ(G<S>), where G<S> is the subgraph spanned by S.
Proof. Due to limited space, the proof is moved to the
supplementary file. 

Taking example in Fig. 1(a) again, S={v1, v2, v3} is a
CDS with ρin(S)=3 and ρex(S)=2 according to Definitions
3 and 4. According to Definition 5, we have
ρ(S)=min{ρin(S), ρex(S)}=2, i.e., the lifetime of CDS S is 2.
Actually, after 2 time units elapse, links e1,4 and e2,4 are
broken and thus dominatee v4 can no longer be domi-
nated (S becomes invalid). The subgraph spanned by S
is shown in Fig. 1(b). According to Definition 2, its life-
time is 2 which equals the lifetime of S. In this example,
{v2, v3} is MCDS with lifetime 1 while CDS {v1, v2, v3} is
with the maximum lifetime 2.

In this work, we study the problem of constructing
CDS with lifetime maximized in CRNs. In CRNs,
availability of a link and duration of a link being avail-
able (i.e., lifetime of a link) are totally random. Lifetime
of a CDS depends on lifetimes of links and thus is also
a random variable. Since lifetime of a CDS is essential-
ly random, any CDS that is computed by any algo-
rithm may have very short lifetime in practice. Given
this randomness, we believe that maximizing “aver-

age” lifetime of a CDS (Definition 5) is one of the prop-
er ways to build a robust CDS. Furthermore, notice
that two CDSs with the same lifetime may have differ-
ent internal lifetimes and external lifetimes. When the
external lifetime expires, individual dominatee cannot
be dominated, which is a local effect. In contrast, when
the internal lifetime expires, the whole CDS is discon-
nected and thus cannot function properly, which is a
global effect. Therefore, we believe that the internal
lifetime is more important than the external lifetime.
There is a trade-off between the lifetime and the size of
CDS. In general, a CDS with larger size (i.e., more
nodes and more links) is more robust in terms of con-
nectivity. However, increasing size of a CDS will in-
crease the overall energy consumption of the CDS
since CDS nodes normally spend more energy than
non-CDS nodes. Node rotation in a CDS with small
size will balance energy consumption and eventually
prolong the network lifetime. Our problem is formally
formulated as follows.

Maximizing Lifetime of CDS (MLCDS). Given a
CRN G(V, E) and the stochastic activities of PUs, the
MLCDS problem is to compute a CDS S of G such that:
1) The lifetime of S is maximized, i.e., max ρ(S); 2) The
internal lifetime of S is maximized, i.e., max ρin(S); 3)
The size of S is minimized, i.e., min |S|.

The MLCDS problem is a multi-objective optimiza-
tion problem. The three objectives are difficult to be
optimized simultaneously. In practice, a multi-
objective problem is usually tackled by optimizing the
objectives sequentially. In CRNs, we believe that the
lifetime of a CDS is more important than the size. It is
because that a CDS with short lifetime is prone to fail-
ure, which may cause considerable communication
overhead to maintain and re-construct the CDS. There-
fore, we sequentially optimize the three objectives in
the MLCDS problem. Specifically, we first maximize
the lifetime and the internal lifetime of the CDS and
then minimize the size of the CDS with the maximum
lifetime preserved.

The following theorem shows that the MLCDS
problem is NP-hard.
Theorem 2. The MLCDS problem is NP-hard.
Proof. The proof is moved to the supplementary file. 

4 A THREE-PHASE CENTRALIZED ALGORITHM

In this section, we propose a three-phase centralized
algorithm to the MLCDS problem. The centralized al-
gorithm is suitable to the CRNs with centralized struc-
tures (i.e., infrastructure-based). A recent study [17]
pointed out that centralized structures are required in
CRNs to solve the problems of security fragility, spec-
tral inefficiency, and high terminal cost. Given a CRN
G(V, E) and the stochastic activities of PUs, the lifetime
of each link in G is first determined (see the Appendix
in the supplementary file). With each link associated
with a lifetime, our task is to sequentially optimize the

 5

three objectives of the MLCDS problem, i.e., maximiz-
ing the lifetime, maximizing the internal lifetime, and
minimizing the size of the CDS. Accordingly, our algo-
rithm consists of three phases which aim at the three
objectives, respectively. Given G, in the first phase, we
reduce the searching space by computing a connected
subgraph G’ of G, such that CDS S of G has the maxi-
mum lifetime if and only if S is a CDS of G’. That is,
the CDS of G with the maximum lifetime is guaranteed
to be included in subgraph G’. Based on G’, in the se-
cond phase, we compute a subgraph G’’of G’ such that
any CDS of G’ (also the CDS of G) constructed within
G’’ can further maximize the internal lifetime with the
maximum lifetime preserved. Finally, in the third
phase, we compute a CDS of G’ within G’’ and mini-
mize its size, with the maximum lifetime and the max-
imum internal lifetime both preserved. It should be
emphasized that our algorithm is independent of how
the lifetime of each link in G is calculated. In other
words, our algorithm is applicable to any connected
graph G with each link associated with a lifetime.

For ease of description, given two sets S1V and
S2V in graph G(V, E), hereafter we say S2 is dominat-
ed by S1 if each node in S2 either belongs to S1 or is ad-
jacent to a node in S1.

4.1 Phase One: Maximize Lifetime

MaxLifetime Algorithm
INPUT: a connected graph G(V, E) in which each link is
associated with a lifetime.
OUTPUT: G’=(V, E’), a connected subgraph of G.
1: Sort the lifetimes { ρ(e)|eE} in ascending order and get l
lifetime levels: ρ1<ρ2<<ρl;
2: Initialize E’=E;
3: FOR i=1, 2,  , l // link deletion
4: Ei={ e|ρ(e)=ρi , eE’}; // set of the links with lifetime ρi
5: IF graph(V, E’Ei) still keeps connected
6: E’=E’Ei; // delete all the links with lifetime ρi
7: ELSE BREAK; // exit the for-loop
8: RETURN G’=(V, E’);

Fig. 2. Pseudo code of the MaxLifetime algorithm.
According to Theorem 1, the lifetime of CDS S of G, i.e.
ρ(S), is equal to ρ(G<S>), where G<S> denotes the sub-
graph of G spanned by S. That is, maximizing the life-
time of S is equivalent to maximizing the lifetime of
ρ(G<S>). On the other hand, according to Definition 2,
lifetime of a connected network (graph) is determined
by the lifetimes of links in the graph. Therefore, to con-
struct the CDS of G with the maximum lifetime, we
should avoid selecting those links with small lifetimes.
Inspired by this intuitive observation, we design a
pruning-based algorithm, called MaxLifetime, which
can generate a subgraph G’ of G such that any CDS of
G’ is the CDS of G with the maximum lifetime. In this
sense, we reduce the searching space from G to G’. The
algorithm works as follows. Given a connected graph
G(V, E), we first sort all the links of G in ascending or-
der according to their lifetimes. Note that the links

may have the same lifetime. Suppose that there are l
different lifetime levels, which are denoted by
ρ1<ρ2<<ρl. Let G’=(V, E’) be a subgraph of G with E’
initialized as E. Then, we continually delete the links in
E’ according to lifetime level from ρ1 to ρl as long as
such link deletion will not cause disconnection of G’.
When the algorithm ends, we get a connected sub-
graph G’ of G. The pseudo code of the MaxLifetime al-
gorithm is presented in Fig .2.

The following lemma shows the time complexity of
the MaxLifetime algorithm.
Lemma 1. The time complexity of the MaxLifetime algo-
rithm is O(|V|4).
Proof. The proof is moved to the supplementary file. 

Given graph G(V, E), the MaxLifetime algorithm can
generate a connected subgraph G’(V, E’) of G. Let
η=min{ ρ(e)|eE’} be the smallest lifetime of links in G’
and ρ*=max{ ρ(S)|S is a CDS of G} be the maximum
lifetime of CDSs of G. The following lemma indicates
that both G and G’ have the same lifetime, which is
equal to η, and this value also equals ρ*.
Lemma 2. Given G(V, E), let G’(V, E’) be the output sub-
graph by the MaxLifetime algorithm. We have:
ρ(G)=ρ(G’)=η=ρ*, where η=min{ ρ(e)|eE’} and
ρ*=max{ ρ(S)|S is a CDS of G}.
Proof. The proof is moved to the supplementary file. 

Based on Lemma 2, we prove that the subgraph G’
computed by the MaxLifetime algorithm for G has the
following property: constructing CDS of G’ is equiva-
lent to constructing CDS of G with the maximum life-
time. This result is formally presented in the following
theorem.
Theorem 3. Given G(V, E), let G’(V, E’) be the output
subgraph by the MaxLifetime algorithm. We have: SV is a
CDS of G with the maximum lifetime (i.e., ρ(S)=ρ*) if and
only if S is a CDS of G’.
Proof. The proof is moved to the supplementary file. 

4.2 Phase Two: Maximize Internal Lifetime

After the optimization in phase one, we obtain a con-
nected subgraph G’(V, E’) of G(V, E). Any CDS of G’ is
also a CDS of G. According to Theorem 3, to construct
the CDS of G with the maximum lifetime, we only
need to construct a CDS of G’ instead. Since the life-
time of a CDS is the minimum of its internal lifetime
and external lifetime, the CDS with the maximum life-
time does not necessarily achieve the maximum inter-
nal lifetime. Hence, we pursue optimization in this
section to further maximize the internal lifetime with
the maximum lifetime preserved.

Given a CDS S of G’, according to Definition 3, its
internal lifetime ρin(S) is determined by ρ(G’[S]), where
G’[S] is the subgraph of G’ induced by S. To maximize
G’[S], intuitively, we should ensure that the nodes in S
are connected via the links with lifetime as large as
possible. The basic idea of this phase is similar to that
in phase one, i.e., the links with small lifetime are
pruned to achieve large internal lifetime. We design a

6

greedy algorithm called MaxInternalLifetime in this sec-
tion. The proposed algorithm can generate a subgraph
G” of the given graph G’ such that any CDS of G’ con-
structed within G” can achieve the maximum internal
lifetime. The algorithm works in a similar way as the
MaxLifetime algorithm. Specifically, given G’(V, E’), we
first sort the links of G’ in ascending order according to
their lifetimes. Suppose that there are l different life-
time levels, which are denoted by ρ1<ρ2<<ρl. Let
G”=(V, E”) be a subgraph of G’ with E” initialized as E’.
Then, we try to delete the links in E” according to life-
time level from ρ1 to ρl. The link deletion terminates
when any further link deletion would result in that no
component2 of G” can still include a CDS of G’. When
the algorithm ends, we get a subgraph G” of G’ in
which there exists at least one component that contains
a CDS of G’. The pseudo code of the MaxInternalLife-
time algorithm is presented in Fig. 3.

MaxInternalLifetime Algorithm
INPUT: a connected graph G’(V, E’) in which each link is
associated with a lifetime.
OUTPUT: G”=(V, E”), a subgraph of G’.
1: Sort the lifetimes { ρ(e)|eE’} in ascending order and get l
lifetime levels: ρ1<ρ2<<ρl;
2: Initialize E”=E’;
3: FOR i=1, 2,  , l // link deletion
4: Ei={ e|ρ(e)=ρi , eE”}; // set of the links with lifetime ρi
5: IF graph(V, E”Ei) still has a component containing a

CDS of G’
6: E”=E”Ei; // delete all the links with lifetime ρi
7. ELSE BREAK; // exit the for-loop
8. RETURN G”=(V, E”);

Fig. 3. Pseudo code of the MaxInternalLifetime algorithm.
The following lemma shows the time complexity of

the MaxInternalLifetime algorithm.
Lemma 3. The time complexity of the MaxInternalLifetime
algorithm is O(|V|4).
Proof. The proof is moved to the supplementary file. 

Given graph G’(V, E’), the MaxInternalLifetime algo-
rithm generates a subgraph G”(V, E”) of G’. Let
γ=min{ ρ(e)|eE”} be the smallest lifetime of links in
G” and ρin*=max{ ρin(S)|S is a CDS of G’} be the maxi-
mum internal lifetime of CDSs of G’, respectively. The
following lemma shows that γ is exactly equal to ρin*.
Lemma 4. Given G’(V, E’), let G”(V, E”) be the output
subgraph by the MaxInternalLifetime algorithm. We have:
γ=ρin*, where γ=min{ ρ(e)|eE”} and ρin*=max{ ρin(S)|S is
a CDS of G’}.
Proof. The proof is moved to the supplementary file. 

Based on Lemma 4, we obtain the following theo-
rem, which shows that the MaxInternalLifetime algo-
rithm is guaranteed to generate a subgraph G” such
that 1) any CDS of G’ achieves the maximum internal
lifetime if it is connected in G”, and 2) any CDS of G’

2 In the graph theory, given graph G and its subgraph A, A is called a
component of G if 1) A is connected and 2) there is no other connected
subgraph B of G such that B contains A.

with the maximum internal lifetime is contained in a
component of G”.
Theorem 4. Given G’(V, E’), let ρin*=max{ ρin(S)|S is a
CDS of G’} and G”(V, E”) be the output subgraph by the
MaxInternalLifetime algorithm applied on G’. We have: 1)
If SV is a CDS of G’ and G”[S] is connected, then
ρin(S)=ρin*; 2) If S is a CDS of G’ and ρin(S)=ρin*, then G”[S]
is connected.
Proof. The proof is moved to the supplementary file. 

Given graph G(V, E), we perform the MaxLifetime
algorithm in phase one and obtain a connected sub-
graph G’(V, E’) of G. Based on G’(V, E’), we perform
the MaxInternalLifetime algorithm in phase two and
obtain a subgraph G”(V, E”) of G’. Theorem 3 shows
that constructing CDS of G with the maximum lifetime
can be transferred to constructing CDS of G’. Theorem
4 shows that constructing CDS of G’ within G” can
maximize the internal lifetime of the CDS. Further-
more, according to the MaxLifetime algorithm, a CDS of
G’ with the maximum internal lifetime is also the CDS
of G with the maximum internal lifetime (both maxi-
mums are the same). Based on these observations, we
obtain the following theorem.
Theorem 5. Given G(V, E), let G’(V, E’) be the output
subgraph by the MaxLifetime algorithm applied on G. Let
G”(V, E”) be the output subgraph by the MaxInternalLife-
time algorithm applied on G’. We have: SV is a CDS of G
with the maximum lifetime and the maximum internal life-
time if and only if S is a DS of G’ and G”[S] is connected.
Proof. The proof is moved to the supplementary file. 

4.3 Phase Three: Minimize Size with Maximum
Lifetime Preserved

Given graph G(V, E), after optimization in phase one
and phase two, we obtain the subgraphs G’(V, E’) and
G”(V, E”), respectively. Notice that any CDS of G’ con-
structed within G” can achieve the maximum lifetime
as well as the maximum internal lifetime. In phase
three, the remaining problem is to compute a MCDS of
G’ in G” with the maximum lifetime and the maxi-
mum internal lifetime both preserved. We point out
that the problem involved in this phase is different to
the conventional MCDS problem. Our problem in this
phase is to compute a CDS of G’ within G” which is a
subgraph of G’, while the MCDS problem has no such
restriction. To distinguish from the conventional
MCDS problem, we refer to the problem in phase three
as MCDS with Restriction (MCDSR) Problem, which is
formally described as follows.

MCDSR Problem. Given graph G’ and its subgraph
G”, the MCDSR problem is to find a subset of nodes,
say S, which satisfies the following requirements: 1)
Node set S is a DS of G’; 2) The subgraph induced by S
in G”, i.e. G”[S], is connected; 3) The size of S, i.e. |S|,
is minimized.

Notice that G’ is the subgraph computed by the
MaxLifetime algorithm applied on G (in phase one) and
G” is the subgraph computed by the MaxInternalLife-

 7

time algorithm applied on G’ (in phase two). According
to Theorem 5, requirements 1) and 2) in the MCDSR
problem ensure that S is a CDS of G with the maxi-
mum lifetime and the maximum internal lifetime pre-
served. Requirement 3) ensures that the size of S is
minimized. For convenience, hereafter we use
MCDSR(G’, G”) to denote the MCDS of G’ with re-
striction in G”. The following theorem shows the NP-
hardness of the MCDSR problem.
Theorem 6. The MCDSR problem is NP-hard.
Proof. The proof is moved to the supplementary file. 

We next present an approximation algorithm, called
ConstructMCDSR, to the MCDSR problem. The basic
idea of the algorithm is as follows. Given G’(V, E’) and
its subgraph G”, we check each component gi of G”.
We skip gi if the nodes in gi cannot dominate V, i.e., gi
does not contain a CDS of G’. Otherwise, we attempt
to compute a MCDS of gi, i.e., MCDS(gi). If MCDS(gi)
can dominate V, we let Si=MCDS(gi) which is also a
CDS of G’. Otherwise, additional nodes in gi need to be
added into Si for dominating V. To minimize the num-
ber of nodes in the CDS, we add as few as possible
nodes to dominate V. This can be done by employing
any existing algorithm to the minimum-set-cover prob-
lem [18]. The nodes in MCDS(gi) along with these ad-
ditional nodes are included into Si, which is a CDS of
G’. Finally, we output S which is the Si with the small-
est size. The pseudo code of the ConstructMCDSR algo-
rithm is described in Fig. 4.

ConstructMCDSR Algorithm
INPUT: G’(V, E’) and its subgraph G” consisting of K

components gi(Vi”, Ei”) (i=1, 2,  , K).
OUTPUT: S which is a subset of V and a CDS of G’.

1: S=V;
2: FOR i=1, 2, , K
3: IF Vi” can dominate (VVi”) in G’
4: Xi=ConstructMCDS(gi); // comment 1
5: IF Xi can dominate (VVi”) in G’
6: Si=Xi;
7: ELSE
8: U={v|v(VVi”) and v is not dominated by Xi};
9: Yi=FindMSC(Vi”Xi, U); // comment 2

10: Si=Xi+Yi;
11: IF |Si|<|S|
12: S=Si;
13: RETURN S;

Fig. 4. Pseudo code of the ConstructMCDSR algorithm.
Comments: 1) ConstructMCDS(g) is the subroutine to find MCDS of

graph g and it return a CDS of g (e.g., we can use the approach proposed
by Guha et al. in [7]); 2) FindMCS(V”, U) is the subroutine to find a mini-
mum number of nodes in V” to cover/dominate all nodes in U and it
return a subset of V” (e.g., we can use the well-known greedy algorithm
for the minimum-set-cover problem [18]).

The following lemma shows the time complexity of
the ConstructMCDSR algorithm.
Lemma 5. The time complexity of the ConstructMCDSR
algorithm is O(|V|4).
Proof. The proof is moved to the supplementary file. 

We analyze the approximation ratio of the Con-

structMCDSR algorithm in the following theorem.
Theorem 7. Let  and  denote the approximation ratios of
any algorithms to the MCDS problem and the minimum-
set-cover problem, respectively. The ConstructMCDSR algo-
rithm achieves the approximation ratio not greater than
(+).
Proof. The proof is moved to the supplementary file. 
Corollary 1. The ConstructMCDSR algorithm can achieve
the approximation ratio not greater than
(2.78+ln+ln|V|lnln|V|), where  is the maximum
node degree of the input graph G’(V, E’).
Proof. The proof is moved to the supplementary file. 

4.4 Overall Algorithm and Numerical Example

The overall algorithm, denoted by C-MLCDS (central-
ized algorithm to the MLCDS problem), is shown in
Fig. 5.

C-MLCDS Algorithm
INPUT: G(V, E) in which each link is associated with a life-

time.
OUTPUT: S which is a CDS of G.
1: G’(V, E’)=MaxLifetime(G);
2: G”(V, E”)=MaxInternalLifetime(G’);
3: S=ConstructMCDSR(G’, G”);
4: RETURN S;

Fig. 5. Pseudo code of the C-MLCDS algorithm.
We give a numerical example to demonstrate the

overall algorithm. The given graph G(V, E) is shown in
Fig. 6(a), where there are 8 nodes in V and the lifetimes
of links in E vary from 1 to 3 (time units). The number
associated with each link denotes the lifetime of the
link. We apply our three-phase C-MLCDS algorithm
on the graph.

(a) The original graph G. (b) The subgraph G’.

(c) The subgraph G”. (d) The final solution.

Fig. 6. A numerical example for the C-MLCDS algorithm.
Phase one: G’=MaxLifetime(G). In the first phase,

we call the MaxLifetime algorithm to generate G’ which
is a connected subgraph of G. As shown in Fig. 6(b), G’
is obtained from G by pruning all the links with life-
time 1, since further pruning the links with lifetime 2
will cause disconnection of G’.

Phase two: G”=MaxInternalLifetime(G’). In the se-
cond phase, we call the MaxInternalLifetime algorithm
to generate G” which is a subgraph of G’. As shown in
Fig. 6(c), G” is obtained from G’ by pruning all the

8

links with lifetime 2 (see the dashed links). There are
three components in G”, i.e., g1 consisting of {v1, v2, v3,
v4, v6, v8}, g2 consisting of {v5}, and g3 consisting of {v7}.
Only component g1 contains the CDS of G’. Clearly,
there is no component of G” which contains the CDS
of G’ if we further prune the links with lifetime 3.

Phase three: S=ConstructMCDSR(G’, G”). Based on
G’ and G”, the third phase is to call the Construct-
MCDSR algorithm to compute MCDSR(G’, G”). Notice
that only component g1 of G” contains a CDS of G’.
According to the ConstructMCDSR algorithm, we first
construct the MCDS of g1 by using a MCDS-
constructing method, such as the one proposed by
Guha et al. in [7]. Applying this algorithm on g1, we
can easily obtain the corresponding CDS of g1, i.e.
S={v1, v2}. Obviously, S is not a CDS of G’. So, we select
additional nodes from {v3, v4, v6, v8} and add them into
S to form a CDS of G’. According to the Construct-
MCDSR algorithm, this is actually reduced to solving
the minimum-set-cover problem, i.e., to use a minimal
subset of {v3, v4, v6, v8} to cover {v5, v7} which is not yet
covered by current S. By employing greedy strategy,
we can find that {v4} is sufficient to cover {v5, v7}. That
is, we should add node v4 into S and obtain S={v1,
v2}{v4}={v1, v2, v4}. The final solution S is {v1, v2, v4}, as
shown in Fig. 6(d).

Clearly, S is a CDS of G, with its internal lifetime
ρin(S) and external lifetime ρex(S) equal to 3 and 2, re-
spectively. According to Definition 5, lifetime of S is 2.
Adding any other nodes into S cannot increase its life-
time as a valid CDS. For example, lifetime of link e4,5
(between node v4 and node v5) is 2, which implies that
link e4,5 is expected to be broken after two time units.
Since lifetime of link e5,7 is 1, link e5,7 is weaker than
link e4,5 and link e5,7 is broken (after one time unit) be-
fore link e4,5 is broken (after two time units). Thus, add-
ing node v7 into S does not help improve robustness of
S in covering node v5. It can be verified that S={v1, v2,
v4} achieves the maximum lifetime. Notice that, as an
efficient centralized algorithm for constructing MCDS,
Guha’s algorithm generates the CDS {v3, v4} of G,
which has lifetime equal to 1.

The following theorem presents the time complexity
of the C-MLCDS algorithm.
Theorem 8. The time complexity of the C-MLCDS algo-
rithm is O(|V|4).
Proof. The proof is moved to the supplementary file. 

Let * and * denote the theoretically best approxi-
mation ratio for the MCDS problem and that for the
minimum-set-cover problem, respectively. The follow-
ing theorem shows that any algorithm to the MLCDS
problem cannot achieve approximation ratio lower
than min{*, *} with respect to the size of the CDS.
Theorem 9. Regarding the size of CDS in the MLCDS
problem, approximation ratio less than min{*, *} is not
achievable.
Proof. The proof is moved to the supplementary file. 
Theorem 10. For the MLCDS problem, the C-MLCDS

algorithm can compute the CDS such that 1) the optimality
on both the lifetime and the internal lifetime is achieved; and
2) the approximation ratio on the size is not greater than
(*+*).
Proof. The proof is moved to the supplementary file. 
Corollary 2. Regarding the size of the CDS in the MLCDS
problem, the C-MLCDS algorithm can achieve the approxi-
mation ratio not greater than (2.78+ln+ln|V|lnln|V|),
where  is the maximum degree of the input graph G(V, E).
Proof. The proof is moved to the supplementary file. 

5 DISTRIBUTED ALGORITHM USING 2-HOP

NEIGHBORHOOD INFORMATION

The proposed C-MLCDS algorithm is centralized,
which can be implemented by servers in infrastruc-
ture-based CRNs. However, in infrastructureless CRNs
(such as CRAHNs [19]) which are lack of central con-
trollers, distributed algorithms are usually preferred.
To this aim, in this section we devise a localized algo-
rithm (distributed algorithm using 2-hop neighbor-
hood information) for constructing MLCDS, which is
termed L-MLCDS (localized algorithm to MLCDS) in
contrast to C-MLCDS (centralized algorithm to
MLCDS) presented in Section 4.

5.1 L-MLCDS Algorithm

The desired L-MLCDS algorithm should have high
degree of localization (i.e., each node implements the
algorithm without too much information about the
network) and low message complexity (i.e., communi-
cation overhead among nodes is low). This is the prin-
ciple and objective of our algorithm design. In fact,
regarding MCDS construction, Basagni et al. [15] have
conducted extensive simulations which show that
highly localized algorithms (protocols), such as Wu’s
algorithm [1] and Stojmenovic’s algorithm [2], are re-
warded with good performance. We expect that it
would be the same case to MLCDS, i.e., highly local-
ized algorithms would perform well. Inspired by Wu’s
and Stojmenovic’s alogirthms, we propose the L-
MLCDS algorithm to the MLCDS problem.

Similar to Wu’s and Stojmenovic’s algorithms3, our
L-MLCDS algorithm requires 2-hop neighborhood in-
formation and consists of two phases. Specifically, giv-
en a CRN, each CU (node) in the network should first
collect its 2-hop neighborhood information. The infor-
mation that each node exchanges includes: 1) its ID, 2)
its available channels, and 3) its 1-hop neighbors’ IDs
and available channels. Such information collection
could be realized by the nodes employing either com-
mon control channel (CCC) or rendezvous algorithms
without using CCC. If a CCC is assumed to be availa-
ble, the adjacent nodes can simply exchange infor-
mation over the CCC. If no CCC is available, two adja-

3 There is only one phase in a later improved version [24]. Each node v
computes a subgraph induced by the 1-hop neighbors with higher keys
than v itself. v is dominator if the subgraph contains a connected compo-
nent which can cover all v’s neigbhors, and is dominatee otherwise.

 9

cent nodes can apply a rendezvous algorithm (e.g., the
one in [20], [21] or [22]) to establish a communication
link between them. Information exchange could be
subsequently realized over this link. It should be em-
phasized that CCC or rendezvous algorithms are used
only in building CDS. Once a CDS is constructed, the
CDS can operate over available channels without CCC
and rendezvous algorithms.

The first phase in our L-MLCDS algorithm is exactly
the same as that in Wu’s and Stojmenovic’s algorithms.
Specifically, a node determines itself to be a dominator
if it has two neighbors which do not have a direct link
between them; otherwise it will be a dominatee. All the
dominators form a preliminary CDS of the network
after the first phase [1]. This CDS is usually large in
terms of size and its lifetime is small. Recall that three
objectives are optimized sequentially in the MLCDS
problem: the lifetime, the internal lifetime, and the size
of CDS. In the second phase, we adopt the pruning
mechanism to further reduce the size of CDS as well as
improve the lifetime and internal lifetime of CDS. To
maximize the lifetime of CDS, we should select the
dominators which are associated with links of longer
lifetime. To minimize the size of CDS, we should select
the dominators which can dominate more neighbors.

To this aim, we carefully design a key for each node.
Given node v, let ID(v) be node v’s ID and N(v) the set
of node v’s neighbors. Node v’s key is defined as a
two-tuple key(v)=(f(v), ID(v)), where f(v) is defined as
follows:

f(v)=med(v)×|J(v)|, med(v)=median{ ρu,v|uN(v)}
and J(v)={ u| ρu,v ≥ med(v), uN(v)}.

ρu,v is the lifetime of link eu,v (between nodes u and v),
and med(v) is the median value of the lifetimes of links
with node v as an endpoint. J(v) denotes the set of v’s
neighbors such that the lifetime of link between v and
each node in J(v) is not less than med(v). Clearly, both
med(v) and J(v) take into account lifetimes of links.
Since lifetime of a link reflects how the dynamic avail-
abilities of channels on this link are considered (see
Definition 1 in Section 3), the above defined key actual-
ly considers the dynamic availability of each channel
which is a characteristic of CRNs. To some extent,
med(v) serves the objective of maximizing the lifetime
of CDS, and |J(v)| serves the objective of minimizing
the size of CDS. The proposed metric f(v) aims to strike
a balance between these two objectives. Intuitively, if a
node has more links (i.e., neighbors) that are with
longer lifetime, it will be assigned with a larger key
and consequently has a greater chance to be selected as
a dominator. The pruning process using the key is to
minimize the size of the previously-constructed CDS
as well as maximize the lifetime, particularly the inter-
nal lifetime, of the CDS.

However, the definition of key concerns the only
links with lifetime greater than the median value, by
which it may prune the node associated with links
with smaller lifetime. If this node is the best choice

L-MLCDS Algorithm

/*Assume that each node has collected its 2-hop neighborhood infor-
mation. Node v in the network executes the following: */

1: // The first phase is to construct a preliminary CDS
2: v is initialized as a “dominatee”;
3: FOR each uN(v)
4: FOR each w{ w|wN(v), w≠u}
5: IF link (u, w) does not exist
6: // v has two unconnected neighbors
7: v becomes a “dominator”;
8: BREAK; // exit the for-loops
9: // The second phase is to reduce the size of the CDS

10: IF v is a “dominator”
11: Compute key(v) and key(u) for each u in N(v);
12: Compute h({v}, N(v));
13: Flag=FALSE;
14: FOR each u{ u|uN(v), key(u)>key(v) }
15: // check Condition 1
16: IF {u} dominates N[v]
17: Compute h({u}, N[v]);
18: IF h({u}, N[v])≥h({v}, N(v))
19: Flag=TRUE;
20: BREAK; //exit the for-loop
21: IF Flag= =FALSE
22: // Condition 1 is not true, check Condition 2
23: FOR each u{ u|uN(v), key(u)>key(v) }
24: FOR each w{ w|wN(v), w≠u and

 key(w)>key(v) }
25: IF link (u, w) exists and {u, w} dominates N[v]
26: Compute h({u, w}, N[v]);
27: IF h({u, w}, N[v])≥h({v}, N(v))
28: Flag=TRUE;
29: BREAK; // exit the for-loops
30: IF Flag= =TRUE // Node v changes its role
31: v becomes a “dominatee”;

Fig. 7. Pseudo code of the L-MLCDS algorithm.
(with largest lifetime) to dominate some nodes in the
network, pruning this node will definitely decrease the
lifetime of CDS. Thus, we should strike a good balance
by taking the links with small lifetime into account. To
address this issue, we define the average lifetime of
links between a node (say v) and the set of nodes dom-
inated by v as

h({v}, B)=mean{ ρa,b|a{v}, bB},
where mean denotes the operation of arithmetic aver-
age. Intuitively, h({v}, B) indicates the average strength
(lifetime) that node v can dominate all nodes in B. We
can extend the definition to the general case of set A
dominating set B as follows

h(A, B)=mean{ max{ ρa,b|aA} |bB}.
Notice that, given a node b in B, multiple nodes in A
may dominate b. We use max{ρa,b|aA} to measure the
strength (lifetime) that node b can be dominated by A.
h(A, B) indicates the average strength that node set B
can be dominated by A. Based on this definition, the
second phase of pruning in our algorithm is as follows.
A dominator, say v, will switch to be a dominatee if
either of the following two conditions is met:

10

Condition 1. There is a neighbor of v, say u, such
that 1) N[u]N[v] (i.e., {u} can dominate N[v]), 2)
key(u)>key(v), and 3) h({u}, N[v])≥h({v}, N(v)).

Condition 2. There are two neighbors of v, say u
and w, such that 1) both are connected, 2) N[u]∪
N[w]N[v] (i.e., {u, w} can dominate N[v]), 3)
min{key(u), key(w)}>key(v), and 4) h({u, w}, N[v])≥h({v},
N(v)).
Notice that N[v]=N(v)∪{v}, i.e., N[v] is the set of node
v and its neighbors. Item (3) of Condition 1 could be
interpreted as follows. If node u wants to “take over”
node v (i.e., replace v to dominate v’s neighbors and v),
u should be at least as strong as v in terms of the life-
times of the dominating links (on average). Similar
explanation is to item (4) of Condition 2.

We formally present the pseudo code of the L-
MLCDS algorithm in Fig. 7. In L-MLCDS, based on the
2-hop information, node v can determine the following
values: 1) lifetimes of its links, 2) its key value key(v), 3)
h(*,*) values in Conditions 1 and 2, and 4) lifetimes of
its 1-hop neighbors’ links and its 1-hop neighbors’ key
values.

5.2 Numerical Example

Before analyzing the proposed L-MLCDS algorithm,
we demonstrate how it works by using the network in
Fig. 6(a) as follows. Firstly, it can be identified that,
when the first phase of the L-MLCDS algorithm ends, a
preliminary CDS is formed by S={v1, v2, v3, v4, v6, v7, v8},
as illustrated in Fig. 8(a). For example, node v1 should
determine to be a dominator since it has two neighbors,
i.e., v2 and v6, which do not have a direct link between
them. Notice that, the lifetime, the internal lifetime,
and the size of S are 2, 2, and 7, respectively. Next, the
size of CDS S is reduced and its lifetime is enhanced.
Suppose that the ID of node vi is i, i=1, 2,  , 8. All
nodes are sorted according to their keys in ascending
order as: v5, v6, v8, v7, v1, v4, v3, v2. Take the sorting be-
tween nodes v5 and v6 as an example. Since
med(v5)=median{ρ5,7, ρ5,4}=median{1, 2}=1.5 and
J(v5)={v4}, we have f(v5)=med(v5)×|J(v5)|=1.5×1=1.5 and
key(v5)=(f(v5), ID(v5))=(1.5, 5). Similarly, we have
key(v6)=(3, 6), Therefore, key(v5) is less than key(v6).
During the second phase of pruning, dominator v6 is
removed from S. Actually, node v3 is a neighbor of v6
such that key(v3)>key(v6) and v3 can dominate N[v6].
Furthermore, we have h({v3}, N[v6])=mean{ρ3,1, ρ3,6,
ρ3,8}=mean{2, 1, 2}=5/3 and h({v6}, N(v6))=mean{ρ6,1, ρ6,3,
ρ6,8}=mean{1, 3, 1}=5/3, that is, h({v3}, N[v6])≥h({v6},
N(v6)). Together with these facts, we see that Condition
1 is met for pruning dominator v6. Similarly, we can
identify that dominators v8 and v7 should also be
pruned, with pruning condition (Condition 1) satisfied
by nodes v3 and v4, respectively. No other dominators
can be further pruned. For example, dominator v1 will
not be removed, since neither Condition 1 (v3 can dom-
inate N[v1] but h({v3}, N[v1])=2<h({v1}, N(v1))=8/3) nor
Condition 2 ({v2, v3} can dominate N[v1] but h({v2, v3},

N[v1])=5/2<h({v1}, N(v1))=8/3) can be met in this case.
Eventually, after pruning S becomes {v1, v2, v3, v4},
which is the final CDS generated by our L-MLCDS al-
gorithm (see Fig. 8(b)). It can be identified that, the life-
time, the internal lifetime, and the size of CDS S are 2,
3, and 4, respectively. In contrast, Wu’s algorithm gen-
erates the CDS {v3, v4, v6, v7, v8} of G and Stojmenovic’s
algorithm generates the CDS {v3, v4} of G, both having
the same lifetime equal to 1.

(a) The CDS after the first phase. (b) The final CDS.

Fig. 8. A numerical example for the L-MLCDS algorithm.

5.3 Analysis of L-MLCDS Algorithm
In this section we analyze the correctness of our L-
MLCDS algorithm which is based on Wu’s algorithm
and Stojmenovic’s algorithm. However, regarding the
correctness of the algorithms, no formal proof has been
given for both Wu’s algorithm [1] and Stojemenovic’s
algorithm [2]. Therefore, we first give formal proof of
the correctness of these two algorithms. Notice that
implementation of the three algorithms (i.e., Wu’s,
Stojmenovic’s and ours) at each node is based on its 2-
hop neighborhood information. In other words, each
node is actually aware of only its local graph (2-hop
neighborhood). Therefore, the input graph of the three
algorithms should be the union of local graphs per-
ceived by all nodes. We call such graph as a perceptive
graph and denote it by G. When G is connected but not
completely connected (i.e., any two nodes are connect-
ed), the following lemma states that Wu’s algorithm
can generate a valid CDS of G.
Lemma 6. If perceptive graph G is connected but not com-
pletely connected (clique), Wu’s algorithm generates a valid
CDS of G, regardless of the assumption of the physical layer
(ideal physical layer or realistic physical layer).
Proof. The proof is moved to the supplementary file. 

Notice that, any two nodes are connected when G is
completely connected. Thus, no node will claim to be a
dominator when the first phase of Wu’s algorithm
ends (A node becomes a dominator only when it has
two neighbors which do not have a direct link between
them). That is, the final set of dominators will be emp-
ty. This makes sense, as no CDS is needed to facilitate
routing or broadcasting in this case [1]. Furthermore,
in Wu’s algorithm nodes are sorted according to their
IDs. However, as long as each node is associated with
a unique key (not limited to ID), Wu’s algorithm can
still work correctly. In other words, the correctness of
Wu’s algorithm does not rely on what key values are
used to sort nodes.

Notice that, Stojmenovic’s algorithm has the same
first phase as Wu’s algorithm. They differ only in the

 11

second phase of pruning. Stojmenovic’s algorithm is
normally more efficient than Wu’s algorithm in terms
of pruning dominators. However, when Wu’s algo-
rithm is allowed to use the same key values as Stoj-
menovic’s algorithm and the idea physical layer is
adopted, the pruning phases of both algorithms are
equivalent (they prune the same set of dominators).
This result is stated in the following lemma.
Lemma 7. If the ideal physical layer is adopted, the pruning
phases of Wu’s and Stojmenovic’s algorithms are equivalent,
given that the same key values are used in both algorithms to
sort nodes.
Proof. The proof is moved to the supplementary file. 

According to Lemmas 6 and 7, we can verify the
correctness of Stojmenovic’s algorithm under the ideal
physical layer. Notice that no message exchange is re-
quired in the pruning phase of Stojmenovic’s algo-
rithm. This implies that the pruning of Stojmenovic’s
algorithm would not be affected by the specific physi-
cal layer. Hence, if the realistic physical layer is adopt-
ed, Stojmenovic’s algorithm can still output the valid
CDS. Based on the correctness of Stojmenovic’s algo-
rithm, we can prove the correctness of L-MLCDS, stat-
ed in the following theorem.
Theorem 11. If perceptive graph G is connected but not
completely connected (clique), the L-MLCDS algorithm
generates a valid CDS of G, regardless of the assumption of
the physical layer (ideal physical layer or realistic physical
layer).
Proof. The proof is moved to the supplementary file. 

However, L-MLCDS is heuristic and does not guar-
antee global optimality or local optimality, in terms of
the maximum lifetime and the minimum size of the
CDS. Regarding message cost of L-MLCDS, similar to
Wu’s and Stojmenovic’s algorithms, L-MLCDS requires
each node to exchange messages with its 1-hop neigh-
bors for collecting its 2-hop neighborhood information.
Therefore, message cost of L-MLCDS is the same as
that of Wu’s and Stojmenovic’s algorithms in the first
phase. In the second phase, Wu’s algorithm requires
nodes to exchange information of their status (domina-
tor or dominatee), while both L-MLCDS and Stoj-
menovic’s algorithm do not need extra message ex-
change. In conclusion, in terms of message cost, per-
formance of L-MLCDS is similar to that of Stojmeno-
vic’s algorithm but is better than that of Wu’s algo-
rithm.

6 SIMULATION

We build the simulator in Matlab R2011a to evaluate
the performance of the two algorithms proposed by us
to the MLCDS problem, namely, C-MLCDS (central-
ized algorithm) and L-MLCDS (localized algorithm).
To the best of our knowledge, there is no existing work
on computing CDS in CRNs. For comparison, we se-
lect four representative algorithms, Guha’s [7], Wan’s
[9], Wu’s [1], and Stojmenovic’s [2], which were pro-

posed for constructing MCDS (minimum CDS) in con-
ventional wireless networks (e.g., ad hoc networks and
wireless sensor networks). In Table 1, we highlight the
characteristics of our algorithms and the four bench-
mark algorithms.

TABLE 1
CHARACTERISTICS OF DIFFERENT ALGORITHMS

Algorithm Objective
Centralized/
Distributed

Information
required

Guha’s Min size Centralized Global
Wan’s Min size Distributed Global
Wu’s Min size Distributed 2-hop

Stojmenovic’s Min size Distributed 2-hop

C-MLCDS
Max lifetime,

Min size
Centralized Global

L-MLCDS
Max lifetime,

Min size
Distributed 2-hop

6.1 Simulation Setup

For comprehensive study, we define four types of spec-
trum environments (SEs) as suggested by Lee et al. in [5].
Each SE represents a possible combination of PU’s ac-
tivity and spectrum opportunity. Recall that each PU
could behave in status of ON (active on the channel) or
OFF (inactive on the channel). We assume that the so-
journ times of the PU in ON status and OFF status are
random variables which follow the exponential distri-
butions [4] [5] with parameters μ and λ, respectively
(Our proposed algorithms are independent of the distri-
bution model of PU’s activity). Accordingly, PU’s ac-
tivity can be classified into two cases: low activity and
high activity. Specifically, it is called low activity if μ<1
and λ<1, and high activity if μ>1 and λ>1. Notice that
1/μ and 1/λ are the expected sojourn times of PU be-
ing in ON status and OFF status, respectively. There-
fore, low activity (μ<1 and λ<1) implies that the PU
does not change its status frequently, while high activi-
ty (μ>1 and λ>1) means that the PU switches between
ON status and OFF status frequently. Similarly, spec-
trum opportunity can be also classified into two cases:
low opportunity and high opportunity. Specifically, it is
called low opportunity if Pon>Poff, and high opportuni-
ty if Pon<Poff. Notice that Pon=μ/(μ+λ) and Poff=λ/(μ+λ)
are the probabilities that the PU is in ON status and
OFF status in an instant of time, respectively [5]. Thus,
low opportunity (Pon>Poff) implies that the PU is in ON
status at most of the time, while high opportunity
(Pon<Poff) means that the PU is in OFF status at most of
the time. The four SEs are detailed in Table 2.

TABLE 2
FOUR TYPES OF SPECTRUM ENVIRONMENTS

Spectrum
Environment

PU’s
Activity

Spectrum
Opportunity

Parameters

I Low Low 0<μ<1, 0<λ<1, μ>λ
II Low High 0<μ<1, 0<λ<1, μ<λ
III High Low 1<μ<10, 1<λ<10, μ>λ
IV High High 1<μ<10, 1<λ<10, μ<λ

In our simulations, PUs and CUs are deployed in a

12

500m× 500m 2-dimension square. Locations of PUs
and CUs are randomly generated according to the uni-
form distribution over the target area. The interference
range of each PU is 300m, and the transmission range
of each CU is 150m. We vary the number of CUs, i.e. N,
from 20 to 140, and vary the number of PUs, i.e. M,
from 10 to 50. As mentioned in Section 3, each PU op-
erates over a unique channel and there are exactly M
channels potentially available to the CUs.

For simplicity, the ideal physical layer is adopted in
our simulations. We assume that CCC (common con-
trol channel) is employed in the network. Each CU can
exchange messages with its neighbors over the CCC,
and collect its 2-hop neighborhood information. The
reason for adopting the ideal physical layer is two-fold.
First, we have theoretically proved that, our L-MLCDS
algorithm can generate valid CDS no matter which
kind of physical layer (ideal or realistic) is adopted (see
Theorem 11). Second, during the implementation of
the L-MLCDS algorithm, each CU does not need to
exchange messages with its neighbors (except initial
message exchange for collecting 2-hop neighborhood
information, which is also required in Wu’s and Stoj-
menovic’s algorithms). This means that the perfor-
mance of our L-MLCDS algorithm is independent of
the physical layer. To evaluate the performance of the
algorithms, we focus on three metrics: 1) the lifetime of
CDS, 2) the internal lifetime of CDS, and 3) the size of
CDS.

In each simulation run, we randomly generate the
locations of M PUs and N CUs according to the uni-
form distribution. Each PU randomly selects parame-
ters μ and λ which are subject to the type of SE de-
scribed in Table 2. With μ and λ, we can calculate
Pon=μ/(μ+λ) and Poff=λ/(μ+λ), and set the ON/OFF
status of the PU according to the probabilities. Due to
limited sensing capacity of CUs, the CUs usually can-
not sense all the channels of the PUs [23]. We let each
CU randomly select a portion of the total channels, say
pM channels (p is fixed at 60% in our simulations), as
its candidate channels. Suppose that channel m is one
of the candidate channels of CU i. Channel m is deter-
mined to be available to CU i if PU m (associated with
channel m) is in OFF status or CU i is outside the inter-
ference range of PU m. After exchanging message mu-
tually, two adjacent CUs can identify the set of their
commonly-available channels. There is a communica-
tion link between these two CUs if the set is not empty.
Though the lifetime of the link could be determined by
Eq. (9) in the Appendix (see the supplementary file),
we adopt the Monte Carlo method [16] in our simula-
tions to estimate the lifetime of the link since it is time
consuming to compute Eq. (9) when the number of
CUs is large. For each link ei,j, we randomly generate
an instance of ()

,
m
i jx (1≤m≤M) which is the duration that

channel m is being available on link ei,j, according to
the exponential distribution of PU m’s activity. The
longest duration of the channel being available on link

ei,j is determined by max{ (1)
,i jx , (2)

,i jx ,  , ()
,
M
i jx }. We gen-

erate 1000 instances to calculate a mean value to esti-
mate the lifetime of link ei,j, i.e., E(max{ (1)

,i jx , (2)
,i jx ,  ,

()
,
M
i jx }). After each link and its lifetime are determined,

we check whether the generated topology is connected.
We drop disconnected topologies and keep only the
connected topologies (valid instances). We run all the
algorithms in these connected networks (L valid in-
stances in total) to construct CDS. For each algorithm,
we calculate the mean value of the lifetime, the internal
lifetime, and the size of the CDS. In our simulations,
we set L to be 200, i.e., the results reported in the fol-
lowing figures are the means of 200 separate runs.

6.2 Simulation Results

We evaluate the performance of the algorithms by us-
ing three metrics: 1) the lifetime of CDS, 2) the internal
lifetime of CDS, and 3) the size of CDS. Accordingly,
the simulation results consist of the following three
parts. According to Theorem 5, the C-MLCDS algo-
rithm gives the optimal lifetime and the optimal inter-
nal lifetime (with the optimal lifetime preserved). In-
stead of reporting the (internal) lifetime of the CDS, we
show the percentage of the optimal (internal) lifetime
achieved by each algorithm by using the results of C-
MLCDS as a benchmark.
6.2.1 On Lifetime of CDS

20 40 60 80 100 120 140
40

50

60

70

80

90

100

N

T
he

 o
pt

im
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

20 40 60 80 100 120 140

70

75

80

85

90

95

100

N

T
he

 o
pt

im
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

(a) SE I (b) SE II

20 40 60 80 100 120 140
60

65

70

75

80

85

90

95

100

N

T
he

 o
pt

im
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

20 40 60 80 100 120 140

75

80

85

90

95

100

N

T
he

 o
pt

im
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

(c) SE III (d) SE IV

Fig. 9. Performance comparison of different algorithms in terms of

the lifetime of CDS under four SEs, varying N (M=30).

10 20 30 40 50
40

50

60

70

80

90

100

M

T
he

 o
pt

im
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

 10 20 30 40 50
60

65

70

75

80

85

90

95

100

M

T
he

 o
pt

im
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

(a) SE I (b) SE II

10 20 30 40 50
55

60

65

70

75

80

85

90

95

100

M

T
he

 o
pt

im
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

10 20 30 40 50

55

60

65

70

75

80

85

90

95

100

M

T
he

 o
pt

im
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

(c) SE III (d) SE IV

Fig. 10. Performance comparison of different algorithms in terms

of the lifetime of CDS under four SEs, varying M (N=60).

 13

Fig. 9 and Fig. 10 demonstrate the performance of
different algorithms in terms of the lifetime of CDS
under various SEs. In Fig. 9, we fix M, i.e., the number
of channels, and report the lifetime of CDS against N,
i.e., the number of CUs. In Fig. 10, contrastively, we fix
N and report the lifetime of CDS against M. As we
have pointed out, our C-MLCDS algorithm generates
CDSs achieving 100 percent optimal lifetime. That is,
C-MLCDS outperforms all the other algorithms. It is
obvious that, among the five suboptimal algorithms,
including Guha’s, Wan’s, Wu’s, Stojmenovic’s and our
L-MLCDS algorithm, L-MLCDS has the best perfor-
mance.

Specifically, when we focus on SE I and fix M, as
shown in Fig. 9(a), L-MLCDS generates CDSs which
steadily achieve 90% optimal lifetime or more when N
is greater than 40. Following L-MLCDS, Wu’s algo-
rithm outperforms the other four algorithms and it can
generate CDSs achieving around 82% optimal lifetime
in most cases. Clearly, Stojmenovic’s algorithm is infe-
rior to both L-MLCDS and Wu’s algorithm, generating
CDSs achieving 70% to 75% optimal lifetime. Wan’s
algorithm generates CDSs with 60% to 65% optimal
lifetime achieved, which are significantly lower than
those by L-MLCDS. As for Guha’s algorithm, it per-
forms worst and generates CDSs with only 50% opti-
mal lifetime achieved at most of the time. Similar per-
formance comparison results of these algorithms can
be obtained from other figures.

6.2.2 On Internal Lifetime of CDS
Fig. 11 and Fig. 12 demonstrate the performance of

different algorithms in terms of the internal lifetime of
CDS under various SEs. In Fig. 11, we fix M and report
the internal lifetime of CDS against N; while in Fig. 12
we fix N and report the internal lifetime of CDS
against M. Notice that, as the optimal baseline for
comparison, our C-MLCDS algorithm generates CDSs
with 100% optimal internal lifetime achieved. Accord-
ing to Figs. 11 and 12, we can see that the ranking of
the other five algorithms is: L-
MLCDS>Wu’s>Stojmenovic’s>Wan’s>Guha’s, in terms
of the internal lifetime of CDS, which is the same to the
ranking in terms of the lifetime of CDS. For example,
when M is fixed, as shown in Fig. 11(d) (SE IV), L-
MLCDS generates CDSs with at least 90% optimal in-
ternal lifetime achieved, significantly exceeding that of
Wu’s and Stojmenovic’s algorithms (around 75%) and
that of Wan’s and Guha’s algorithms (around 65%).
Similar performance gap between L-MLCDS and these
compared algorithms can be identified in other figures.

It can be observed that the curves in Figs. 11(a)-(b)
do not have a clear trend as N increases. The reason is
as follows. In simulation, we fix the network region as
a 500m×500m 2-dimension square. Increasing N will
increase node density which results in more links in
the network. On the one hand, as the number of links
increases (larger pool), the minimum lifetime of links

decreases. Notice that the internal lifetime of a CDS is
highly dependent on the minimum lifetime of links
associated with the CDS nodes (dominators). The in-
ternal lifetime of the CDS would decrease as N in-
creases. On the other hand, with more nodes and more
links in a CDS, the CDS would become more robust
and consequently has a longer internal lifetime. There-
fore, the internal lifetime of the CDS shown in Figs.
11(a)-(b) is the resulting effect of these two contrary
facts. This is the reason why the curves do not have a
clear trend as N increases.

20 40 60 80 100 120 140

50

60

70

80

90

100

N

T
he

 o
pt

im
al

 in
te

rn
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

(a) SE I (b) SE II

20 40 60 80 100 120 140
40

50

60

70

80

90

100

N

T
he

 o
pt

im
al

 in
te

rn
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS
L-MLCDS

Wu's

Stojmenovic's

Wan's
Guha's

20 40 60 80 100 120 140

60

65

70

75

80

85

90

95

100

N

T
he

 o
pt

im
al

 in
te

rn
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS
L-MLCDS

Wu's

Stojmenovic's

Wan's
Guha's

(c) SE III (d) SE IV

Fig. 11. Performance comparison of different algorithms in terms of

the internal lifetime of CDS under four SEs, varying N (M=30).

10 20 30 40 50
0

20

40

60

80

100

M

T
he

 o
pt

im
al

 in
te

rn
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

10 20 30 40 50

50

60

70

80

90

100

M

T
he

 o
pt

im
al

 in
te

rn
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

(a) SE I (b) SE II

10 20 30 40 50
40

50

60

70

80

90

100

M

T
he

 o
pt

im
al

 in
te

rn
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

10 20 30 40 50

50

60

70

80

90

100

M

T
he

 o
pt

im
al

 in
te

rn
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

(c) SE III (d) SE IV

Fig. 12. Performance comparison of different algorithms in terms of

the internal lifetime of CDS under four SEs, varying M (N=60).
Except for spectrum environments (SEs), all simula-

tion parameters are same in Figs. 12 (a)-(d). We can see
that the curves in Figs. 12(a)-(b) (using SE I and SE II)
do not have a clear trend while those in Figs. 12(c)-(d)
(using SE III and SE IV) have a clear trend. Therefore,
selection of SE I and SE II is the cause of the unclear
trend of curves in Figs. 12(a)-(b). According to Table 2,
PU’s activity is low in both SE I and SE II which im-
plies that the PU does not change its status (ON/OFF)
frequently. If a PU is currently in OFF status, it will
probably stay in OFF status for a very long time which
results in a long duration of its corresponding channel
being available. In contrast, if a PU is currently in ON
status, duration of its corresponding channel being
available is short. Thus, there is a big variance in the

20 40 60 80 100 120 140
0

20

40

60

80

100

N

T
he

 o
pt

im
al

 in
te

rn
al

 li
fe

tim
e

ac
hi

ev
ed

 (
%

)

C-MLCDS

L-MLCDS

Wu's
Stojmenovic's

Wan's

Guha's

14

durations of channels being available in SE I (Fig. 12(a))
and SE II (Fig. 12(b)). On the one hand, the big vari-
ance in the durations of channels would result in a big
variance in lifetimes of different links. In this case, it is
difficult to compute the CDS with the maximum inter-
nal lifetime due to huge searching space. So, the inter-
nal lifetime of the CDS computed by different algo-
rithms would decrease in SE I (Fig. 12 (a)) and SE II
(Fig. 12(b)). On the other hand, as M increases, there
are more potentially available channels on each link.
When number of available channels increases on each
link, lifetimes of different links become closer. As a
result, the internal lifetime of the CDS computed by
different algorithms would increase since it is easier to
find a CDS with a long/optimal lifetime in the net-
work where links are associated with close/same life-
times. The unclear trend of curves in Figs. 12(a)-(b) is
the resulting effect of these two contrary facts.
6.2.3 On Size of CDS
Fig. 13 shows the performance of different algorithms
in terms of the size of CDS against N (M is fixed as 30).
We omit the results obtained by fixing N but varying
M. Actually, the sizes of CDSs constructed by different
algorithms hardly vary with M, and they are mostly
affected by N (i.e., the number of CUs).

First of all, according to Fig. 13, the sizes of CDSs
constructed by the algorithms increase as N increases.
Among the four conventional CDS algorithms, Guha’s
algorithm (centralized) generates the CDSs with small-
est size. Wan’s algorithm (distributed with global in-
formation) outperforms both Wu’s and Stojmenovic’s
algorithms (distributed with 2-hop neighborhood in-
formation). Furthermore, Stojmenovic’s algorithm is
superior to Wu’s algorithm. Our observation on such
performance difference of these three distributed algo-
rithms is consistent with that identified by Basagni et al.
for conventional wireless networks [15].

Our centralized C-MLCDS algorithm generates
CDSs with size larger than Guha’s algorithm and
Wan’s algorithm. Moreover, in many cases (see Figs.
13(c) and 13(d)), C-MLCDS even performs worse than
Stojmenovic’s algorithm. Since optimizing the size of
CDS is the third objective with lower priority in our
focused MLCDS problem, it is very likely for the pro-
posed C-MLCDS algorithm to construct CDSs with
relatively large size. Essentially, it may reflect the
trade-off between the lifetime and the size of CDS
when constructing proper virtual backbone in CRNs.
As for our localized L-MLCDS algorithm, which is also
based on 2-hop neighborhood information, it generates
CDSs with size larger than Stojemenovic’s algorithm.
However, compared with Wu’s algorithm, L-MLCDS
usually performs better in terms of constructing slim
CDSs. Actually, except for the scenario of SE I (see Fig.
13(a)), in other scenarios L-MLCDS generates CDSs
with size smaller than Wu’s algorithm (see Figs. 13(b),
13(c) and 13(d)). In this sense, our L-MLCDS algorithm

is efficient in not only maximizing the lifetime of CDS
but minimizing the size of CDS.

20 40 60 80 100 120 140
5

10

15

20

25

30

35

N

A
ve

ra
ge

 s
iz

e

C-MLCDS(Global)
L-MLCDS(2-hop)

Wu's(2-hop)

Stojmenovic's(2-hop)

Wan's(Global)
Guha's(Global)

20 40 60 80 100 120 140

5

10

15

20

25

30

N

A
ve

ra
ge

 s
iz

e

C-MLCDS(Global)
L-MLCDS(2-hop)

Wu's(2-hop)

Stojmenovic's(2-hop)

Wan's(Global)
Guha's(Global)

(a) SE I (b) SE II

20 40 60 80 100 120 140
5

10

15

20

25

30

N

A
ve

ra
ge

 s
iz

e

C-MLCDS(Global)
L-MLCDS(2-hop)

Wu's(2-hop)

Stojmenovic's(2-hop)

Wan's(Global)
Guha's(Global)

20 40 60 80 100 120 140

5

10

15

20

25

30

N

A
ve

ra
ge

 s
iz

e

C-MLCDS(Global)
L-MLCDS(2-hop)

Wu's(2-hop)

Stojmenovic's(2-hop)

Wan's(Global)
Guha's(Global)

(c) SE III (d) SE IV

Fig. 13. Performance comparison of different algorithms in terms of

the size of CDS under four SEs, varying N (M=30).

7 FUTURE WORK

In future work, other difinitions of lifetime, e.g., a
probabilistic model of lifetime, could be explored. For
example, each link is associated with a probability
which indicates the robustness of one node dominat-
ing another. The probability could be meatured by
considering activities of PUs on the channels of this
link. Then, lifetime of a CDS is measured by the joint
probability that this CDS is valid. In this definition, if a
dominatee is covered by more dominators, it is more
robust to dominate this dominatee while the size of the
CDS would become larger.

ACKNOWLEDGMENT

This work is supported in part by General Research
Fund of Hong Kong [No. GRF HKBU 210412] and Re-
search Grant of Hong Kong Baptist University [No.
FRG2/11-12/160]. Zhiyong Lin is supported by the
National Natural Science Foundation of China [No.
61202453] and the Natural Science Foundation of
Guangdong Province in China [No. S2011040002890].
The work of Ivan Stojmenovic was supported by
NSERC CRDPJ 386874-09 (Reliable and secure QoS
routing and transport protocols for mobile ad hoc net-
works), NSERC Discovery grant, Government of China
for the Tsinghua 1000 Plan Distinguished Professor
(2012-5) position, and NSFC Collaboration project
number 61120106008.

REFERENCES
[1] J. Wu and H. Li, “On Calculating Connected Dominating Set for

Efficient Routing in Ad Hoc Wireless Networks,” in Proc. of the
3rd ACM International Workshop on Discrete Algorithms and Meth-
ods for Mobile Computing and Communications, pp. 7-14, 1999.

[2] I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating Sets and
Neighbor Elimination Based Broadcasting Algorithms in Wire-
less Networks,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 13, no. 1, pp. 14-25, 2002.

[3] Y. Song and J. Xie, “A Distributed Broadcast Protocol in Multi-
hop Cognitive Radio Ad Hoc Networks without a Common
Control Channel,” in Proc. of IEEE INFOCOM 2012, pp. 2273-
2281, 2012.

 15

[4] S. Geirhofer, L. Tong, and B.M. Sadler, “Dynamic Spectrum
Access in the Time Domain: Modeling and Exploiting White
Space,” IEEE Communications Magazine, vol. 45, no. 5, pp. 66-72,
2007.

[5] W.-Y. Lee and I.F. Akyildiz, “Optimal Spectrum Sensing
Framework for Cognitive Radio Networks,” IEEE Transactions
on Wireless Communications, vol. 7, no. 10, pp. 3845-3857, 2008.

[6] Z. Lin, H. Liu, X. Chu, Y.-W. Leung, and I. Stojmenovic, “Max-
imizing Lifetime of Connected-Dominating-Set in Cognitive Ra-
dio Networks,” in Proc. of IFIP Networking 2012, Part II, pp. 316-
330, 2012.

[7] S. Guha and S. Khuller, “Approximation Algorithms for Con-
nected Dominating Sets,” Algorithmica, vol. 20, pp. 374-387, 1998.

[8] L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K.-I. Ko, “A Greedy
Approximation for Minimum Connected Dominating Sets,”
Theoretical Computer Science, vol. 329, pp. 325-330, 2004.

[9] P.-J. Wan, K.M. Alzoubi, and O. Frieder, “Distributed Construc-
tion of Connected Dominating Sets in Wireless Ad Hoc Net-
works,” ACM/Kluwer Mobile Networks and Applications (MONET),
vol. 9, no. 2, pp. 141-149, 2004.

[10] Y. Li, M. T. Thai, F. Wang, C.-W. Yi, P.-J. Wan, and D.-Z.Du,
“On Greedy Construction of Connected Dominating Sets in
Wireless Networks,” Wireless Communications and Mobile Compu-
ting, vol. 5, pp. 927-932, 2005.

[11] R. Misra and C. Mandal, “Minimum Connected Dominating Set
Using a Collaborative Cover Heuristic for Ad Hoc Sensor Net-
works,” IEEE Transactions on Parallel and Distributed Systems, vol.
21, no. 3, pp. 292-302, 2010.

[12] K. Sakai, C.-H. Huang, W.-S. Ku, M.-T. Sun, and X. Cheng,
“Timer-Based CDS Construction in Wireless Ad Hoc Networks,”
IEEE Transactions on Mobile Computing, vol. 10, no. 10, pp. 1388-
1402, 2011.

[13] Y. Wu and Y. Li, “Connected Dominating Sets,” in Handbook of
Ad Hoc and Sensor Wireless Networks: Architectures, Algorithms
and Protocols, H. Liu, Y. W. Leung, and X. Chu, Eds., Bentham
Science, pp.19-39, 2009.

[14] I. Stojmenovic, A. Nayak, J. Kuruvila, F. Ovalle-Martinez, and E.
Villanueva-Pena: “Physical Layer Impact on the Design and Per-
formance of Routing and Broadcasting Protocols in Ad Hoc and
Sensor Networks,” Computer Communications, vol. 28, no. 10, pp.
1138-1151, 2005.

[15] S. Basagni, M. Mastrogiovanni, A. Panconesi, and C. Petrioli,
“Localized Protocols for Ad Hoc Clustering and Backbone For-
mation: a Performance Comparison,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 17, no. 4, pp. 292-306, 2006.

[16] G. S., Fishman: Monte Carlo: Concepts, Algorithms, and Appli-
cations, New York: Springer, 1995.

[17] T. Jiang, T. Li, and J. Ren: “Towards Secure Cognitive Commu-
nications in Wireless Networks,” IEEE Wireless Communications,
to appear.

[18] P. Slavík, “A Tight Analysis of the Greedy Algorithm for Set
Cover,” Journal of Algorithms, vol. 25, pp. 237-254, 1997.

[19] I. Akyildiz, W.-Y. Lee, and K. R. Chowdhury, “CRAHNs: Cog-
nitive Radio Ad Hoc Networks,” Ad Hoc Networks, vol. 7, no. 5,
pp. 810-836, 2009.

[20] Z. Lin, H. Liu, X. Chu, and Y.W. Leung, “Jump-Stay Based
Channel-Hopping Algorithm with Guaranteed Rendezvous for
Cognitive Radio Networks,” in Proc. of IEEE INFOCOM 2011, pp.
2444-2452, 2011.

[21] H. Liu, Z. Lin, X. Chu, and Y.-W. Leung, “Jump-Stay Rendez-
vous Algorithm for Cognitive Radio Networks,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 23, no. 10, pp. 1867-
1881, 2012.

[22] H. Liu, Z. Lin, X. Chu, and Y.-W. Leung, “Ring-Walk Based
Channel-Hopping Algorithms with Guaranteed Rendezvous for
Cognitive Radio Networks,” in Proc. of WiSARN2010-FALL,
pp.755-760, 2010.

[23] T. Yücek and H. Arslan, “A Survey of Spectrum Sensing Algo-
rithms for Cognitive Radio Applications,” IEEE Communications
Surveys &Tutorials, vol. 11, no. 1, pp. 116-130, 2009.

[24] I. Stojmenovic and J. Wu, “Broadcasting and Activity Schedul-
ing in Ad Hoc Networks,” in Mobile Ad Hoc Networking, S. Basa-
gni, M. Conti, S. Giordana and I. Stojmenovic, Eds., IEEE/Wiley,
pp. 205-229,2004.

Zhiyong Lin received the BSc and MSc degrees both
in applied mathematics from South China University
of Technology, in 1999 and 2002, respectively. He
received the PhD degree in computer application
technology from South China University of Technol-
ogy in 2009. Currently, he is an associate professor in

the Dept of Computer Science, GuangDong Polytechnic Normal
University. His research interests include algorithm design and
analysis, machine learning, and computational intelligence.

Hai Liu received the BSc and MSc degrees in ap-
plied mathematics from South China University of
Technology, in 1999 and 2002, respectively. He
received the PhD degree in computer science from
City University of Hong Kong in 2006. He is cur-
rently a Research Assistant Professor with the
Department of Computer Science, Hong Kong

Baptist University. His research interests include wireless network-
ing, mobile computing, and algorithm design and analysis. He is a
member of the IEEE.

Xiaowen Chu received the BEng degree in com-
puter science from Tsinghua University, P.R. Chi-
na, in 1999, and the PhD degree in computer sci-
ence from the Hong Kong University of Science
and Technology in 2003. Currently, he is an asso-
ciate professor in the Department of Computer
Science, Hong Kong Baptist University. His re-

search interests include distributed and parallel computing and
wireless networks. He is a senior member of the IEEE.

Yiu-Wing Leung received his B.Sc. and Ph.D.
degrees from the Chinese University of Hong
Kong in 1989 and 1992 respectively. He has been
working in the Department of Computer Science
of the Hong Kong Baptist University and now he
is a full professor. His research interests include
two major areas: 1) networking and multimedia

which include the design and optimization of wireless networks,
optical networks and multimedia systems, and 2) cybernetics and
systems engineering which include evolutionary computing and
multiobjective programming. He has published more than 70 journal
papers in these areas, and most of which were published in various
IEEE journals.

Ivan Stojmenovic received his Ph.D. degree in
mathematics. He is Full Professor at the Universi-
ty of Ottawa, Canada. He held regular and visit-
ing positions in Serbia, Japan, USA, Canada,
France, Mexico, Spain, UK (as Chair in Applied
Computing at the University of Birmingham),
Hong Kong, Brazil, Taiwan, China and Australia.

He published over 300 different papers, and edited seven books on
wireless, ad hoc, sensor and actuator networks and applied algo-
rithms with Wiley. He is editor-in-chief of IEEE Transactions on
Parallel and Distributed Systems (2010-3), and founder and editor-
in-chief of three journals. He is editor of over dozen journals (includ-
ing IEEE Network, IEEE Transactions on Cloud Computing and
ACM Wireless Networks) and steering committee member of IEEE
Transactions on Emergent Topics in Computing. Stojmenovic is one
of about 250 computer science researchers with h-index >50, has top
h-index in Canada for mathematics and statistics, and has >13000
citations. He received four best paper awards and the Fast Breaking
Paper for October 2003, by Thomson ISI ESI. He received the Royal
Society Research Merit Award, UK (2006), and Humboldt Research
Award, Germany (2012). He is Tsinghua 1000 Plan Distinguished
Professor (2012-5). He is Fellow of the IEEE (Communications Socie-
ty, class 2008), and Canadian Academy of Engineering (since 2012),
and Member of the Academia Europaea (The Academy of Europe),
from 2012 (section: Informatics). He was IEEE CS Distinguished
Visitor 2010-11 and received 2012 Distinguished Service award from
IEEE ComSoc Communications Software TC. He received Excellence
in Research Award of the University of Ottawa 2009. Stojmenovic
chaired and/or organized >60 workshops and conferences, and
served in >200 program committees. He was program co-chair at
IEEE PIMRC 2008, IEEE AINA-07, IEEE MASS-04&07, founded sev-
eral workshop series, and is/was Workshop Chair at IEEE ICDCS
2013, IEEE INFOCOM 2011, IEEE MASS-09, ACM Mobihoc-07&08.

