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Multiple Radios for Fast Rendezvous in
Cognitive Radio Networks

Lu Yu, Hai Liu, Yiu-Wing Leung, Xiaowen Chu, and Zhiyong Lin

Abstract—Rendezvous is a fundamental operation in cognitive radio networks (CRNs) for establishing a communication link on
a commonly-available channel between cognitive users. The existing work on rendezvous implicitly assumes that each cognitive
user is equipped with one radio (i.e., one wireless transceiver). As the cost of wireless transceivers is dropping, this feature
can be exploited to significantly improve the rendezvous performance at low cost. In this study, we investigate the rendezvous
problem in CRNs where cognitive users are equipped with multiple radios and different users may have different numbers of
radios. We first study how the existing rendezvous algorithms can be generalized to use multiple radios for faster rendezvous.
We then propose a new rendezvous algorithm, called role-based parallel sequence (RPS), which specifically exploits multiple
radios for more efficient rendezvous. Our basic idea is to let the cognitive users stay in a specific channel in one dedicated radio
and hop on the available channels with parallel sequences in the remaining general radios. We prove that our algorithm provides
guaranteed rendezvous (i.e., rendezvous can be completed within a finite time) and derive the upper bounds on the maximum
time-to-rendezvous (TTR) and the expected TTR. The simulation results show that i) multiple radios can cost-effectively improve
the rendezvous performance, and ii) the proposed RPS algorithm performs better than the ones generalized from the existing
algorithms.

Index Terms—cognitive radio, blind rendezvous, channel hopping
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1 INTRODUCTION

WITH the traditional static spectrum managemen-
t, a significant portion of the licensed spectrum

is underutilized in most of time while the unlicensed
spectrum is over-crowded due to the growing de-
mand for wireless radio spectrum from exponen-
tial growth of various wireless devices [1]. Dynamic
Spectrum Access utilizes the wireless spectrum in a
more intelligent and flexible way. Cognitive radios
are a promising enabler for Dynamic Spectrum Access
because they can sense and access the idle channel-
s. With cognitive radios, the unlicensed users (SUs)
can opportunistically identify and access the vacant
portions of the spectrum of the licensed users (PUs).

In cognitive radio networks (CRNs), multiple idle
channels may be available to SUs. If two or more
SUs want to communicate with each other, they must
select a channel which is available to all of them. The
process of two or more SUs to meet and establish
a link on a commonly-available channel is known
as rendezvous [1]. Rendezvous is a fundamental and
essential operation for establishing communication
links of SUs. Channel-hopping (CH) is one of the most
representative techniques for rendezvous. With CH
technique, each SU selects a set of available channels
and hops among these channels. A rendezvous is said
to be achieved if two SUs hop on the same channel
simultaneously.

Many effective rendezvous algorithms have been
proposed in the literature and they are described
in Section 2. To the best of our knowledge, all the
existing rendezvous algorithms implicitly assume that
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each user is equipped with one radio (i.e., one wireless
transceiver). As the cost of wireless transceivers is
dropping, this feature can be exploited to significantly
improve the rendezvous performance at low cost.
In particular, when a SU is equipped with multiple
radios, the time-to-rendezvous (TTR, i.e., the time
required by the rendezvous operation) can potentially
be reduced by a large amount while the additional
cost (i.e., cost of the extra radios) is low. In addition,
the energy consumption can also be reduced (if the
number of radios is increased from 1 to n, n radios
would consume energy but the time spent on ren-
dezvous could be reduced by more than n times, so
the total energy consumption can be reduced).

In this paper, we study the rendezvous problem
in CRNs where each SU is equipped with multiple
radios and different SUs may have different numbers
of radios. We make three contributions.

1) We investigate a new approach (i.e., exploiting
multiple radios per user) to significantly improv-
ing the rendezvous performance at low cost.

2) We generalize the Random algorithm and the
existing rendezvous algorithms in order to use
multiple radios for faster rendezvous.

3) We propose a new rendezvous algorithm, called
role-based parallel sequence (RPS), which specifi-
cally exploits multiple radios for more efficient
rendezvous. We derive upper bounds on the
maximum TTR (MTTR) and the expected TTR
(E(TTR)) of this algorithm. We conduct extensive
simulation to demonstrate that its MTTR and
E(TTR) decrease significantly with the increase of
the number of radios.

In the literature, there are two models to describe
the channel availability [4, 9, 20, 21]: i) symmetric model
in which all users have the same available channels;
and ii) asymmetric model in which different users may
have different available channels. Both the symmetric
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TABLE 1
COMPARING THE UPPER BOUNDS OF MTTR

Algorithms Symmetric Model Asymmetric Model

Existing algorithms

generalized to

multiple radios

Random Infinity Infinity

JS/Independent 3P 3MP (P −G) + 3P

JS/Parallel
� 3P

m
� when m = n

Infinity when m �= n

� 3MP (P−G)+3P
m

�when m = n

Infinity when m �= n

New Algorithm RPS 2× � P
max{m,n}−1

� − 1

(� P
m−1

� × (Q−G+ 1)) when m = n

(2× � P
max{m,n}−1

� − 1) + � P
min{m,n}−1

� × (Q−G)

when m �= n

TABLE 2
COMPARING THE UPPER BOUNDS OF E(TTR)

Algorithms Symmetric Model Asymmetric Model

Existing algorithms

generalized to

multiple radios

Random
Am

QAn
Q

Am
Q

An
Q
−Am+n

Q

Am
|C1|A

n
|C2|

Am
|C1|A

n
|C2|−Am

|C1|−G
An

|C2|−G

JS/Independent 5P−4
3

+ 1
3Qm+n−1 × (2P + 1 + 1

P
)

5P−4
3

+ 1
3Qm+n−1 × (2P + 1 + 1

P
)

+3QP × (Q−G)

JS/Parallel
� 5P/3+3

m
�when m = n

Infinity when m �= n

� 2QP (P−G)+(Q+5−P−(2G−1)/Q)P
m

�when m = n

Infinity when m �= n

New Algorithm RPS

(� P
m−1

�) when m = n

� P
max{m,n}−1

�+ (� P
max{m,n}−1

�−1)2

2×� P
min{m,n}−1

�

when m �= n

(� P
m−1

� × (Q−G+ 1)) when m = n

� P
max{m,n}−1� +

(� P
max{m,n}−1

�−1)2

2×� P
min{m,n}−1

�

+� P
min{m,n}−1

� × (Q−G) when m �= n

Remarks: i) m, n are the numbers of radios of two users; Q is the number of all channels; P is the smallest prime number which is
not smaller than Q; G is the number of commonly-available channels of two users; |C1|, |C2| are the numbers of available channels
of two users, respectively; Ai

j is the number of possible permutations of i objects from a set of j. ii) We select the Jump-Stay (JS)
algorithm [9] for comparison since it was recently proposed and was shown to have a very good performance [9]. The upper bounds
of MTTR and E(TTR) of the existing algorithms are derived in Section 4. iii) In a CRN, different SUs may be equipped with different
numbers of radios.
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Fig. 1. A taxonomy of the existing rendezvous algo-
rithms.
and asymmetric models are important in practice. For
example, the symmetric model is suitable for SUs who
are located in a relatively small area (compared with
their distance to PUs) while the asymmetric model
is applicable if geographical locations of SUs are far.
Table 1 and Table 2 summarize the differences be-
tween: i) the proposed algorithm, and ii) the existing
rendezvous algorithms after they are generalized to
use multiple radios.

The rest of this paper is organized as follows. Re-
lated works are reviewed in Section 2. System model
and problem formulation are presented in Section 3.
In Section 4, we generalize the Random algorithm and

the existing rendezvous algorithms to use multiple
radios for faster rendezvous. Then we propose a new
rendezvous algorithm which specifically exploits mul-
tiple radios for more efficient rendezvous. We present
simulation results in Section 5 for performance eval-
uation and conclude our work in Section 6.

2 RELATED WORK
The existing CH algorithms can be classified into two
categories based on their structures: i) centralized sys-
tems where a central server is preselected to allocate
the spectrum for all SUs, and ii) decentralized systems
where there is no central server. The decentralized
systems can be further classified into two subcate-
gories: i) using a common control channel (CCC), and
ii) not using CCC. Fig. 1 shows a possible taxonomy
of the existing rendezvous algorithms.

Centralized systems: Under centralized system, such
as DSAP[3] and DIMSUMNet [4], a centralized server
is operated to schedule the data exchanges among
users. With a centralized server for global coordina-
tion, this approach eases the rendezvous process but
it involves the overhead of maintaining the server and
this server is a single point of failure [2].

Decentralized systems using CCC: In decentralized
system, a channel is preselected as a CCC. In [5]
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and [6], a global CCC is preselected and known to
all users. In [7] and [22], a cluster-based control-
channel method was proposed, in which a local CCC
is selected for each cluster. However, the extra costs
in establishing and maintaining the global/local CCCs
are considerable.

Decentralized systems without using CCC: This ap-
proach does not use CCC and hence it is known
as blind rendezvous [9]. With this desirable fea-
ture, this approach has drawn significant attention
in the literature and some effective algorithms for
blind rendezvous have been proposed (e.g., Jump-
Stay [8][9], M-/L-QCH [10] and ASYNC-ETCH [11]).
Time-synchronization is a key point we should pay
attention to in blind rendezvous. Based on it we can
further divide decentralized systems without using
CCC into two types (Fig. 1).

• Algorithms that require time-synchronization:
Many CH algorithms which require time-
synchronization have been proposed. Two CH
algorithms M-/L-QCH were proposed in [10]
based on quorum systems which can guarantee a
rendezvous of users under the symmetric model.
Another CH algorithm called A-QCH was
proposed in [10] for the asynchronous systems.
Bahl et al. designed a link-layer protocol named
SSCH [12]. Each user can select more than one
pairs and generate the CH sequence based on
these pairs. It was designed to increase the
capacity of IEEE 802.11 networks. However,
similar to M-/L-QCH, they are not applicable in
the asymmetric model. Authors in [23] proposed
a deterministic approach in which each user is
scheduled to broadcast on every channel in an
exhaustive manner.

• Algorithms that work without time-synchronization:
There are CH algorithms which do not require
time-synchronization. In [16], they presented a
ring-walk (RW) algorithm which guarantees the
rendezvous under both models. In RW, each
channel is represented as a vertex in a ring. Users
walk on the ring by visiting the vertices (chan-
nels) with different velocities and rendezvous
is guaranteed since users with lower velocities
will be caught by users with higher velocities.
However, RW requires that each user has a u-
nique ID and knows the upper bound of net-
work size. Recently, a notable work by Theis et
al. presented two CH algorithms: modular clock
algorithm (MC) and its modified version MMC
for the symmetric model and the asymmetric
model, respectively [14]. The basic idea of MC
and MMC is that each user picks a proper prime
number and randomly selects a rate less than
the prime number. Based on the two parameter-
s, the user generates its CH sequence via pre-
defined modulo operations. Although MC and
MMC are shown to be effective, both algorithms
cannot guarantee the rendezvous if the selected
rates or the prime numbers of two users are
identical. Yang et al. proposed two significant
algorithms, namely deterministic rendezvous se-
quence (DRSEQ) [18] and channel rendezvous
sequence (CRSEQ) [19], which provide guaran-

teed rendezvous for the symmetric model and
the asymmetric model, respectively. In CRSEQ,
the sequence is constructed based on triangle
numbers and modular operations. In terms of
MTTR, CRSEQ is quite good under the asymmet-
ric model but it does not perform well under the
symmetric model. Bian et al. [24] presented an
asynchronous channel hopping (ACH) algorithm
which aims to maximize rendezvous diversity.
It assumes that each user has a unique ID and
ACH sequences are designed based on the user
ID. Though the length of user ID is a constant, it
may result in a long TTR in practice given that a
typical MAC address contains 48 bits. In [27], an
efficient rendezvous algorithm based Disjoint Re-
laxed Difference Set (DRDS) was proposed while
DRDS only costs a linear time to construct. They
proposed a distributed asynchronous algorithm
that can achieve and guarantee fast rendezvous
under both the symmetric and the asymmetric
models. They derived the lower bounds of MTTR
which are 3P and 3P 2+2P under the symmetric
model and the asymmetric model, respectively.
They showed that it is nearly optimal. In [28],
the authors addressed the pairwise as well as
the multicast rendezvous problems under fast
primary user (PU) dynamics. They considered the
issue of adaptively adjusting the channel hopping
(CH) sequences to account for the spectrum het-
erogeneity and PU dynamics, which are the two
main challenges in DSA systems. Wu et al. pro-
posed an effective rendezvous algorithm called
Heterogeneous Hopping (HH) which is based on
the available channel set only. There are other
algorithms in this category such as synchronous
QCH [10], SYNCETCH and ASYNC-ETCH [11],
AMRCC [15], C-MAC [17], and MtQS-DSrdv [25].
Due to limited space, these algorithms are not
reviewed and readers may refer to the survey in
[2] for details. Most of the existing rendezvous
algorithms use one single radio per user for ren-
dezvous. The authors in [29] studied the multi-
interface rendezvous problems for CRNs. How-
ever, they assumed that all nodes have the same
number of radios (say, n), the channels are di-
vided into n partitions, and each radio performs
rendezvous over the channels in one partition.

3 SYSTEM MODEL AND PROBLEM
FORMULATION
We consider a CRN consisting of K (K ≥ 2) users.
Time is divided into slots of equal duration. The
licensed spectrum is divided into Q non-overlapping
channels c1, c2, ..., cQ, where ci is called channel i. Let
C be the channel set {c1, c2, ..., cQ}. Let Ci ∈ C be
the set of available channels of user i (i = 1, 2, ...,K),
where a channel is said to be available to a user if the
user can communicate on this channel without caus-
ing interference to any PUs. The available channels
can be identified by any spectrum sensing method
(e.g., [4]). Without loss of generality, we consider the
rendezvous of a pair of users, say user i and user j,
i �= j and i, j = 1, 2, ...,K. User i is equipped with
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m (m ≥ 1) radios and user j is equipped with n
(n ≥ 1) radios. Note that m may not be equal to n in
CRNs. Let G be the number of commonly-available
channels of user i and user j. The CH sequence of
user i is denoted by {−→Si

1,
−→
Si
2,
−→
Si
3, ...}, where vector−→

Si
t = {Si

t1, S
i
t2, S

i
t3, ..., S

i
tm} represents that user i hops

on channels Si
th on radio h in time slot t. Fig. 2 shows

the sequence structure where user i has 3 radios and
user j has 2 radios. For any given and fixed Ci and Cj

where Ci and Cj have at least one commonly available
channel, if a rendezvous algorithm can ensure that
rendezvous can be completed within a finite time, we
say that this algorithm provides guaranteed rendezvous.

In this study, we do not require time-
synchronization in the networks. Without time
synchronization, the slot time could be doubled so as
to ensure that the overlap of two time slots is long
enough to complete all necessary steps of rendezvous
[14] [19]. In this sense, the CH sequences of two users
are slot-aligned even without time-synchronization
[2]. In each time slot, user i hops on m channels and
user j hops on n channels to attempt rendezvous. We
say that a rendezvous is achieved if user i and user
j hop on the same channel on any of the radios in
the same time slot. Typically the time-to-rendezvous
(TTR) is usually in the order of tens of milliseconds,
which is very small compared with the PU dynamic.
To illustrate, let us consider an example. Suppose
it is necessary to send a handshaking packet of
100 bytes (e.g., containing information of user IDs)
for rendezvous and the data rate of the wireless
channel is 10 Mbps. That is, The duration of each
frame is (100 × 8)/(10 × 106) = 0.08ms. Suppose
that the SIFS (Short Inter Frame Spacing) is 10μs
(e.g., in IEEE 802.11b or IEEE 802.11n [31]) and
the three-way handshaking is adopted. We can
estimate the time necessary for rendezvous as
3 × (0.08 × 10−3 + 10 × 10−6) = 0.27ms. Thus, the
duration of each time slot is 0.54ms around (i.e., the
overlap of two time slot is no less than 0.27ms). If
it takes 10 to 100 time slots to achieve rendezvous
(see the numerical results in our paper), the time-
to-rendezvous is only 5.4ms to 54ms. On the other
hand, a common type of primary users quoted in the
literature is the TV station which only uses its TV
channels at certain time of each day (say, evenings
and nights), and the activity of this PU changes
very slowly compared with the time-to-rendezvous.
Therefore, channels availabilities are assumed to be
static in the process of rendezvous. We define the
rendezvous problem as follows.

Rendezvous problem for two users: Suppose two users
have m and n (m,n ≥ 1) radios respectively and they
may start the rendezvous process at different time.
The problem is to determine a CH sequence for each
radio of each user, such that these users will hop on
a commonly-available channel in the same time slot.

4 SOLUTIONS
In this section, we generalize the Random algorithm
and the existing algorithms to use multiple radios
for faster rendezvous. Then we design a new ren-
dezvous algorithm, called role-based parallel sequence

time

User i

User j

...

...

...

...11
iS 21

iS 31
iS 41

iS

12
iS 22

iS 32
iS 42

iS

13
iS

23
iS 33

iS
43
iS

11
jS 21

jS 31
jS 41

jS

12
jS 22

jS 32
jS 42

jS

...

Radio 1

Radio 2

Radio 3

Radio 1

Radio 2

Fig. 2. Sequence structure when user i has 3 radios
and user j has 2 radios.
(RPS), which specifically exploits multiple radios for
more efficient rendezvous.

4.1 Generalized Random Algorithm
When there is a single radio, the Random algorithm
randomly selects an available channel in each time
slot and attempts to achieve rendezvous on this chan-
nel in this time slot. When there are multiple radios,
this Random algorithm can be generalized as follows:
each radio randomly and independently selects an
available channel in each time slot and attempts to
achieve rendezvous on this channel in this time slot.
When two or more radios happen to select the same
channel, these radios will randomly select again until
they select different channels (suppose that for each
user the number of available channels is no less than
that of radios). Obviously, the Random algorithm
cannot guarantee the rendezvous within finite time
and hence the MTTR is infinity. The algorithm is
formally presented as follows.

Algorithm 1: Random Algorithm
Require: Q, m, Ci //for user i

1: t = 1
2:

−→
Si
t = {Si

t1, S
i
t2, S

i
t3, ..., S

i
tm}

3: while not rendezvous do
4: for k = 1 to m do
5: Si

tk = RandomSelect(Ci)
6: for j = 1 to (k − 1) do
7: if Si

tk == Si
tj then

8: Si
tk = RandomSelect(Ci)

9: j = 1
10: end if
11: end for
12: end for
13: t = t+ 1

14: Attempt rendezvous on
−→
Si
t

15: end while

In line 2,
−→
Si
t = {Si

t1, S
i
t2, S

i
t3, ..., S

i
tm} denotes the

set of channels that user i hops on m respective
radios in time slot t. In lines 4-12, user i randomly
selects an available channel for each radio. In line
14, the rendezvous is achieved when one channel
in

−→
Si
t is equal to one channel of another user. The

following theorem gives the performance properties
of the generalized Random algorithm.

Theorem 1. The E(TTR) of the generalized Random
algorithm is equal to Am

QAn
Q

Am
QAn

Q−Am+n
Q

under the symmetric

model where Q is the number of all channels and Ai
j is the

number of possible permutations of i objects from a set of
j.
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Proof: In time slot k, user i hops on m different

channels
−→
Si
k and user j on n different channels

−→
Sj
k (Fig.

2). If any channel in
−→
Si
k is the same as one channel

in
−→
Sj
k, the rendezvous is achieved. In any time slot,

each channel has Q choices. The probability that all
m channels of user i are not equal to any channel

of user j is
Am+n

Q

Am
QAn

Q
. So p(TTR = t) = (

Am+n
Q

Am
QAn

Q
)t−1(1 −

Am+n
Q

Am
QAn

Q
). The E(TTR) =

+∝∑

i=1

t × p(TTR = t) =
+∝∑

i=1

t ×

(
Am+n

Q

Am
QAn

Q
)t−1(1− Am+n

Q

Am
QAn

Q
) = 1

1− A
m+n
Q

Am
Q

An
Q

=
Am

QAn
Q

Am
QAn

Q−Am+n
Q

.

Theorem 2. The E(TTR) of the generalized Random
algorithm is equal to

Am
|C1|A

n
|C2|

Am
|C1|A

n
|C2|−Am

|C1|−G
An

|C2|−G
under the

asymmetric model where |C1| and |C2| are the numbers
of available channels of two users and G is the number of
commonly-available channels of the two users.

Proof: In time slot k, the probability that
all m channels of user i are not equal to
any channel of user j is

Am
|C1|−GAn

|C2|−G

Am
|C1|A

n
|C2|

. So

p(TTR = t) = (
Am

|C1|−GAn
|C2|−G

Am
|C1|A

n
|C2|

)t−1(1− Am
|C1|−GAn

|C2|−G

Am
|C1|A

n
|C2|

).

The E(TTR) =
+∝∑

i=1

t × p(TTR = t) =

+∝∑

i=1

t × (
Am

|C1|−GAn
|C2|−G

Am
|C1|A

n
|C2|

)t−1(1 − Am
|C1|−GAn

|C2|−G

Am
|C1|A

n
|C2|

) =

1

1−
Am

|C1|−G
An

|C2|−G

Am
|C1|A

n
|C2|

=
Am

|C1|A
n
|C2|

Am
|C1|A

n
|C2|−Am

|C1|−G
An

|C2|−G
.

4.2 Generalized Existing Rendezvous Algorithms
In the literature, several rendezvous algorithms have
been proposed for CRNs. They implicitly assume one
radio per user. In this subsection, we generalize these
existing rendezvous algorithms such that each user
can use multiple radios for faster rendezvous. We
consider two strategies to generalize these algorithms
to use multiple radios:

1) Independent Sequence: Apply an existing ren-
dezvous algorithm to independently generate a
CH sequence for each radio. If this algorithm
always generates the same CH sequence using
a deterministic method, then the sequence is
rotated by x positions where x is a randomly
generated integer. For example, suppose a user
is equipped with two radios and an existing ren-
dezvous algorithm generates two CH sequences
{s1, s2, ...} and {r1, r2, ...}. In the first time slot,
the two radios hop on channels s1 and r1 respec-
tively. In the second time slot, the two radios hop
on channels s2 and r2 respectively.

2) Parallel Sequence: Apply an existing algorithm
to generate a CH sequence and apply this CH
sequence on all radios in parallel. For example,
suppose a user is equipped with three radios and
an existing rendezvous algorithm generates the
CH sequence {s1, s2, s3, s4, s5, s6, ...}. In the first
time slot, the three radios hop on channels s1,
s2 and s3, respectively. In the second time slot,

the three radios hop on channels s4, s5 and s6,
respectively.

We propose two schemes (namely, independent se-
quence and parallel sequence) to generalize the ex-
isting single-radio algorithms to use multiple radios.
While the ideas of these schemes are simple, their
theoretical analysis is not trivial. When different nodes
have different number of radios, only the independent
sequence scheme works. Nevertheless, the parallel
sequence scheme also has its own merit: when the
nodes have the same number of radios, the parallel se-
quence scheme works and it gives better performance
than the independent sequence scheme. Therefore, we
report both schemes in our paper.

When the Independent Sequence strategy is applied
to generalize an existing rendezvous algorithm to use
multiple radios for faster rendezvous, the steps are
given in Algorithm 2.

Algorithm 2: Independent Sequence
Require: Q, m, A, Ci //an existing algorithm denoted

by A and user i
1: t = 1
2:

−→
Si
t = {Si

t1, S
i
t2, S

i
t3, ..., S

i
tm}

3: for k = 1 to m do
4: if A is a deterministic method and the

sequence is SAt then
5: SAkt = SAt rotated by random positions
6: else
7: SAkt is generated by algorithm A
8: end if
9: end for

10: while not rendezvous do
11: for k = 1 to m do
12: Si

tk = SAkt

13: end for
14: t = t+ 1

15: Attempt rendezvous on
−→
Si
t

16: end while

In line 3, since the user has m radios, it generates m
independent CH sequences by an existing algorithm.
In lines 4-8, k-th sequences are generated by this
algorithm. In line 12, the k-th sequence is performed
in the k-th radio. Let MTTR0 be the MTTR of the
existing rendezvous algorithm using one radio. The
following theorem gives the MTTR of Algorithm 2.

Theorem 3. If two users perform an existing algorithm on
multiple radios with Independent Sequence, the maximum
time-to-rendezvous (MTTR) is equal to MTTR0 under
both the symmetric model and the asymmetric model.

Proof: When the users run an existing algorithm
independently on multiple radios, each pair of radios
of the two users will achieve rendezvous on or before
MTTR0. As a result, the two users will achieve a
guaranteed rendezvous on or before MTTR0 by any
pair of radios. So MTTR ≤ MTTR0. Next we prove
MTTR ≥ MTTR0. Consider a worst case in which
all the m radios of a user use the same sequence
(e.g., the existing algorithm happens to independently
generate m identical sequences). In this case, the
rendezvous is the same as the original algorithm. So
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Radio 1 1 2 3 4 5 6 1 1 2 3 4 5 6 1 1 1 1 1 …

Radio 2 1 3 5 1 2 4 6 1 3 5 1 2 4 6 2 2 2 2 …

Radio 3 1 4 1 3 6 2 5 1 4 1 3 6 2 5 3 3 3 3 …

Radio 1 2 3 4 5 6 1 1 2 3 4 5 6 1 1 1 1 …

Radio 2    2 4 6 1 3 5 1 2 4 6 1 3 5 1 2 2 …

User 
i

User 
j

time 

Fig. 3. Rendezvous achieved by Jump-Stay with Inde-
pendent Sequence.
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time
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l
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time
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(e) l < P, ri �= rj ;TTR ≤
2P − 1

l

P rendezvous

time

User i

User j
2jr

1ir
2ir

1jr
/l

(f) l < P, ri = rj ;TTR ≤
3P − 1

Fig. 4. Six cases under the symmetric model. Remark-
s: We say ri = rj (Fig. 4(b) and Fig. 4(f)) if all step-
lengths of CH sequences with user i are identical and
are equal to those with user j, and ri �= rj (Fig. 4(a)
and Fig. 4(e)) otherwise.

MTTR ≥ MTTR0. Overall, the MTTR is equal to
MTTR0.

Among the existing rendezvous algorithms, the
Jump-Stay algorithm performs well in terms of MTTR
and E(TTR) [9]. When the Jump-Stay algorithm is
generalized by the Independent Sequence strategy, we
have the following results.

Corollary 1. Under the symmetric model, any two users
performing the Jump-Stay algorithm on multiple radios
with Independent Sequence achieve rendezvous in at most
3P time slots which is an upper bound of MTTR. The
E(TTR) is not greater than 5P−4

3 + 1
3Qm+n−1 ×(2P+1+ 1

P ),
where P is the smallest prime number which is not smaller
than Q.

Proof: Fig. 3 illustrates how the sequences are
generated. Suppose that Q = 6 and P = 7. User i
has 3 radios with (i1 = 1, r1 = 1), (i2 = 1, r2 = 2),
and (i3 = 1, r3 = 3). User j has 2 radios with
(i1 = 2, r1 = 1) and (i2 = 2, r2 = 2). The rendezvous is
achieved in time slot 2 when user i hops on channels
(4, 1, 3) while user j hops on channels (3, 4).

Fig. 4 shows the six cases when users perform
the Jump-Stay algorithm independently on multiple

radios. Step-length r takes integer value in [1, Q]; two
users select different step-lengths, rk1

�= rk2
, with

probability (1 − 1
Qm+n−1 ) while select the same step-

length with probability 1
Qm+n−1 . Thus, we compute

the occurrence probabilities of six cases when all users
have multiple radios are 2

3 × P+1
2P × (1− 1

Qm+n−1 ),
2
3 ×

P+1
2P × 1

Qm+n−1 ,
2
3 × P−1

2P , 1
3 × 1

P , 1
3 × P−1

P × (1− 1
Qm+n−1 )

and 1
3 × P−1

P × 1
Qm+n−1 , respectively. So the upper

bound of MTTR should be 3P and E(TTR) should be:
2
3 × P+1

2P × (1 − 1
Qm+n−1 ) × P + 2

3 × P+1
2P × 1

Qm+n−1 ×
(2P +1)+ 2

3 × P−1
2P ×(2P −1)+ 1

3P ×P + 1
3 × P−1

P ×(1−
1

Qm+n−1 )× (2P − 1) + 1
3 × P−1

P × 1
Qm+n−1 × (3P − 1) =

5P−4
3 + 1

3Qm+n−1 (2P + 1 + 1
P ).

Similar to the proof in [9], we can prove that the
upper bound of E(TTR) under the asymmetric model
is smaller than 5P−4

3 + 1
3Qm+n−1 (2P+1+ 1

P )+3QP (P−
G).

When the Parallel Sequence strategy is applied
to generalize an existing rendezvous algorithm (say,
algorithm A) to use multiple radios for faster ren-
dezvous, the steps are given in Algorithm 3.

In line 3, an existing rendezvous algorithm is run to
generate one CH sequence SAt. In lines 5-7, this CH
sequence SA is applied in parallel to the m radios of
the user. The following theorem gives the MTTR of
Algorithm 3.

Algorithm 3: Parallel Sequence
Require: Q, m, A, Ci //an existing algorithm denoted

by A and user i
1: t = 1
2:

−→
Si
t = {Si

t1, S
i
t2, S

i
t3, ..., S

i
tm}

3: Generate sequence SAt by algorithm A
4: while not rendezvous do
5: for k = 1 to m do
6: Si

tk = SA((t−1)×m+k)

7: end for
8: t = t+ 1

9: Attempt rendezvous on
−→
Si
t

10: end while

Theorem 4. Suppose two users are equipped with m
radios. Under the symmetric and the asymmetric mod-
els, when the Parallel Sequence strategy is applied in
conjunction with an existing rendezvous algorithm with
MTTR = MTTR0, rendezvous can be achieved in at most
�MTTR0

m � time slots.

Proof: Since the CH sequence is applied in parallel
to the m radios of the user, the user will finish
the hopping sequence in time slot �MTTR0

m �. Fig. 5
shows the new rendezvous achieved when the users
are equipped with the same number of radios. The
channel at time slot T in the hopping sequence when
the user is equipped with one radio will appear in
time slot � T

m� when the user is equipped with m
radios. If user i and user j achieve rendezvous on
channel k in time slot TTR before MTTR0 in algo-
rithm A, then the two users will hop on this channel
and achieve rendezvous at �TTR

m � before time slot
�MTTR0

m �. Therefore, rendezvous can be achieved in
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at most �MTTR0

m �.
Corollary 2. Suppose all users are equipped with m radios.
Under the symmetric model, when the Parallel Sequence
strategy is applied in conjunction with the Jump-Stay
algorithm, rendezvous can be achieved in at most � 3P

m � time
slots. The E(TTR) is upper bounded by ( 5P3 + 11

3 + 1
Q )/m,

where P is the smallest prime number which is not smaller
than Q.

The proof of Corollary 2 is very similar to the proof
of Theorem 4 and we do not repeat the details.

Overall, the Independent Sequence strategy can
guarantee rendezvous even when the users have d-
ifferent number of radios, while the Parallel Sequence
strategy can guarantee rendezvous only when the
users have the same number of radios but it can better
exploit these radios to achieve smaller MTTR.

4.3 New Algorithm
In this subsection, we design and analyze a new ren-
dezvous algorithm that specifically exploits multiple
radios for more efficient rendezvous. Our basic idea is
to assign one of two possible roles, called general radio
and dedicated radio, to each radio. The rendezvous is
expected to be achieved between the general radios
of one user and the dedicated radio of the other. Our
RPS algorithm generates CH sequences in rounds and
the length of each round is in inversely proportional
to the number of general radios. The upper-bounds
of MTTR and E(TTR) of RPS are the expression of
the length of the round (later shown in proof of
Theorem 5&6). Therefore, large number of general
radios leads to a shorter round which consequently
gives smaller upper-bounds of MTTR and E(TTR). In
RPS, we use only one radio as the dedicated radio and
the remaining radios as the general radios to optimize
the rendezvous performance. Users hop on available
channels in the general radios while stay on a specific
available channel in the dedicated radio. Suppose that
a user is equipped with m radios. In our paper, each
node is equipped with multiple radios where each
radio has a role: either ”dedicated” or ”general”. So
we call the new algorithm Role-based Parallel Sequence
(RPS). It is described as follows.

i) All radios are divided into two groups, (m − 1)
general radios and one dedicated radio.

ii) A starting index i is randomly selected from
[1, P −1] and a step-length r is randomly selected
from [1, P − 1], where P is the smallest prime
number which is not smaller than Q.

iii) (m−1) general radios hop on P channels with step-
length r in the round-robin manner. For example,
in Fig. 6, P = 7, the starting index is 1 and
step-length is 2. The first channel in the channel
hopping sequence is 1 and the k-th channel is
(i + r ∗ k)%P ((1 + 2k)%7 in this example). The
CH sequence is {1, 3, 5, 7, 2, 4, 6, 1, 3, ...} and two
general Radios 1 and 2 hop on this sequence in
parallel as follows. Radio 1 hops on subsequence
{1, 5, 2, 6, ...} and Radio 2 hops on subsequence
{3, 7, 4, 1, ...}.

iv) Dedicated radio stays on one channel for � P
m−1�

time slots and switches to next channel for the

time

User i

...

0

2

MTTR

New
rendezvous

Original
rendezvous

0MTTR

CH sequence
with 2 radios ...

...1
iS

2
iS

3
iS

4
iS

0

i
M TTRS

...

...1
jS

2
jS

3
jS

4
jS

0

j
M T T RSCH sequence

with 2 radios

User j

2
iS 3

iS 4
iS1

iSOriginal CH
sequence 0

i
M TTRS

...Original CH
sequence 0

j
M T T RS

1
jS 2

jS 3
jS 4

jS

Fig. 5. Rendezvous of an existing algorithm with
Parallel Sequence when m = n = 2.

time

Radio 1

7
4

1 3 1

k

m

General
radios

Dedicated
radio

...

...

1 5
3

2
4

6

1

7

1 1

1

2

3
5

...

1

Radio 2

Radio 3

Fig. 6. CH sequence of a user with 3 radios and 7
channels.

same duration, where the channel is taken from
[1, Q] in a round-robin manner. For example, in
Fig. 6, dedicated radio 3 stays on channel 1 for 4
time slots and then switches to channel 2.

v) If the channel selected in iii) and iv) is not
available to the user, randomly select an available
channel.

The algorithm is formally presented as follows.

Algorithm 4: RPS Algorithm
Require: Q, m, Ci

1: t = 1
2:

−→
Si
t = {Si

t1, S
i
t2, S

i
t3, ..., S

i
tm}

3: P=the smallest prime number not smaller than Q
4: i = RandomSelect(1, P )
5: r = RandomSelect(1, Q)
6: while not rendezvous do
7: for k = 1 to m− 1 do
8: Si

tk = (i+ ((t− 1)× (m− 1) + k − 1)× r − 1)
mod P + 1

9: if Si
tk ≥ Q then

10: Si
tk = Si

tk mod Q
11: end if
12: if Si

tk /∈ Ci then
13: Si

tk = RandomSelect(Ci)
14: end if
15: end for
16: Si

tm = (� t
� P
m−1 �

� − 1) mod Q+ 1

17: if Si
tm /∈ Ci then

18: Si
tm = RandomSelect(Ci)

19: end if
20: t = t+ 1

21: Attempt rendezvous on
−→
Si
t

22: end while
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In line 4, starting index i and step-length r are
preselected randomly. In lines 7-15, the (m−1) general
radios will hop on continuous (m− 1) channels with
i and r. In line 16, the dedicated radio will switch to
the next channel after � P

m−1� time slots. Lines 12-14
and 17-19 ensure that the channels are available to the
user.

Fig. 7 shows rendezvous of two users by perform-
ing the RPS algorithm. Suppose that |C| = Q = 3,
P = 3. User i is equipped with 3 radios and the
available channels are {1, 3}. It starts with channel 1.
Step-length is 2. Each round consists of � P

3−1� = 2
time slots. User j is equipped with 2 radios and the
available channels are {2, 3}. It starts with channel 2.
Step-length is 2. Each round consists of � P

2−1� = 3
time slots. In this example, there will be a random
available channel in the position with underline since
the channel based on the algorithm is not available to
the user. In Fig. 7(a), two users hop on channel 3 in
time slot 4. Rendezvous is achieved by the dedicated
radio of user j and the general radios of the user
i. User j will stay on channel 3 for 3 time slots.
User i has a permutation of all channels in any 3
consecutive time slots. Since there is at least one
commonly-available channel between them, channel 3
in this example, there must be a rendezvous between
the dedicated radio of user j and the general radios
of user i. However, before this rendezvous, there is
an earlier one in time slot 3. It is achieved by the
general radios of user i and the general radio of the
user j. In Fig. 7(b), user j starts later than user i for 1
time slot. When the dedicated radio of user i (with
a shorter round) stays on the commonly-available
channel (channel 3) for 2 time slots, the general radios
of user j do not have a permutation of all available
channels in 2 consecutive time slots. Therefore, it is
possible that channel 3 is not in these 2 time slots. We
cannot guarantee a rendezvous between the dedicated
radio of user i and the general radios of user j. The
guaranteed rendezvous realized at time slot 5.

Now we theoretically analyze the RPS algorithm.
Specifically, we derive the upper bounds of MTTR
of the RPS algorithm in Theorem 5 and Theorem
6 under the symmetric model and the asymmetric
model, respectively. In addition, we derive the upper
bounds of E(TTR) of the RPS algorithm under both
the symmetric and asymmetric models.

Theorem 5. Under the symmetric model, let m and n
denote the numbers of radios of two users, respectively.
If m �= n, the MTTR of the RPS algorithm is upper
bounded by (2 × � P

max{m,n}−1� − 1) and the E(TTR) of
the RPS algorithm is upper bounded by � P

max{m,n}−1� +
(� P

max{m,n}−1
�−1)2

2×� P
min{m,n}−1

� ; if m = n, the MTTR of the RPS algo-

rithm is upper bounded by � P
max{m,n}−1� and the E(TTR)

of the RPS algorithm is upper bounded by � P
max{m,n}−1�.

Proof: Let user i be equipped with m radios while
user j be equipped with n radios. Fig. 8 lists the four
cases of rendezvous under symmetric model. Fig. 8(a),
8(b), and 8(c) happen when m �= n. Since the results
depend on which user starts hopping first, we assume

Radio 1 1 2 3 1 2 3 1 2 3

Radio 2 3 1 2 3 1 2 3 1 2

Radio 3 1 1 2 2 3 3 1 1 2

Radio 1 2 1 3 2 1 3 2 1 3

Radio 2 2 2 2 3 3 3 1 1 1

User i

User j

time 
(a) offset=0

Radio 1 1 2 3 1 2 3 1 2 3

Radio 2 3 1 2 3 1 2 3 1 2

Radio 3 1 1 2 2 3 3 1 1 2

Radio 1 2 1 3 2 1 3 2 1 3

Radio 2 2 2 2 3 3 3 1 1 1

User i

User j

time 
(b) offset=1

Fig. 7. Rendezvous of two users by performing RPS.

rendezvous

time

User i

User j
l 'l

1
P

n

1
P

m

(a) l ≤ � P
m−1

� − � P
n−1

�, l′ ≥
� P
n−1

�;TTR ≤ � P
n−1

�

time

User i

User j

l 'l

1
P

m

1
P

n

1
P

n

rendezvous

(b) l > � P
m−1

� − � P
n−1

�, l′ ≤
� P
n−1

�;TTR ≤ 2×� P
n−1

�− 1

time

User i

User j

1
P

m

1
P

n

1
P

n

rendezvous

(c) TTR ≤ � P
n−1

�
time

User i

User j
1

P
n

1
P

m
rendezvous

(d) TTR ≤ � P
n−1

�

Fig. 8. Four cases of RPS under the symmetric model.

m < n, i.e., � P
m−1� > � P

n−1�. Fig. 8(d) happens when
m = n. A remarkable distinguishment between them
is whether the lengths of each round of the two users
are the same.

1) Case 1: Fig. 8(a). l
′ ≤ � P

n−1� implies that there is a
permutation of all channels before the dedicated
radio of user i transfers to next channel. The
rendezvous is achieved between general radios
of user j and dedicated radio of user i during
the first � P

n−1� time slots. That is, TTR ≤ � P
n−1�.

2) Case 2: Fig. 8(b). In this case, l
′
< � P

n−1� implies
that there is no enough time slots for user j to
have permutation of all channels before the ded-
icated radio of user i transfers to next channel.
The rendezvous can only be guaranteed between
general radios of user i and dedicated radio of
user j during the first 2 × � P

n−1� − 1 time slots.
That is, TTR ≤ 2× � P

n−1� − 1.
3) Case 3: Fig. 8(c). User j starts firstly. User j has a

permutation of all channels in any � P
n−1� consec-

utive time slots. When user i starts, it will stay on
one channel for � P

m−1� time slots. � P
m−1� > � P

n−1�.
Thus, a rendezvous is guaranteed before � P

n−1�
time slots.
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4) Case 4: Fig. 8(d). m = n. The rendezvous is
achieved before the first � P

m−1�(or � P
n−1�) time

slots.
When m �= n, in the above analysis, � P

m−1� is
replaced by � P

min{m,n}−1� and � P
n−1� by � P

max{m,n}−1�.
According to the analysis of these cases, we prove
that the MTTR is (2 × � P

max{m,n}−1� − 1). Combin-
ing with the occurrence probabilities we derive an
upper bound of E(TTR) under the symmetric model.

The E(TTR) ≤ 1
2 × [

� P
min{m,n}−1

�−� P
max{m,n}−1

�+1

� P
min{m,n}−1

� ×
� P
max{m,n}−1�+

� P
max{m,n}−1

�−1

� P
min{m,n}−1

� ×(2×� P
max{m,n}�−1)]+

1
2� P

max{m,n}−1� ≤ � P
max{m,n}−1�+

(� P
max{m,n}−1

�−1)2

2×� P
min{m,n}−1

� .
There is only one case when m = n. the MTTR and

the upper bound of E(TTR) are both � P
m−1� or � P

n−1�.

Theorem 6. Under the asymmetric model, let m and n
denote the numbers of radios of two users, respectively. If
m �= n, the MTTR of the RPS algorithm is upper bounded
by (2 × � P

max{m,n}−1� − 1) + � P
min{m,n}−1� × (Q − G)

and the E(TTR) of the RPS algorithm is upper bounded by

� P
max{m,n}−1�+

(� P
max{m,n}−1

�−1)2

2×� P
min{m,n}−1

� +� P
min{m,n}−1�×(Q−

G); if m = n, the MTTR of the RPS algorithm is upper
bounded by � P

m−1� × (Q−G+ 1) and the E(TTR) of the
RPS algorithm is upper bounded by � P

m−1�× (Q−G+1).

Proof: Under the asymmetric model, since the
available channel sets of two users are different from
each other, the users may achieve many potential
rendezvous (rendezvous 1 to (Q − G) in Fig. 9). In
Fig. 9(a), user j has a permutation of all channels
before � P

n−1� and the dedicated radio of user i stays
on one channel during this period. There is a potential
rendezvous before � P

n−1�; this channel may not be
a commonly-available channel to all users. The next
potential rendezvous can be guaranteed in the next
round of user i (� P

m−1� to 2×� P
m−1� in Fig. 9) because

only after these time slots the dedicated radio of
user i will transfer to the next channel. We can say,
under asymmetric model, we expect a rendezvous
between the dedicated radio of the user with less
radios (user i) and the general radios of the user with
more radios (user j). The worst case is repeating the
rendezvous under symmetric model for (Q−G) times.
Above all, the MTTR should be equal to or smaller
than 2× � P

max{m,n}−1� − 1 + � P
min{m,n}−1� × (Q−G).

We assume a uniform distribution that a commonly-
available channel appears on the 1st to (Q − G)-th
potential rendezvous. The upper bound of E(TTR)
when m �= n extend for � P

min{m,n}−1� × (Q − G) in
all cases. In this way, the E(TTR) ≤ � P

max{m,n}−1� +
(� P

max{m,n}−1
�)2

2×� P
min{m,n}−1

� + � P
min{m,n}−1� × (Q−G).

And similarly, the MTTR and the upper bound of
E(TTR) is � Q

m−1� × (Q−G+ 1) when m = n.

5 SIMULATION
We built a simulator in Visual Studio 2010 to evaluate
the effectiveness of the proposed approach (i.e., using

time
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Fig. 9. Four cases of RPS under the asymmetric
model.

multiple radios for rendezvous) and the proposed
rendezvous algorithm (i.e., the Role-based Parallel
Sequence (RPS) algorithm). When each user has a
single radio, we consider the following algorithms
for comparison: i) the Random algorithm [4] (it is
the most simple rendezvous algorithm), and ii) the
Jump-Stay algorithm [8, 9], MMC algorithm [14], HH
[30] (They are recently proposed and they have good
performance). When each user has multiple radios,
we consider the following algorithms for comparison:
i) the generalized Random algorithm(Section 4.1), i-
i) the generalized Jump-Stay (MMC, HH) algorithm
with the Independent Sequence strategy (Section 4.2),
iii) the generalized Jump-Stay (MMC, HH) algorithm
with the Parallel Sequence strategy (Section 4.2), and
iv) the RPS algorithm (Section 4.3). The performance
is measured in terms of the average TTR and the
maximum TTR, where TTR is counted as the number
of time slots required to achieve rendezvous. We con-
sider both the symmetric model and the asymmetric
model.

We use the notation (m,n) to denote the case that
two users are equipped with m and n radios respec-
tively. We consider the following key parameters: the
number of channels Q in the whole channel set is
varied from 10 to 100. Under the symmetric model, all
channels are available to all users. Under the asym-
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Fig. 10. Comparison of multi-radio and single-radio under the symmetric model (Random).

metric model, we introduce a parameter θ (0 < θ ≤ 1)
and randomly select channels from the channel set,
such that the average number of channels available
to a user is equal to θQ. If θ×Q < 1, we reset θQ to 1.
For each set of parameter values, we perform 100,000
independent runs and then compute the average TTR
and the maximum TTR.

5.1 Effectiveness of Proposed Approach
In this subsection, we demonstrate that multiple ra-
dios can effectively improve the rendezvous perfor-
mance.

5.1.1 Under the Symmetric Model
Fig. 10 shows the performance of the Random al-
gorithm under the symmetric model. It can be seen
that: i) multiple radios can significantly reduce both
the average TTR and the maximum TTR, and ii)
the performance improvement is especially significant
when the number of radios per user is increased from
a small value. For example, we suppose that each time
slot has duration of 20ms [9]. When there are 50 chan-
nels and the number of radios per user is increased
from 1 to 2, the average TTR is decreased from 50.02
(1.00s) to 11.63 (0.23s) (i.e., 76.75% reduction) while
the maximum TTR is decreased from 813 (16.26s) to
217 (4.34s) (i.e., 73.31% reduction). When the number
of radios per user is increased from 2 to 3, the average
TTR is decreased from 12.88 (0.26s) to 6.01 (0.12s)
(i.e., 53.34% reduction) while the maximum TTR is
decreased from 217 (4.34s) to 88 (1.76s) (i.e., 59.45% re-
duction). Therefore, a cost-effective tradeoff between
cost of the radios and performance is to select 2 to
4 radios per user. In addition, we find that adoption
of multiple radios can reduce the overall energy cost
on rendezvous. For example, when the number of
radios is increased from 1 to 3, the average time spent
on rendezvous (E(TTR)) is reduced by 87.98% (more
than 3 times). We assume that one radio performing
rendezvous in one time slot costs one unit of energy,
denoted by U . Then the expected energy consumption
is E(TTR) × U × (m + n) when the two users are
equipped with m and n radios, respectively. Fig. 10(c)
shows the expected consumption when each user
is equipped with single radio and multiple radios.
For example, when there are 50 channels, the energy
consumption of users with 1, 2, 3 and 4 radios are
50.01U , 25.77U ,18.26U and 14.50U , respectively. Fig.
10(d) shows the average TTR under different (m,n)
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Fig. 11. Comparison of multi-radio and single-radio
under the symmetric model (Jump-Stay).
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Fig. 12. Comparison of multi-radio and single-radio
under the asymmetric model (Random).

when M = 50. We find that the average TTR drops
significantly with the increase of number of radios.

Fig. 12 shows the performance of the Jump-Stay
algorithm under the symmetric model. We observe
similar properties as those in Fig. 10. For example,
when the number of channels is 50 and the number
of radios is increased from 1 to 2, the average TTR
is reduced from 28.99 to 10.22 (i.e, 64.75% reduction)
while the maximum TTR is decreased from 156 to
81 (i.e, 48.08% reduction). According to Theorem 1
and Corollary 1, however, the upper bound of E(TTR)
is decreased from 91.33 to 85.01 while the MTTR
remains 265. The theoretical results are much bigger
than experimental results. It is because that Jump-
Stay algorithm randomly selects available channels to
replace the unavailable channels on the generated CH
sequence, which practically lowers TTR in simulation.



11

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Number of all channels (Q)

A
ve

ra
g

e
 T

T
R

Average TTR of Multi−radio rendezvous (asymmetric)

(1,1)
(2,2)
(3,3)
(4,4)

(a) Average TTR VS. Q

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

Number of all channels (Q)

M
a

xi
m

u
m

 T
T

R

Maximum TTR of Multi−radio rendezvous (asymmetric)

(1,1)
(2,2)
(3,3)
(4,4)

(b) Maximum TTR VS. Q

Fig. 13. Comparison of multi-radio and single-radio
under the asymmetric model (Jump-Stay).

5.1.2 Under the Asymmetric Model
Fig. 12 shows the performance of Random algorithm
under the asymmetric model. We let θ = 0.5 and
G = 0.3Q (i.e., each user has 0.5Q channels and each
pair of users have 0.3Q commonly-available channel-
s). It can be seen that multiple radios can reduce both
the average TTR and the maximum TTR significantly
under the asymmetric model. For example, when
there are 50 channels and the number of radios per
user is increased from 1 to 2, the average TTR is
decreased from 41.66 to 13.67 (i.e., 61.19% reduction)
while the maximum TTR is decreased from 635 to 204
(i.e., 67.87% reduction). When the number of radios
per user is increased from 2 to 3, the average TTR
is decreased from 13.67 to 6.50 (i.e., 52.45% reduction)
while the maximum TTR is decreased from 204 to 102
(i.e., 50% reduction). Fig. 13 shows the performance of
the Jump-Stay algorithm with Independent Sequence
under the asymmetric model. For example, when
there are 50 channels and the number of radios per
user is increased from 1 to 2, the average TTR is
decreased from 32.21 to 12.11 (i.e., 62.40% reduction)
while the maximum TTR is decreased from 777 to 311
(i.e., 59.97% reduction).

5.2 Property of Proposed Approach: Influence of
Radio Allocation
In this subsection, we study a basic property of the
proposed approach: when the total number of radios
for two users is fixed (i.e., m + n is a constant), how
does the allocation (m,n) for different m and n affect
the rendezvous performance? For example, if there are
four radios, does (2, 2) give better rendezvous perfor-
mance than (1, 3) or (3, 1)? In theory, the MTTR of the
RPS algorithm is decided by the minimum value of
m and n. The MTTR of Random algorithm [14] and
other existing algorithms is almost independent of m
and n. All results show that even allocation has the
best performance.

Under the symmetric model, we let m+ n = 6 and
G = Q. Fig. 14 shows the comparison of the average
TTR and the maximum TTR of Random algorithm
between the three combinations of (m,n) which are
(1, 5), (2, 4) and (3, 3). We can see that the combination
(3, 3) has the best performance on both the average
TTR and the maximum TTR. For example, when there
are 50 channels, the average TTR of (1, 5), (2, 4) and
(3, 3) are 10.41, 6.71 and 6.02 while the maximum

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

22

Number of all channels (Q)

A
ve

ra
g
e
 T

T
R

Average TTR of different (m,n) when m+n=6 (symmetric)

(1,5)
(2,4)
(3,3)

(a) Average TTR VS. Q

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

Number of all channels (Q)

M
a

xi
m

u
m

 T
T

R

Maximum TTR of different (m,n) when m+n=6 (symmetric)

(1,5)
(2,4)
(3,3)

(b) Maximum TTR VS. Q

Fig. 14. Comparison of different allocation of (m,n)
when m+n = 6 under the symmetric model (Random).
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Fig. 15. Comparison of different allocation of (m,n)
when m + n = 6 under the symmetric model (Jump-
Stay).

TTR are 153, 120 and 95, respectively. It is consistent
with the theoretical results. We also do the same
comparison when we apply other existing algorithms
on multiple radios. Fig. 15 shows the comparison of
the average TTR and the maximum TTR of the Jump-
Stay algorithm with Independent Sequence between
the three combinations of (m,n) which are (1, 5), (2, 4)
and (3, 3). Fig. 16 shows the comparison of the average
TTR and the maximum TTR of the RPS algorithm
between the two combinations of (m,n) which are (2,
4) and (3, 3).

Under the asymmetric model, we let m + n = 6,
θ = 0.75 and G = 0.5Q. Fig. 17 shows the results
of Random algorithm between the three combinations
of (m,n). The combination (3, 3) has the best perfor-
mance on both the average TTR and the maximum
TTR. For example, when there are 50 channels, the
average TTR of (1, 5), (2, 4) and (3, 3) are 11.56,
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Fig. 16. Comparison of different allocation of (m,n)
when m+ n = 6 under the symmetric model (RPS).
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Fig. 17. Comparison of different allocation of (m,n)
when m + n = 6 under the asymmetric model (Ran-
dom).
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Fig. 18. Comparison of different allocation of (m,n)
when m + n = 6 under the asymmetric model (Jump-
Stay).

7.42 and 6.08 while the maximum TTR are 188, 135
and 121, respectively. Fig. 18 shows the results of the
average TTR and the maximum TTR of the Jump-Stay
algorithm with Independent Sequence between the
three combinations of (m,n). Fig. 19 shows the com-
parison of the average TTR and the maximum TTR of
the RPS algorithm between the three combinations.

5.3 Property of Proposed Approach: Influence of
G for Fixed θ

In this subsection, we study another basic property
of the proposed approach: how does the number
of commonly-available channels between two users
affect the rendezvous performance? We let θ = 0.5,
G = 0.1Q, G = 0.25Q and G = 0.5Q, respectively.
m = 3 and n = 4. Fig. 20 shows the results when
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Fig. 19. Comparison of different allocation of (m,n)
when m+ n = 6 under the asymmetric model (RPS).
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Fig. 20. Comparison of different G when θ = 0.5
(Jump-Stay).
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Fig. 21. Comparison of different G when θ = 0.5
(RPS).
we apply the Jump-Stay algorithm to multiple radios
with Independent Sequence. When there are 50 chan-
nels, the average TTR of three scenarios are 10.69, 5.03
and 2.56 and the maximum TTR are 242, 119 and 35.
Fig. 21 shows the results of the RPS algorithm. When
there are 50 channels, the average TTR of three scenar-
ios are 12.83, 5.54 (i.e. 56.82% reduction) and 2.65 and
the maximum TTR are 274, 104 (i.e. 62.04% reduction)
and 28. According to Theorem 6, however, when G
is increased from 0.1Q to 0.25Q, the upper bound
of E(TTR) is decreased from 1215.72 to 1030.22 (i.e.,
15.25% reduction) and the MTTR is decreased from
1200.83 to 1041.33 (i.e., 15.45% reduction). It reveals
that both the average TTR and the maximum TTR
drop faster than theoretical results when G increases.

5.4 Performance of Generalized Algorithms and
Proposed Algorithm
We now study the performance of the proposed
rendezvous algorithm and the generalized versions
of the existing algorithms. We want to emphasize
that all following simulations are based on multiple
radios. All of them have significant improvement
compared with existing algorithms. In this part, we
compare the average TTR and the maximum TTR
under different values of m, n, θ and G. We compare
Generalized Random Algorithm (described in Section
4,1), Generalized Existing Algorithms (Section 4.2)
and RPS Algorithm(Section 4.3) under the scenario
when all users are equipped with multiple radios.
For the existing algorithms, we apply the Jump-Stay
[8], MMC [14] and HH [30] algorithm with both
Independent Sequence and Parallel Sequence. HH is
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Fig. 22. Comparison of different algorithms under the
symmetric model when (m,n) = (3, 3).

for heterogeneous system. We only apply it under the
asymmetric model and we expand it with random
replacement. When the channel in the sequence is
not available, we randomly select an available one to
replace it.
5.4.1 Under the Symmetric Model
m = n: Under the symmetric model, we let θ = 1 and
G = Q. Fig. 22 shows the comparison of the average
TTR and the maximum TTR between the six different
algorithms when m = n = 3. As shown in Fig.
22(a), when there are 50 channels, the average TTR
of RPS, JS/Independent, JS/Parallel, Random, MM-
C/Independent and MMC/Parallel are 5.55, 5.40, 6.68,
6.02, 5.96 and 5.93 respectively. There is no large gap
between different algorithms. However, the maximum
TTR are 27, 88, 56, 88, 84 and 559 respectively. Since
the Maximum TTR of MMC/Parallel is too large, we
show the difference between other five algorithms in
Fig. 22(b). We find that the RPS algorithm has no
advantage on the average TTR but has significant
improvement on the maximum TTR. Its maximum
TTR is almost a third of others.
m �= n: In this case, users are equipped with differ-

ent numbers of radios. We let m = 3 and n = 4. Fig.
23 shows the comparison of the average TTR and the
maximum TTR between the six different algorithms.
For example, when there are 50 channels, the average
TTR of RPS, JS/Independent, JS/Parallel, Random,
MMC/Independent and MMC/Parallel are 4.28, 5.38,
4.64, 4.23, 4.59 and 4.98 respectively. However, the
maximum TTR are 62, 103, 70, 34, 78 and 263 respec-
tively. Same as the scenario m = n, Fig. 22(b) shows
the difference between five of the algorithms. The RPS
algorithm has no advantage on the average TTR but
has significant improvement on the maximum TTR.
Another important point is that JS/Parallel has the
worst performance when m �= n, which is consistent
with the theoretical result.

5.4.2 Under the Asymmetric Model
Large θ: Firstly we study the scenario when θ
is large, that is, most channels are available to
users. We let θ = 0.8, G = 0.6Q, m = 3
and n = 4. Fig. 24 shows the comparison of
the average TTR between eight different algorithm-
s. For example, when there are 50 channels, the
average TTR of RPS, JS/Independent, JS/Parallel,
Random, MMC/Independent, MMC/Parallel, H-
H/Independent and HH/Parallel are 4.68, 4.61, 5.69,
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Fig. 23. Comparison of different algorithms under the
symmetric model when (m,n) = (3, 4).
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Fig. 24. Comparison of different algorithms under the
asymmetric model when θ = 0.8.

5.00, 4.77, 4.80, 3.33 and 3.80 respectively. However,
the maximum TTR are 69, 96, 112, 80, 81, 1698, 197 and
155 respectively. HH algorithm with multiple radios
has distinct advantage on the Average TTR. However,
both MMC and HH has very large Maximum TTR.
The reason is that their guaranteed rendezvous is
based on some special conditions. Therefore, in terms
of the average TTR, the generalized HH algorithm
is the best; in term of the maximum TTR, the RPS
algorithm is the best when θ is large.

Small θ: Then we study the scenario when θ is smal-
l, that is, only a small part of channels are available
to users. We let θ = 0.4, G = 0.4Q, m = 3 and
n = 4. For example, when there are 50 channels,
the average TTR of RPS, JS/Independent, JS/Parallel,
Random, MMC/Independent, MMC/Parallel, H-
H/Independent and HH/Parallel are 2.21, 2.24, 2.53,
2.18, 2.24, 4.57, 1.16 and 1.20 while the maximum TTR
are 22, 65, 47, 28, 30, 338, 53 and 52 respectively. Fig. 25
shows the comparison between the seven different al-
gorithms (Except MMC/Parallel). Therefore, in terms
of the average TTR, the generalized HH algorithm
is the best; in term of the maximum TTR, the RPS
algorithm is the best when θ is small.

6 CONCLUSIONS AND FUTURE WORK

We investigated a new approach (using multiple ra-
dios per user) to significantly speeding up the ren-
dezvous process in cognitive radio networks, gener-
alized the Random algorithm and the existing algo-
rithms in order to use multiple radios for faster ren-
dezvous, and designed a new rendezvous algorithm
(called role-based parallel sequence (RPS)) to specifically
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Fig. 25. Comparison of different algorithms under the
asymmetric model when θ = 0.4.

exploit multiple radios for fast rendezvous. We the-
oretically derived the upper bounds of E(TTR) and
MTTR of these algorithms, and conducted extensive
simulation studies to evaluate their performance. We
observed the following properties:

• Multiple radios can significantly speed up ren-
dezvous, especially when the number of radios
per user is increased from a small value. For
example, when there are 50 channels and the
number of radios per user is increased from 1 to
2, the average TTR of the generalized Jump-Stay
algorithm with Independent Sequence is reduced
by 63.7% while its maximum TTR is reduced by
75.6% under the symmetric model.

• Given a fixed number of radios for two users, the
rendezvous performance would be better if the
radios are evenly allocated on the two users. For
example, if there are 6 radios, the allocation (3, 3)
achieves rendezvous faster than the allocation (4,
2) or (5, 1).

• In terms of the average TTR, the generalized HH
algorithm perform better than other algorithms
in our simulation. In terms of the maximum TTR,
the RPS algorithm is the best.

In future work, we will analyze the tight lower-
bound of MTTR in using multiple radios, and improve
the MTTR of the RPS algorithm to achieve or be close
to this tight lower-bound.
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