
Feature Article: XEvent: An Event Notification System over Distributed Hash Table (DHT) Networks 19

IEEE Intelligent Informatics Bulletin November 2005 Vol.6 No.2

Abstract—In this paper, we propose a novel event notification

system, named as XEvent. The system is built over a Distributed
Hash Table (DHT)-based Peer-to-Peer (P2P) system by combining a
content-based system with a specific event topic. XEvent can support
basic topic-based message subscription by use of XML schema as
event topic, and further filter the whole message contents using
XPath as the filtering language. The unique features of XEvent
include: (1) XEvent inherits the excellent features provided by DHT,
including scalability, adaptation and self-maintenance; (2) XEvent
provides the expressive topic-based and content-based event filtering;
(3) XEvent can filter and deliver event messages to subscribers with
high efficiency by building a delivery tree based on the subscriber’s
XPath filters, and (4) XEvent can provide fault-tolerance for node
failure.

According to the results of simulation and tests on our XEvent
prototype built over a new Bamboo-DHT system, XEvent can
achieve the scalability, expressiveness, high efficiency and reliability
for the event notification service.

Index Terms— Distributed algorithms, Computer networks,
Query languages, Message systems

I. INTRODUCTION
N event notification service can be implemented by a
centralized event broker or by a network of distributed event

brokers. The first case, every client application can act as a
publisher, a subscriber, or both, and connect to a single central
broker server, which acts simply as a message filtering and routing
engine. Obviously, this centralized manner, lack of scalability,
results in the problem of single point of failure. The second case,
multiple servers can act as event brokers and are cooperatively to
form a distributed, coherent message routing, matching and
filtering engine for clients. This distributed manner can be
implemented on a wide-area network (WAN) and be scalable to a
large number of clients.

Recently, a new event filtering model, called a content-based
event filtering model [1, 2], allows subscriptions to evaluate the
entire content of an event message, not just a traditional event
topic. The content-based event system provides a more powerful

R. Wang is with the Institute of Information Sciences and Technology, Massey

University, New Zealand, Private Bag 11222, Palmerston North, New Zealand.
(corresponding author’s telephone: 0064-6-3569099 ext 2548; fax:
0064-6-3502259 e-mail: r.wang@massey.ac.nz).

W. Rao is with the Information System and Service Department, Shanghai
General Motor, China 201102. (e-mail: rweixiong@yahoo.com.cn).

C. Zhang is with the Faculty of Information Technology, University of
Technology, Sydney, Broadway NSW 2007, Australia. (e-mail:
chengqi@it.uts.edu.au).

and flexible event filtering than traditional topic-based event
systems [1, 2]. However, what makes content-based event system
challenging is that the system must be scalable to a large number
of subscribers, publishers and event messages. Also, at the same
time, the system must support a flexible and expressive event
filtering mechanism, i.e. scalability and flexibility [1].

Distributed Hash Table (DHT) [3, 4, 5] provides unique
features for a large scalable distributed system: scalability,
adaptation and self-maintenance. Thus, the distributed
applications built over DHT can inherit such features provided by
DHT including completely decentralized, scalable, and
self-organizing; and maintain guaranteed routing efficiency under
the joining, departure and failure of nodes in a network. Although
some event notification systems [9, 10] built over DHT systems [4,
5] have already been implemented, such systems are topic-based
and cannot provide flexibility and expressiveness as they lack a
content-based filtering mechanism.

The emergence of XML (eXtensible Markup Language) as a
standard for inform4ation exchange on the Internet has led to an
increased interest in content-based publish/subscribe system [6, 7,
8]. Using XML as the message format can allow structural
information within message documents. Using XPath as an XML
query language can provide the filtering on both the structure and
the contents of published XML information. Although some
XML-based filtering systems like [6, 7, 8] can provide a flexible
message filtering and matching mechanism, such systems are all a
centralized solution. They lack scalability and cannot be extended
to a distributed environment.

In this paper, we propose a novel event notification system,
named as XEvent. The system is built over a Peer-to-Peer (P2P)
DHT networking by combining a content-based system with a
specific event topic. XEvent can support basic topic-based
message subscription by use of XML schema for event topic, and
further filter the entire message contents using XPath as the
filtering language. The unique features of XEvent include: (1)
XEvent inherits the excellent features provided by DHT,
including scalability, adaptation and self-maintenance; (2) XEvent
provides the expressive topic-based and content-based event
filtering; (3) XEvent can filter and deliver event messages to
subscribers with high efficiency by building a delivery tree based
on the subscriber’s XPath filters, and (4) XEvent can provide
fault-tolerance for node failure. According to the results of
simulation and tests on our XEvent prototype built over a new
Bamboo-DHT system [14] (developed by Berkeley), XEvent can
achieve the scalability, expressiveness and high efficiency and
reliability for the type-based event notification service.

XEvent: An Event Notification System over
Distributed Hash Table (DHT) Networks

Ruili Wang, Weixiong Rao and Chengqi Zhang

A

20 Feature Article: Ruili Wang, Weixiong Rao and Chengqi Zhang

November 2005 Vol.6 No.2 IEEE Intelligent Informatics Bulletin

The remainder of the paper is organized as follows. Section II
introduces the basic model of XEvent. Section III gives an
overview of XEvent. In section IV we describe the basic
operations in XEvent. Our XEvent prototype built on Bamboo[14]
and experimental results are shown in section V. Related work is
introduced in section VI, and section VII gives the conclusion.

II. BASIC MODEL IN XEVENT
View: In XEvent, we decompose an XML message of tree

structure into multiple sequential elements from the root to all
leaves. We call the sequential elements with the element content
as Data View Vd, which includes an element path Vdp and element
content Vdc. Vdp is the sequential elements from a root to a leaf,
and all elements is separated by the parent-child connector ‘/’ to

show the parent-child relationship between two elements. Vdc
represents the element contents including the element texts and
attributes. Fig. 1 shows an XML message and its Vd.

Similarly with Vd, we can define the schema view (Vs) based on
an XML schema, which can be also modeled as a tree-like
structure. An XML schema only specifies the structure
information without content, while Vs only defines the sequential
elements from the root to the leaves as the element paths (Vsp). Fig.
2 shows an XML schema (DTD) and view Vs.

XPath Model: we use XPath as the filtering language
providing an expressive filtering against XML messages in
publication. XPath can support both path structure and element
content filtering. The path structure filtering in XPath supports a
parent-child operator '/' or an ancestor-descendant operator '//'.
Also XPath allows the use of a wildcard operator '*'. XPath also
allows element content filtering against both element attributes
and element texts. We call the sequential elements in an XPath
filter F from the head element of F to the first element followed by
a relative path separator in F as a key K of F. For example,

 If F1 = /SigmodRecord/issue/articles/article/title then K1 = F1 =
/SigmodRecord/issue/articles/article/title

 If F2 = /SigmodRecord/issue/articles//title, then K2 = /SigmodRecord
/issue /articles

 We define two operations for the XPath filter F: “+”and “-”. If

F1 = E1 ∧ …∧ Ek-1 ∧ Ek ∧…∧ En and F2= Ek ∧…∧ En , then F3
= P1 – F2 = E1 ∧ … Ek-1 and F3 + F2 = F1 . Also, if F1 = E1
∧ …∧ Ek-1 ∧ Ek ∧…∧ En and F3= E1 ∧…∧ Ek-1, then F4 = P1 –
F3 = Ek ∧ …∧ En and F4 + F3 = F1.

A covering relation between two XPath filters is defined that if
F1 is more specific than F2, then F2 covers F1. The relation is also
written as F2⊇F1 or F1⊆F2, if and only if both the path structure
filtering P2 and the element content filtering C2 of F2 covers the
path structure filtering P1 and the content filtering C1 of F1. Based
on the XPath covering relationship, we can construct an XPath
covering graph. In the graph, a node represents an XPath filter
and an edge represents the covering relationship between XPath
filters. If F1 ⊆ F2, the node representing F1 is the parent of the
node representing F2. As a result, the most specific filter is the root
of the graph, and the least specific filter is the leaf node of the
graph. Given the filters shown in Fig. 3(b), we know the following
XPath covering relations, and the XPath covering relation graph is
constructed as Fig. 3(a):
 F1 ⊆F3 ⊆ F5 ⊆ F2 ⊆ F6 ⊆ F7 ⊆ F8 ;

 F4 ⊆ F6 ⊆ F7 ⊆ F8.

III. OVERVIEW OF THE XEVENT SYSTEM
In XEvent, we define the XML topic (schema) as the event

topic. The event messages in XML format are instances of the

event schema. XEvent supports subscriptions depending on both
the event topic and event content filtering. The introduction of
event schema into the event system can be useful for both
publishers and subscribers. The schema can validate an XML
message and enforce the validity of XML messages; Event
subscribers can directly subscribe a certain topic of event
messages based on an XML schema, and further subscribe the
message using XPath as the filtering language.

We build XEvent (an event notification system) over DHT by
arranging a set of cooperating peers in a distributed topology.
Each peer in XEvent can act as three roles: publisher, subscriber or

Element Path

/SigmodRecord/issue/volume
/SigmodRecord/issue/articles/articl

/SigmodRecord/issue/articles/articl
e/initPage
/SigmodRecord/issue/articles/articl
e/ endPage
/SigmodRecord/issue/articles/articl
e/ authors/author

Element Contents
volume@text=11
title@text=Process
Synchronization in Database
Systems
initPage @text=9
endPage @text=11

<SigmodRecord>
 <issue>

<volume>11</volume>
<articles>

<article>
 <title>Process

synchronization in
Database Systems
</title>

 <initPage>9</initPage>
 <endPage>29</endPage>
 <authors>
 <author position="00">

Philip A.
Bernstein</author>

 <author position="01">
Marco A.
Casanova</author>

 </authors>
</article>

</articles>
</issue>

</SigmodRecord>

author@position="00“@text=Phili
p A. Bernstein
author@position="01“@text=Mar
co A.Casanova

(a) an XML message (b) XML view

Fig. 1. An XML message and its XML views

/SigmodRecord/issue/vo

ume
/SigmodRecord/issue/nu

mber
/SigmodRecord/issue/art
les/ article/ title
/SigmodRecord/issue/art
les/article/ initPage
/SigmodRecord/issue/art
les/article/ endPage

<!ELEMENT SigmodRecord (issue)* >
<!ELEMENT issue (volume,number,articles)
>
<!ELEMENT volume (#PCDATA)>
<!ELEMENT number (#PCDATA)>
<!ELEMENT articles (article)* >
<!ELEMENTarticle(title,initPage,endPage,aut
hors)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT initPage (#PCDATA)>
<!ELEMENT endPage (#PCDATA)>
<!ELEMENT authors (author)* >
<!ELEMENT author (#PCDATA)>
<!ATTLIST author position CDATA
#IMPLIED>

/SigmodRecord/issue/art
les/article/ authors/author

(a) an XML DTD (b) view

Fig. 2. Event schema (DTD) and element path of schema views

Feature Article: XEvent: An Event Notification System over Distributed Hash Table (DHT) Networks 21

IEEE Intelligent Informatics Bulletin November 2005 Vol.6 No.2

broker. The basic operations in XEvent include: schema
registration, event subscription and message publication. These
operations are the three steps for an event message to be delivered
from a publisher to subscribers. Firstly, the registration of an XML
schema as event topic into XEvent is mandatory. Secondly, the
subscribers can subscribe an interested event by use of the event
schema as event topic and an XPath filter as content filter. Thirdly,
when a message producer publishes an XML message after the
validation of the XML schema, the event message is filtered over
XEvent and forwarded by intermediate peers until the message is
delivered to its interested subscribers.

In XEvent, we build two layers of overlay network over the IP

network (Fig. 4), i.e. event sketch tree and delivery tree. The event
sketch tree (described in section 4.1) is built based on the event
schema (topic) view. The event delivery tree (described in section
4.2) is organized logically based on the XPath relation graph while
physically within the event sketch tree. Using the delivery tree, the
event is directly forwarded to its most specific and matched XPath
filter node in the event delivery tree (described in section 4.3). If
the message matches the most specific XPath filter, all descendant
filters of the most specific filter are also matched with the message.
Such a delivery tree can greatly reduce the overhead of message
routing and matching. Concerning the reliability, an event sketch
tree can self-heal its node failure and provide the reliability for the
upper event delivery tree (described in section 4.4), and the event
delivery tree can devote itself to message filtering and delivery
without care of node maintenance.

IV. BASIC OPERATIONS IN XEVENT
In this section, we give the description of XEvent operations:

schema registration, event subscription, message publication and
maintenance of event delivery tree.

A. Schema Registration
During schema registration, an event skeleton tree Tk is built.

The event topic (schema) S, which is a tree structure, can generate
views Vs as defined in section 2. The destination host of Hash(S)
in DHT namespace is termed as Ht. As the definition of XPath key
in section 2, we term Froot as the element paths Vsp, and Kroot as

the key of Vsp. As a result, Kroot = Froot = E1/…/En since all path
separators in Froot = E1/…/En are ‘/’. For an event schema S in
XEvent and the element paths Froot of Vs, we introduce the
destination of Hash(Kroot) in DHT namespace as the root node of
Tk, termed as Hroot.

When building Tk, Froot can be further decomposed into
multiple sub-filters Fs and each of Fs is the sequential elements
from the head element of Froot to other elements of Froot. For

Froot = E1/…/En, the sub-filters Fs can be E1/…/En-1/En,
E1/ …/En-1, …, E1/E2, E1. For each sub-filter Fs, the key K of Fs
= Fs because all elements in sub-filter Fs are connected by ‘/’.
Then the skeleton tree Tk, rooted at Froot, is built based on the
filter covering the relation graph of all sub-filters Fs. Each
sub-filter Fs is physically located the destination host of Hash (K)
in the DHT namespace. The connection of two sub-filters
represents the covering relationship of two sub-filters, the parent
sub-filter is more specific than its children, and the root sub-filter
is the most specific. Fig. 5 shows the event sketch tree and its

sub-filters of the event schema (topic) in Fig. 2.

B. Event Subscription
In XEvent, event subscribers can subscribe their interested

message by an event schema (topic) and by an XPath filter. As the
topic subscription is simple, we only discuss the XPath
subscription in this paper. The XPath subscription can be
implemented in two phases: XPath instantiation and event
delivery tree building.

XPath Instantiation: we have defined the absolute path
separator (‘/’), and the relative path separator (‘/*/’ and ‘//’).
Depending on whether an absolute path separator ‘/’ at the head of
an XPath filter or not, we category an XPath filter F into Fa or Fr,
where Fa has an absolute path separator ‘/’ at the head of the
XPath filter, and Fr has a relative path separator ‘//’ or ‘/*/’ at the
head of the XPath filter. For example, //author or /*/issue/articles/

Fig. 4. XEvent Overlay Network

Filter XPath

F1 /SigmodRecord/issue/articles/article/authors/auth
or [@position="00"]

F2 /SigmodRecord//author[@position = "00"]
F3 /SigmodRecord/issue/articles/article/*/author[@p

osition = "00"]
F4 /SigmodRecord/issue/articles/article/authors/auth

or [@position>"00"]
F5 /SigmodRecord/issue/articles/article//author

[@position = "00"]
F6 /SigmodRecord//author[@position >= "00"]

F7 /SigmodRecord//author

F8 //author

(a) (b)

Fig. 3. XPath Relation Graph

TABLE I

XPATH INSTANTIATION
XPath Filter XPath instantiation Result

F1=//artitles//title /SigmodRecord/issue/articles// title
F2=/*/issue//article/*/author /SigmodRecord/issue//article/*/ author

22 Feature Article: Ruili Wang, Weixiong Rao and Chengqi Zhang

November 2005 Vol.6 No.2 IEEE Intelligent Informatics Bulletin

are Fr. Fr can decompose into Fr except the relative path
separator at the head, i.e. Fr = {∧Fa} where ∧ = ‘/*/’ or ‘//’. The
XPath instantiation actually replaces a relative path separator at
the head of Fr into an absolute path separators, i.e. replace the ‘/*/’
or ‘//’ with ‘/’. For these relative path separators, which are located
at the intermediate or the end part of an XPath filter, like
/SigmodRecord//author or
/SigmodRecord/issue/articles/article/*/author, no instantiation is
needed.

XPath instantiation can be done as follows. Given an even
schema S and XPath filter Fr = {∧ Fa} where ∧ = ‘/*/’ or ‘//’, the
instantiation result of Fr against S, termed as Fi, is to replaced Fr
with Fi = {Fs ∧ Fa} where ∧ = ’/’, if there exists one element path
Vep is satisfied with Fr and a sub-filter Fs of Vep where (Vep - S)∗
is satisfied with Fa. XPath instantiation can be implemented in the
similar way as [6] by use of XPath as Finite State Machines (FSM)
and Vep as the message. Table 1 shows two XPath filter, and the
result of XPath instantiation against the event schema in Fig. 2.

Building event delivery tree: When an XPath filter F is
submitted to XEvent by a subscriber, the XPath filter F is first
checked that F is Fa or Fr. If F is Fa, F is directly used to build an
event delivery tree; otherwise F needs to instantiate locally. After
instantiation, the XPath instantiated result Fi is used to build an
event delivery tree.

The key of building an event delivery tree is to make use of the
fact: for event schema S, Froot of S, and an XPath filter F (Fi or
Fa), there always exists a sub-filter Fs of Froot, i.e. a sub-filter Fs
is XPath key K of F (K = Fs) if F is satisfied with the XML event
message that is instance of S. For such an XPath filter F, the
destination of Hash(K) in DHT namespace, as a result, is the same
as the destination of Hash(Fs) where is located at the event sketch
tree. The event delivery tree Td for an event topic (schema) S
consists up the XPath filters for the event topic S, which are
organized based on the XPath filter relation graph. As a result, Td,
logically organized by an XPath filter covering relation graph, is

∗ About definition of -, see the XPath model in section 2

physically located within Tk. For a new XPath filter F, the
subscription into XEvent can be done in both folders: physically
inserted into Tk and logically inserted into Td. For the former, it
can be easily implemented by locating the destination host of
Hash(K) since K = Fs; for the latter, it can be implemented by
finding F’s parent (child) filter at Td, termed as Fp (Fc), and
inserting F between Fp and Fc.

The process of finding Fp is described as follows. Given an
XPath filter F, the destination Hk of Hash(K) in DHT is located at
Tk. Based on the definition of XPath covering relation and the
building of Tk, Fp is physically located at Hk, or at parent node of
Hk in Tk, or at ancestor node of of Hk in Tk, and impossible at
children nodes of Hk in Tk. Then Fp can be found by first
traversing all existing XPath filters at Hk to determine the least
specific XPath filter as Fp. If no XPath filters exist at Hk, then the
same procedure is done to find Fp at parent node of Hk, …,
ancestor node of Hk until the root of Tk. If no XPath filters exist at
the parent node of Hk, ancestor node of Hk and the root of the
event skeleton tree Tk, Fp returns null, which means F being the
most specific filter and becoming the new root of Tk. Finding Fc
can be done in the similar way as finding Fc. After insert, the link
between F and Fp is established. If both F and Fp are located at
the same host, the link within the local host is actually a pointer
from Fp to F; otherwise, a physical link between different hosts is
needed. Since multiple XPath filters share the same XPath filter
key, these XPath filters with the same key are located at one node
in Tk. A physical link can contain multiple links between XPath
filters. As a result a message (for example a Heartbeat message)
from a parent node to a child node in Tk can aggregate the
information of multiple XPath filter links to decrease the
communication traffic.

In order to improve the performance of message delivery, we
introduce a repair mechanism for the event delivery tree Td (see
section 4.4). Since there exists the case that the root XPath filter of
Td is not located at the root node of Tk, in the repair mechanism a
virtual XPath filter located at the root node of Tk is used to link the
current root XPath filter of Td; Otherwise, the repair mechanism is
not needed when the current root XPath filter of Td is not located
at the root node of Tk.

Concerning the efficiency of finding Fp, the IP hops of finding
Fp (Fc) is limited within the depth of Td not the number of XPath
filters, which can greatly decrease the communication cost. Thus,
the cost of finding the least specific filter in a local host is
negligible compared with the communication cost in DHT-based
P2P system. Fig. 6(a) shows the XPath filter covering relation
graph after instantiation of the XPath filters in Fig. 3(b), and Fig.
6(b) shows the event delivery tree Td and its physical location in
Tk. Here note: (1) F8 (//author) after XPath instantiation becomes
/SigmodRecord/issue/articles/article/authors/author. Then the
new XPath covering relation graph in Fig. 6(a) is twisted from the
one shown in Fig. 3(a). (2) The filters in Td are located within Tk,
but the physical link between filters in Td does not follow the
physical link in Tk. S1 and S8 in Td is directly linked not via S7.

C. Message Publication
In XEvent, only the valid XML message against the event topic

(schema) can be published into XEvent. A valid XML message

Fig. 5. Event sketch tree and its sub-Filters

Feature Article: XEvent: An Event Notification System over Distributed Hash Table (DHT) Networks 23

IEEE Intelligent Informatics Bulletin November 2005 Vol.6 No.2

can be decomposed into XML views Vd with element contents
Vdc and element path Vdp. For Vd, the destination of Hash(Vdp)
in the DHT is a root node Hroot of the event sketch tree Tk for the
event schema as described in section 4.1. Based on the repair
mechanism of the event delivery tree Td, there is always a root
XPath filter Fr at Hroot. If Fr is virtual, the incoming Vd is
delivered to its child XPath filter for further message filtering.
Otherwise, Vd is matched with Fr. If Vd is satisfied with the Fr,
Vd is also satisfied with all of its children. As a result, the XML
message can be directly routed to the subscribers who subscribe
Fr and all children of Fr. If the XML view Vd is unsatisfied with
Fr, the traversing the event delivery tree from Fr to its children is
needed until the XML view Vd is satisfied with an XPath filter F
in Td. Then, we can determine that the XPath filter F and its all
children filters in Td are interested in the XML message. Also, the
XML message is delivered to the subscribers who subscribe F and
its children filters. If an XPath filter F receives a previous
duplicated Vd, the XML view Vd will not be forwarded and it will
be discarded. In section 4.2, we introduce the repair mechanism of
Td. We argue that if a virtual XPath filter exists at the root of Tk,
the matching can directly be forwarded to its child filter without
traversing the child node to find the root filter of Td.

About efficiency of message publication, since XPath filters
with the same key are located at the same node of Tk, the
forwarding cost within the local node is negligible compared with
the forwarding cost between physical nodes. Also, the forwarding
hops are limited within the depth of Tk not of Td, which can
greatly decrease the communication cost.

D. Maintenance of an Event Delivery Tree
The requirement of reliability needs XEvent to be robust

against node failure. To repair the node failure in Tk, a node in Tk
is required to periodically exchange Heartbeat messages with its
parent/child nodes to detect failure. Each XPath filter in the node
has a soft state with leases for its parent/child XPath filter.

We describe failures and their repair mechanisms as follows.
Firstly, failure of Ht can be detected by the Heartbeat message
from the root node Hroot in the event sketch tree Tk, but the
failure cannot cause any hamper of message publication or event
subscription except for those XPath filters which need

instantiation at Ht. The failed Ht can be healed by any publisher,
subscriber or third-party to re-register the event topic (schema)

while without re-building the entire event delivery tree Td.
Secondly, failure of Hroot in Tk can be detected by the Heartbeat
message from Ht, and can be healed by Ht to re-lookup the
destination host of Hash(Froot) at DHT as the new Hroot. Thirdly,
failure of any other node in Tk except Hroot can be detected by its
parent node. The parent node, destination of Hash(E1/…/Ek-1/Ek)
in DHT, can re-lookup the destination of Hashing (E1/…/Ek-1) to
heal the failed child.

Even before the node in Tk is recovered, XEvent provides a
reliable message forwarding mechanism. The XML view Vd can
be first routed to the children node of Tk, not the failure node
where its children XPath filter is located. This begins the message
matching against the XPath filters at the children nodes.

V. EXPERIMENTAL EVALUATION
In order to evaluate XEvent performance, we implement the

prototypes of basic SCRIBE [9] and XEvent using the discrete
event simulator over Bamboo [14], a recent DHT-based P2P
system. The simulation environment is a network topology with
5050 routers, which were generated by the Georgia Tech random
graph generator using the transit-stub model [15]. The prototype
codes including SCRIBE and XEvent run on 100,000 end nodes
that were randomly assigned to routers in the core with uniform
probability. Each end system was directly attached by a LAN link
to its assigned router. During the evaluation, we designed the
following test scenario: (1) SigmodRecord.dtd. [16] as an event
topic (schema) is registered into XEvent; (2) 4096 XPath filters
are generated by the IBM XPath query generator[17] to subscribe
their interested messages; (3) XML-based event messages, which
are validate with the XML event topic (schema), are published
into XEvent continuously as a message stream. Finally, XEvent
routes the published messages to all satisfied subscribers. From
the time that the messages are published to the time that all
satisfied subscribers get the messages, we evaluate XEvent and
SCRIBE. For prototype implementation of SCRIBE, we filter the
coming message content at the end host of SCRIBE, which is the
destination of Hash (XPath key).

To facilitate our comparison, we use two matrices: Relative

Delay Penalty (RDP) and physical link stress, which were
originally proposed in [13] and were sequentially used in [10]. In
addition to these two matrices, stability is also evaluated.

F7

F6

F1

F3

F5

F2

F4

F8

(a)

(b)

Fig. 6. Event Delivery Tree

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

P
er

ce
nt

 o
f R

D
P

RDP

 XEvent
 SCRIBE

Fig. 7. The cumulative distribution of Relative Delay Penalty (RDP) of both
XEvent and SCRIBE.

24 Feature Article: Ruili Wang, Weixiong Rao and Chengqi Zhang

November 2005 Vol.6 No.2 IEEE Intelligent Informatics Bulletin

Relative Delay Penalty (RDP) is a measure of the increase in
delay that applications incur while using overlay routing [13, 10].
Using RDP on both XEvent and SCRIBE [10], it is the ratio of
DHT overlay unicast routing distances to IP unicast routing
distances. Assuming symmetric routing, IP Multicast and naive
unicast both have a RDP of 1. We use the ratio of the amount of
total overlay DHT unicast routing hops to the amount of all naïve
unicast hops as the RDP. Fig. 7 shows the cumulative distribution
of RDP of both XEvent and SCRIBE. The X-axis represents the
RDP value and y-axis represents the cumulative percent of RDP.
XEvent has an average RDP value of 1.9 and SCRIBE has the
value of 4.2. It can be explained that all communication in XEvent
is within the event sketch tree, while the communication in
SCRIBE is scattered through out the whole network.

Link Stress is a measure of how effective SCRIBE and XEvent
prototypes are in a distributed network load across different
physical links. It refers to the number of identical copies of a
packet carried by a physical link. IP multicast has a stress of 1, and
naïve unicast has a worst case stress equal to number of receivers.
We calculate the ratio of the total number of messages that are sent
over links to the total number of links as the average link stress.
Fig. 8 shows the link stress comparison of XEvent and Scribe. The
X-axis represents the Log scale of Link stress, i.e. the duplicate
message copies across the physical link. The Y-axis represents the
Log scale of link number. Obviously, XEvent has much less link
stress than SCRIBE. It can be easily explained that the link
between the nodes in XEvent event sketch tree can contain
multiple logical links between XPath filters of XEvent event
delivery tree. Also the logical link of XPath filters within the same
local host does not require any physical communication.

Stability: To evaluate the stability of XEvent, we need to

design an unstable scenario by re-designing step 3 in normal
scenarios. We separately design 10%, 20% and 30% nodes
crashed in the network model from normal message publication in
the time interval of 1000 seconds, then we count the ratio of the
nodes, which can receive the message, to all live nodes. In Fig. 9,
X-axis represents time and Y-axis represents the ratio in percent.
From the figure, the time interval for XEvent (with the
self-healing mechanism) to recover 100% message receiving is
shorter than for SCRIBE. Also, the failure makes the data lost of
some nodes in SCRIBE since we simply implement the basic
SCRIBE without the group maintenance mechanism.

VI. RELATED WORKS
Recent work on the scalable design of structured P2P overlay

networks has introduced a new class of structured networks called
Distributed Hash Tables (DHT). Well known representatives
include [3, 4, 5]. All of these systems were built to allow efficient
key lookups. Nodes in a P2P network send messages to each other
based on a unique name, generated from a secure one-way hash of
some unique string. Assigned a unique ID to each node by DHT, a
message is delivered to the destination host in a fault-resilient
fashion. The P2P routing and locating infrastructure can provide
scalability, fault-tolerance, self-maintenance and adaptation for

upper applications.

Several event notification systems have already developed over
DHT. SCRIBE [9] is a topic-based event notification system that
is built on top of “Pastry” [4]. “Pastry” is a DHT system developed
at Rice University. Subscribers join topics of interest, where each
topic is identified with a Pastry-level key. Bayeux [10] is built on
top of Tapestry [5]. However, neither SCRIBE [9] nor Bayeux [10]
supports content-based subscriptions and publications. Hermes
[11] provides a type- and attribute-based routing schema over
DHT, but the introduction the rendezvous node into Hermes can
result in limited scalability and a single point of failure, also the
content filtering is rather limited. An extension of traditional
Bloom filters, called multi-level Bloom filters [12], can be used to
route path queries in a P2P system, and build content-based
overlay networks by linking together peers with similar content.
However, the P2P system is totally different from the DHT-based
structured P2P systems. Therefore, the system will not or cannot
implement a flexible filtering mechanism like XEvent.

Some pioneer researchers in database field have incorporated
XML into publish /subscribe system [6, 8]. An XML document
filtering system, for Selective Dissemination of Information (SDI)
has been proposed in [6], which allows users to define their
interests using XPath query language. Using a modified Finite
State Machine (FSM), a novel indexing mechanism and matching
algorithms are developed. YFilter, combines all of the queries into
a single Non-deterministic Finite Automaton (NFA) [8]. The
approach exploits commonality among path expressions by
merging common prefixes of the query paths so that they are

1 10 100 1000
1

10

100

1000

10000

100000

N
um

be
r o

f L
in

ks
(L

O
G

)

Link Stress

 XEvent
 SCRIBE

Fig. 8. The link stress comparison of XEvent and Scribe.

1 0 0 01 0 5 01 1 0 01 1 5 01 2 0 01 2 5 01 3 0 0
0 .5
0 .6
0 .7
0 .8
0 .9
1 .0
1 .1

P
er

ce
nt

T im e (s e c o n d s)

 S c r ib e
 X E v e n t

Fig. 9. XEvent stability

Feature Article: XEvent: An Event Notification System over Distributed Hash Table (DHT) Networks 25

IEEE Intelligent Informatics Bulletin November 2005 Vol.6 No.2

processed at once. All of these approaches are based a single
centralized filtering engine and are hard to scale to a large
distributed network.

VII. CONCLUSION
We have presented XEvent, a novel hybrid event notification

system built over Distributed Hash Table (DHT)-based
Peer-to-Peer (P2P) system. XEvent can support both event topic
and event content subscription, which can provide expressiveness
for subscribers by the use of XML as event message format and
use of XPath as subscription filter.

XEvent make use of DHT to build two layers of an overlay
network: event sketch tree and event delivery tree. An event
sketch tree can provide the stability for the upper event delivery
tree. The event delivery tree can devote itself to swiftly match and
deliver messages to the interested subscribers, without
considering the churn in DHT.

The initial simulation results indicate that XEvent can provide
an efficient event notification system with quick recovery
mechanisms and low Relative Delay Penalty and link stress
compared with the SCRIBE [9] system.

REFERENCES
[1] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Content-based addressing

and routing: A general model and its application,” Department of Computer

Science, University of Colorado, USA, Technical Report CU-CS-902-00, Jan.
2000.

[2] R. Chand and P. Felber, “A scalable protocol for content-based routing in
overlay networks,” in IEEE International Symposium on Network Computing
and Applications (NCA'03), Cambridge, Massachusetts, Apr. 2003.

[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A
scalable peer-to-peer lookup service for Internet applications,” in
Proceedings of ACM SIGCOMM'01, San Diego, CA, Aug. 2001.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems,” in MiddleWare, Germany,
Nov. 2001.

[5] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure
for fault-tolerant wide-area location and routing,” University of California
Berkeley, USA, Technical Report CSD-01-1141, 2001.

[6] M. Altinel and M. J. Franklin, “Efficient Filtering of XML Documents for
Selective Dissemination of Information,” in Proceedings of the 26th
International Conference on Very Large Data Bases, Cairo, 2000, pp 53–64.

[7] A. K. Gupta and D. Suciu, “Stream processing of XPath queries with
predicates,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, California, USA, 2003, pp. 419–430.

[8] Y. Diao and M. Franklin, “Query Processing for High-Volume XML
Message Brokering,” in Proceedings of the 29th International Conference on
Very Large Data Bases, Berlin, Germany, 2003, pp. 261–272.

[9] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “SCRIBE: A
large-scale and decentralized application-level multicast infrastructure,”
IEEE Journal on Selected Areas in Communications, vol. 20, no. 8, pp.
1489–1499, Oct. 2002.

[10] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubiatowicz,
“Bayeux: An Architecture for Scalable and Fault-tolerant WideArea Data
Dissemination,” in Proceedings of the 11th International Workshop on
Network and Operating System Support for Digital Audio and Video, USA,
June 2001.

[11] P. R. Pietzuch and J. Bacon, “Peer-to-Peer Overlay Broker Networks in an
Event-Based Middleware,” in Proceedings of the 2nd International
Workshop on Distributed Event-based Systems, USA, 2003.

[12] G. Koloniari, Y. Petrakis and E. Pitoura, “Content-Based Overlay Networks
of XML Peers Based on Multi-Level Bloom Filters,” in International
Workshop on Databases, Information Systems and Peer-to-Peer Computing,
Germany, 2003.

[13] Y. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast (keynote
address),” in Proceedings of the 2000 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, USA,
2000.

[14] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn in a
DHT,” in Proceedings of the USENIX Annual Technical Conference
(USENIX), Boston, Massachusetts, June 2004.

[15] Georgia tech internet topology model.
http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html

[16] http://www.cs.washington.edu/research/xmldatasets/
[17] http://www.alphaworks.ibm.com/tech/xmlgenerator

TABLE II

ABBREVIATIONS LIST
Vd XML Data View

Vdp Element path in Vd
Vdc Element content in Vd
Vs Schema View

Vsp Element path in Vs
F XPath filter

S Event schema (topic)

K Key of F
Froot Element paths Vsp
Kroot Key of Froot
Hroot Destination Host of Froot in DHT namespace
Tk Event sketch tree

Td Event delivery tree

Fs XPath Sub-Filter of Vsp
Fa XPath Absolute Filter

Fr XPath Relative Filter

Fi XPath Instantiation result

Fp XPath Parent filter in Td

Fc XPath child filter in Td

Ht Destination Host of Hash(S) in DHT namespace

