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Abstract—The Pittsburgh representation is a well-known en-
coding for symbolic classifiers in evolutionary algorithms, where
each individual represents one symbolic classifier, and each
symbolic classifier is composed by a rule set. These rule setscan
be interpreted asordered or unordered sets. The major difference
between these two approaches is whether rule ordering defines a
rule precedence relationship or not. Although ordered rulesets
are simple to implement in a computer system, the rule set is
difficult to be interpreted by human domain experts, since rules
are not independent from each other. In contrast, unorderedrule
sets are more flexible regarding their interpretation. Rules are
independent from each other and can be individually presented
to a human domain expert. However, the algorithm to decide
a classification of a given example is more complex. As rules
have no precedence, an example should be presented to all rules
at once and some criteria should be established to decide the
final classification based on all fired rules. A simple approach
to decide which rule should provide the final classification is
to select the rule that has the best rating according to a
chosen quality measure. Dozens of measures were proposed in
literature; however, it is not clear whether any of them would
provide a better classification performance. This work performs
a comparative study of rule performance measures for unordered
symbolic classifiers induced by evolutionary algorithms. We
compare 9 rule quality measures in 10 data sets. Our experiments
point out that confidence (also known as precision) presented the
best mean results, although most of the rule quality measures
presented approximated classification performance assessed with
the area under the ROC curve (AUC).

Index Terms—Symbolic classification, evolutionary algorithm,
rule quality measures.

I. I NTRODUCTION

EVolutionary Algorithms (EAs) have been successfully
applied to solve problems in a large number of domains.

One of their most prominent features is to perform a global
search using multiple candidate solutions, and therefore in-
creasing the possibilities of finding an optimal solution [1].
In contrast, induction of symbolic classifiers can be seen asa
search problem in which some performance measure should
be optimized, such as accuracy or coverage. Conventional
symbolic inducers, for instance decision tree inducers, use a
simple greedy search, and EAs present an attractive alternative
to better search the hypothesis space.

The Pittsburgh representation [2] is a well-known encoding
for symbolic classifiers in EAs, where each individual repre-
sents one symbolic classifier, and each symbolic classifier is
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composed by a rule set. These rule sets can be interpreted as
orderedor unorderedsets. In the case of an ordered rule set,
rule ordering defines a precedence relationship. For instance,
when an example to be classified is presented to an ordered
rule set, rules must be analyzed regarding their position inthe
set. The final classification is given by the class predicted by
the first rule that covers the example. Although this approach
is very simple to implement in a computer system, the rule set
is difficult to be interpreted by human domain experts, since
rules are not independent from each other. The knowledge
expressed in a rule only holds if all preceding rules were not
fired.

In contrast, unordered rule sets are more flexible regarding
their interpretation. Rules are independent from each other
and can be individually presented to a human domain expert.
However, the algorithm to decide the classification of a given
example is more complex. As rules have no precedence, an
example should be presented to all rules at once and some
criteria should be established to decide the final classification
based on all fired rules. A simple approach to decide which
rule should provide the final classification is to select the rule
that has the best rating according to a chosen quality mea-
sure. Dozens of these measures were proposed in literature.
However, it is not clear whether any of them would provide a
better classification performance.

This work performs a comparative study of rule perfor-
mance measures for unordered symbolic classifiers induced
by EAs. We compare 9 rule quality measures in 10 data sets.
In our experiments, we use the area under the ROC curve
(AUC) [3] as the main measure to assess our results. AUC has
several advantages over other conventional measure such as
error rate and accuracy [4], for instance, AUC is independent
from class prior probabilities. Our experiments point out that
confidence (also known as precision) presented the best mean
results, although most of the rule quality measures presented
approximated classification performance.

This paper is organized as follows: Section II describes our
EA; Section III presents the rule quality measures used in our
experiments; Section IV empirically compares the measures
on 10 application domains; and finally, Section V concludes
this paper and presents some directions for future work.

II. OUR EVOLUTIONARY ALGORITHM

There are two major approaches to represent decision rules
as individuals in an EA. These approaches are namely Michi-
gan and Pittsburgh [5]. In short, in Michigan [6] approach
each individual codifies only one rule, and in Pittsburgh [2]
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approach each individual codifies a classifiers, i.e. a rule set.
This difference is more than a simple technical detail. Michi-
gan approach is used when we are interested in a single rule
with a determined propriety, such as accuracy. Even though the
final population has several rules, those rules usually do not
have a collective property, such as complementary coverage.
Therefore, Michigan approach is frequently used to induce
descriptive rules.

In contrast, as Pittsburgh representation codifies a rule set in
each individual, a search is performed to optimize some col-
lective property. Thus, Pittsburgh representation is commonly
used to induce predictive classifiers, since such classifiers
have to combine rules that are individually predictive and
collectively complementary, in a way that a large number of
examples is covered and correctly classified.

As previously stated, we use the Pittsburgh representation
in our EA. One possible criticism regarding this representation
is that no search is performed at rule level, i.e., rules are not
improved by the search procedure. One possible strategy is
to combine Michigan and Pittsburgh in a hybrid representa-
tion [7], [8]. However, this approach increases considerably
the search space and doubles the number parameters. As
consequence, this approach is more computationally intensive,
its results are more difficult to analyze (due the larger number
of parameters that should be tuned), and more important,
the larger search space increases considerably changes of
overfitting training data.

In order to use the Pittsburgh representation over a set of
predictive rules, we use the Ripper rule induction algorithm [9]
to generate an initial rule set. However, for most data sets,the
rule set induced by Ripper is usually of restricted number
of rules. Thus, we use a bootstrapping sampling strategy to
generate multiple training sets. This sampling strategy allow
us to increase the number and diversity of the rules.

In more details, in our experiments we use thek-fold
stratified cross-validation resampling method for generating
k training setT1, T2, . . . Tk and their correspondent test sets
from each data set. Next,n bootstrapping sampleswith re-
placementTi1, Ti2, . . . Tin are created from each training set
Ti, 1 ≤ i ≤ k. Each bootstrapped sample has the same number
of examples as its corresponding training set, i.e.,|Tij | = |Ti|,
1 ≤ j ≤ n.

Each bootstrapped training setTij is given as input to Ripper
algorithm andn rule sets are inducedRi1,Ri2, . . .Rin. All
rule sets are integrated into a unique pool of rules, and the
repeated rules are discarded. Figure 1 illustrates this sampling
approach.

In a second step, all rules are given as input to our EA.
Internally, each rule is associated with a unique identifier.
An individual, i.e., a rule set is represented as a set of rule
identifiers. Finally, the population is a table that containall
sets of individuals. This representation scheme is very con-
venient, since conventional evolutionary operations, such as
mutation and crossover, can be readily implemented as simple
manipulations of the population table. Figure 2 illustrates this
representation scheme.

In this work, we analyze how different rule quality measures
might influence the classification performance of a rule set

Fig. 1. Approach used to generate multiple rule sets using bootstrapping
samples.

Fig. 2. An entire population represented as a table where each individual
is a row (left). Each individual is a set of rule identifiers (middle). Each rule
identifier corresponds to an unique rule in the pool (right).

searched by an EA. Given a classifierC, such as the one
represented by the individual in Figure 2-middle, and an
examplee to be classified, several rules ofC might cover the
examplee. Although different classes may be predicted by
the fired rules, we want to choose one rule that will provide
the final classification. In the next section, we review some
popular rule quality measures. These measures are used to
decide which rule will provide the class ofe.

III. RULE MEASURES

A classification ruleis an intelligible representation of a
piece of knowledge. A ruleR is given in the form

B → H

whereB, calledbody, is a conjunction of conditions andH ,
calledhead, is the class value predicted by the rule.

Given a rule R and an examplee, R covers e if all
conditions ofB are verified true ine. A rule correctly covers
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TABLE I
CONTINGENCY MATRIX .

H H

B fbh fbh̄ fb

B fb̄h fb̄h̄ f
b

fh f
h

1

an example if the rule covers the example and correctly
predicts its class.

When a rule is evaluated against a data set, the examples
may be distributed along four sets,B, B̄, H andH̄ . Examples
covered by a rule belong toB, while examples having the same
class as predicted by the rule belong toH . Their complements,
B̄ andH̄ contain the examplesnot coveredand the examples
incorrectly predicted by the rule. The corollary intersections
contain examples correctly covered, incorrectly covered,not
covered but correctly predicted, and finally, not covered and
incorrectly predicted. These sets are important to construct the
rule’s contingency matrix(see Table I), which is the basis of
the Lavrač framework [10].

We use the notationfxy to denote the empirical frequency
of an eventx ∈ {B, B̄} and an eventy ∈ {H, H̄}. Therefore,
fxy in an empirical estimate of the probabilityp(x, y). For
sake of completeness, we describe all empirical frequencies
as follows:

• fbh is the percentage of examples covered and correctly
classified by a ruleR;

• fbh̄ is the percentage of examples covered and incorrectly
classified by a ruleR;

• fb̄h is the percentage of examples not covered byR, but
the class predicted byR is the same class of the example;

• fb̄h̄ is the percentage of examples not covered byR, and
the class predicted byR is different from the class of the
example.

The marginal frequenciesfb, fb̄, fh, fh̄ are defined as:

• fb is the percentage of examples covered byR;
• fb̄ is the percentage of examples not covered byR;
• fh is the percentage of examples correctly classified by

R, independently ifR covers or not the examples. It is
also the prior probability estimate of the class predicted
by the rule;

• fh̄ is the percentage of examples incorrectly classified by
R, independently ifR covers or not the examples.

The Lavrač framework allows to define different rule mea-
sures under a same organization. In this work, we analyze
the influence of 9 rule measures listed in Table II. We briefly
describe each measure as follows:

1) Confidence, also known asprecision or strength, is
the probability that a ruleR will provide a correct
prediction given that it covered the example. In practice,
is probability might be very high for rules that cover a
restricted number of examples;

2) Laplace is the confidence measure with Laplace cor-
rection. Laplace correction is frequently used to im-
prove probabilities estimates when data are scarse. This
implementation of Laplace approximates the estimated

probability to 0.5 as fewer examples are covered by the
rule;

3) Lift measures the confidence ofR relative to the prior
probability of the class predicted byR. This measure
is based on the idea that an useful rule should have a
confidence higher than a default rule that always predicts
the same class;

4) Conviction is similar to lift since it also relates confi-
dence with class prior probability. However, conviction
is very sensitive to the confidence of a rule. Rules with
a confidence value of 1, which it is not rare for low
coverage rules, will have an infinite conviction;

5) Leverage, also known asPiatetsky-Shapiro’smeasure,
is derived from the concept of statistical independence.
If two eventsx and y are independent, thenp(x, y) =
p(x)×p(y). Leverage measures how muchfbh deviates
from fb × fh, i.e., the probability estimate assuming the
eventsb andh independent. It is expected that an useful
rule has a confidence higher than the prior probability
of the class that it predicts, i.e.,fbh

fb

> fh. Therefore,
we should look for rules thatfbh > fb × fh;

6) X 2 is a well-known statistical test of independence.
It is used to measure the independence between the
rule antecedent and consequent. It is closely related
to φ-coefficient, but it takes in account the number of
instances in the data set (N );

7) Jaccard is a measure of overlapping between the num-
ber of cases covered by the rule and the number of cases
that belongs to the predicted class. This measure has
maximum valuefb = fh = fhb, i.e., when the rule
covers all examples of the predicted class and none
example from other classes. In contrast, its minimum
value is given whenfbh = 0, i.e., when the rule
misclassify every case it predicts;

8) Cosine is frequently used in text mining to measure the
similarity between two vectors of attributes. For scalar
values, cosine is similar to Jaccard measure and assume
its minimal and maximal values in the same conditions;

9) φ-coefficient is a statistical measure of association be-
tween two binary variables. This measure is related to
the Pearson correlation coefficient and also to theX 2

measure. Sinceφ = X
2

N
[12], whereN is the number

of data instances, theφ-coefficient is independent from
the data set size.

IV. EXPERIMENTAL EVALUATION

We carried out a number of experiments to evaluate the
influence of each rule quality measure in the performance of
symbolic classifiers searched by the evolutionary algorithm.
The experiments were performed using 10 benchmark data
sets, collected from the UCI repository [13]. In addition,
we used AUC as the main measure to assess our results.
Table III summarizes the main features of these data sets,
which are: Identifier – identification of the data set used in the
text; #Examples – the total number of examples; #Attributes
(quanti., quali.) – the total number of attributes, as well as the
number of quantitative and qualitative attributes; Classes (min.,
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TABLE II
SUMMARY OF RULE QUALITY MEASURES (ADAPTED FROM [11]).

Measure Definition Range

Confidence conf =
fbh

fb

0...1

Laplace lapl =
fbh + 1

fb + 2
0...1

Lift lift =
conf

fh

0... + ∞

Conviction conv =
1 − fh

1 − conf
0.5...1... + ∞

Leverage leve = fbh − (fb × fh) −0.25...0...0.25

X 2 X 2 = N ×
∑

x∈{b,b̄},y∈{h,h̄}

(fxy − fx × fy)2

fx × fy

0... + ∞

Jaccard jacc =
fbh

fb + fh − fbh

0...1

Cosine cos =
fbh

√

fb × fh

0...
√

fbh...1

φ-coefficient φ − coeff =
leve

√

fb × fh × fb̄ × fh̄

−1...0...1

TABLE III
DATA SETS DESCRIPTION.

Identifier #Examples #Attributes Classes
(quanti., quali.) (min., maj.)

Blood 748 4 (4, 0) (1, 0)
(24.00%, 76.00%)

Breast 699 10 (10, 0) (benign, malignant)
(34.99%, 65.01%)

Bupa 345 6 (6, 0) (1, 2)
(42.02%, 57.98%)

CMC 1473 9 (2, 7) (1, remaining)
(42.73%, 57.27%)

Flare 1066 10 (2, 8) (C-class, remaining)
(17.07%, 82.93%)

Haberman 306 3 (3, 0) (2, 1)
(26.47%, 73.53%)

New-Thyroid 215 5 (5, 0) (remaining, 1-normal)
(30.23%, 69.77%)

Pima 768 8 (8, 0) (1, 0)
(34.89%, 65.11%)

Vehicle 946 18 (18, 0) (van, remaining)
(23.89%, 76.11%)

Yeast 1484 8 (8, 0) (NUC, remaining)
(28.90%, 71.10%)

maj.) % (min., maj.) – the label of the minority and majority
classes and the percentage of minority and majority classes.
In order to measure the performance of the classifiers using
AUC, data sets with more than two classes were transformed in
binary classification problems by selecting one of the classes
as minority/majority class (as indicated in column Classes)
and assigning the examples from the other classes to the
majority/minority class.

As previously described, we used the 10-fold stratified
cross-validation resampling method for generating training and
their correspondent test sets. In addition, 30 bootstrapping
samples with replacement were created for each training set.
We empirically chose the number of 30 bootstrapping samples
since it allowed to create a diverse pool of rules. Increasing
this number did not improve our results, but increased the
training times.

Each bootstrapped training set was given as input to the

TABLE IV
CHROMOSOME SIZE FOR EACH DATA SET BASED ON THE MEAN NUMBER

OF RULES PROVIDED BYRIPPER.

Data set Chromosome size
Blood 6
Breast 6
Bupa 8
CMC 12
Flare 6

Haberman 4
New-Thyroid 4

Pima 10
Vehicle 6

Yeast 8

Machine Learning algorithm Ripper. The rules from all rule
sets were integrated into a unique pool of rules, and the
repeated rules were discarded. Next, the pool of rules was
given as input to the evolutionary algorithm that outputteda
final rule set (a classifier). Finally, AUC was measured over
the test set.

Our evolutionary algorithm was set to use 40 chromosomes
in all experiments. The chromosome size, i.e., the number of
rules of an individual classifier was defined according to the
average size of the classifiers generated by Ripper in each
data set. In the Pittsburgh approach, it is a commonsense to
allow variable-sized chromosomes. Therefore, the evolutionary
algorithm is free to search for rule sets with different number
of rules using a two-point cross-over operator. In our case,
we noticed that a search with variable-sized chromosomes
resulted in very large rule sets for most domains. These large
rule sets had a poor performance in the test set, indicating
overfitting. Therefore, we opted to keep all chromosomes with
fixed sizes. The chromosome size chosen for each data set is
the mean number of rules induced by Ripper in the same data
set. Table IV lists the chromosome sizes for each data set.

The fitness function used is the AUC metric measured over
the training examples. The selection method is the fitness-
proportionate selection. The crossover operator was applied
with probability 0.4 and the mutation operator was applied
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with probability 0.1. Mutation and crossover rates were chosen
based on our previous experience with EAs [14], [15]. The
number of generations was limited to 20. Our implementation
uses an elitism operator to ensure that the best classifier iskept
in the next population. Finally, since evolutionary algorithms
perform a stochastic search that might provide different results
in each execution, we repeated each experiment 10 times and
averaged the results.

Table V presents results obtained. All results represent the
mean AUC values calculated over the 10 pairs of training
and test sets and averaged for 10 repeated executions. The
standard deviations are also showed between parentheses. The
second column shows the results obtained by Ripper for all
data sets. The next columns show the results obtained by the
evolutionary algorithm for each rule quality measure. The best
AUC for each data set is emphasized in boldface. We can note
that the EA search has improved considerably the AUC when
compared with the results obtained by Ripper. However, the
best AUC values are scattered throughout the table, indicating
that no single measure systematically provides the best results.

Since no single measure provided the best results, we
decided to rank the measures considering their mean AUC val-
ues. Table VI shows the results for this ranking. The second-
to-last column of table shows the sum of ranks obtained by
each measure for all the data sets. The last column shows a
score based on the sum of ranks for each measure, in a way
that the measure that has the lowest sum of ranks scores 1.
The measure with lowest score isconfidence. Confidence

obtained the better AUC values for Vehicle and Yeast data
sets; the second better AUC values to Breast, CMC, Flare and
New-Thyroid data sets; the third better AUC value to Bupa
and Pima data set; the fourth better AUC value to Blood; and,
the fifth better AUC value to Haberman data set.

In order to analyze whether there is a statistically significant
difference among the compared measures, we ran the Fried-
man test1. The Friedman test was run with the null-hypotheses
that the performance of all rule measures is comparable. When
the null-hypothesis is rejected by the Friedman test, at 95%
confidence level, we can proceed with a post-hoc test to
detect which differences among the methods are significant.
For such, we ran the Bonferroni-Dunn multiple comparisons
with a control test.

The null-hypothesis was rejected by the Friedman test at
95% confidence level. So, we ran the Bonferroni-Dunn test
using the measureconfidence as control. The Bonferroni-
Dunn test indicate that the EA allied the measureconfidence

outperforms Ripper with 95% confidence level. However,
there are no statistically significant differences among the rule
quality measures.

Our results differ from previously published results. To the
best of our knowledge, the most similar work in literature
is [11] which compares rule quality measures in the context
of association rule classification. Their results indicatethat
conviction presented the best results. Our experiments indi-
cate thatconfidence and lift performed slightly better than

1The Friedman test is a nonparametric equivalent of the repeated-measures
ANOVA. See [16] for a thorough discussion regarding statistical tests in
Machine Learning research.

conviction, but with no statistical difference. This difference
between the results presented might be motivated by the use
of different performance measures, since error rate was used
in [11].

V. CONCLUSION

In this work, we compared 9 different rule quality measures
in 10 different benchmark data sets. The rule measures were
used to decide which rule should provide the final classifica-
tion in an unordered rule set. Our results indicate that the
use of different rule measures have a marginal effect over
the classification performance assessed by the area under the
ROC curve. Theconfidence measure presented the best mean
results, but with no statistical difference to the other rule
measures.

As future work, we plan to investigate the use of differ-
ent rule quality measures as a weighting factor in a voting
approach in which all fired rules contribute to the final
classification.
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