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Abstract—The Pittsburgh representation is a well-known en- composed by a rule set. These rule sets can be interpreted as
coding for symbolic classifiers in evolutionary algorithms where  orderedor unorderedsets. In the case of an ordered rule set,
each individual represents one symbolic classifier, and ehc rule ordering defines a precedence relationship. For instan

symbolic classifier is composed by a rule set. These rule setan h le to be classified i ted t dered
be interpreted asordered or unordered sets. The major difference when an example 1o be classified 1S presented to an ordere

between these two approaches is whether rule ordering defisea  'ule set, rules must be analyzed regarding their positichen
rule precedence relationship or not. Although ordered rulesets set. The final classification is given by the class predicted b
are simple to implement in a computer system, the rule set is thefirst rule that covers the example. Although this approach
difficult to be interpreted by human domain experts, since rues is very simple to implement in a computer system, the rule set
are not independent from each other. In contrast, unorderedule . cees . . )

sets are more flexible regarding their interpretation. Rules are 'S difficult to b? interpreted by human domain experts, since
independent from each other and can be individually preserad  'ulés are not independent from each other. The knowledge

to a human domain expert. However, the algorithm to decide expressed in a rule only holds if all preceding rules were not
a classification of a given example is more complex. As rules fired.

have no precedence, an example should be presented to allesl |, nirast, unordered rule sets are more flexible regarding
at once and some criteria should be established to decide the

final classification based on all fired rules. A simple approag their interpretation. Rules are independent from eachrothe
to decide which rule should provide the final classification s and can be individually presented to a human domain expert.
to select the rule that has the best rating according to a However, the algorithm to decide the classification of a igive
chosen quality measure. Dozens of measures were proposed irexample is more complex. As rules have no precedence, an
literature; however, it is not clear whether any of them woul o 5 1 hie should be presented to all rules at once and some
provide a better classification performance. This work perbrms o . . . .

a comparative study of rule performance measures for unorded ~ Cfiteria should_be estabhshec_j to decide the final cIa_ssrmna_
symbolic classifiers induced by evolutionary algorithms. W& based on all fired rules. A simple approach to decide which
compare 9 rule quality measures in 10 data sets. Our experinmés  rule should provide the final classification is to select thie r
point out that confidence (also known as precision) presentethe  that has the best rating according to a chosen quality mea-
best mean results, although most of the rule quality measuge g, pozens of these measures were proposed in literature.
presented approximated classification performance assess$ with o .
the area under the ROC curve (AUC). However, it is not clear whether any of them would provide a
better classification performance.

This work performs a comparative study of rule perfor-
mance measures for unordered symbolic classifiers induced
by EAs. We compare 9 rule quality measures in 10 data sets.

[. INTRODUCTION In our experiments, we use the area under the ROC curve

Volutionary Algorithms (EAs) have been successfullfAUC) [3] as the main measure to assess our results. AUC has
E applied to solve problems in a large number of domaing€veral advantages over other conventional measure such as
One of their most prominent features is to perform a glob&[Tor rate and accuracy [4], for instance, AUC is independen
search using multiple candidate solutions, and therefore from class prior probabilities. Our experiments point chatt
creasing the possibilities of finding an optimal solution. [1 confidence (also known as precision) presented the best mean
In contrast, induction of symbolic classifiers can be seea agesults, although most of the rule quality measures present
search problem in which some performance measure sho@iRProximated classification performance.
be optimized, such as accuracy or coverage. Conventionall Nis paper is organized as follows: Section Il describes our
symbolic inducers, for instance decision tree inducers, ais EA; Section Ill presents the rule quality measures used n ou
simple greedy search, and EAs present an attractive aftegna€xperiments; Section IV empirically compares the measures
to better search the hypothesis space. on 10 application domains; and finally, Section V concludes

The Pittsburgh representation [2] is a well-known encodirf§is paper and presents some directions for future work.
for symbolic classifiers in EAs, where each individual repre
sents one symbolic classifier, and each symbolic class#ier i II. OUR EVOLUTIONARY ALGORITHM

Index Terms—Symbolic classification, evolutionary algorithm,
rule quality measures.
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approach each individual codifies a classifiers, i.e. a rete s
This difference is more than a simple technical detail. Mich
gan approach is used when we are interested in a single rule
with a determined propriety, such as accuracy. Even though t
final population has several rules, those rules usually do no
have a collective property, such as complementary coverage
Therefore, Michigan approach is frequently used to induce
descriptive rules.

In contrast, as Pittsburgh representation codifies a rtlea se v
each individual, a search is performed to optimize some col- [Training Set T,-l] [Training Set r,z]
lective property. Thus, Pittsburgh representation is comign
used to induce predictive classifiers, since such classifier
have to combine rules that are individually predictive and @ @
collectively complementary, in a way that a large number of
examples is covered and correctly classified. — — ——

As previously stated, we use the Pittsburgh representation Ry R, &
in our EA. One possible criticism regarding this represéoma
is that no search is performed at rule level, i.e., rules ate n \ /
improved by the search procedure. One possible strategy is
to combine Michigan and Pittsburgh in a hybrid representa- Pool of Rules
tion [7], [8]. However, this approach increases considgrab
the search space and doubles the number parameters. As
consequence, this approach is more computationally iivens Fig. 1.
its results are more difficult to analyze (due the larger nembsamples.
of parameters that should be tuned), and more important,

Training Set

Bootstraping
Procedure

Training Set T;,

Approach used to generate multiple rule sets usir@sktrapping

the larger search space increases considerably changes P 0 | if <complex> then <class>
- . 315045/ 1176]..]6F 3 1 | if <complex> then <class>
overfitting training data. 74| 25| 11|55 24 .. [17 = 2 | Bmming than sk
In order to use the Pittsburgh representation over a set |38]21]15]141] 12| ... | 2 2] 3 [ if <complex> then <class>
predictive rules, we use the Ripper rule induction algonif9] o=t = 3 | sonmpl e <o
e =l if <complex> then <class>
to genergte an initial ru!e set..However, for most_ data skés, = A T
rule set induced by Ripper is usually of restricted numbe ]
of rules. Thus, we use a bootstrapping sampling strategy 1= 1T 15 6 |
generate multiple training sets. This sampling strate¢ywal - chromosome n | if <complex> then <class>

us to increase the number and diversity of the rules. ool of rules
In more details, in our experiments we use thdold
stratified cross-validation resampling method for geriiegat Fig. 2. An entire population represented as a table wherb eatividual
k training set7;, T, ... 7, and their correspondent test setgea:nri(f)i‘grfggégﬁ%gg"gﬂa&r']?qiesffjfe’fi;”'tf]e'dggg'%ﬁ'(dd'e)' Each rule
from each data set. Next; bootstrapping samplewith re-
placement7;y, 70, ... 7;, are created from each training set
7;,1 <i < k. Each bootstrapped sample has the same numbghrched by an EA. Given a classifiér such as the one
of examples as its corresponding training set, |E;| = |7;|, represented by the individual in Figurenfiddle and an
I<j<n examplee to be classified, several rules 6fmight cover the
Each bootstrapped training sE} is given as input to Ripper examplee. Although different classes may be predicted by
algorithm andn rule sets are induce®;;, Riz, ... Rin- All  the fired rules, we want to choose one rule that will provide
rule sets are integrated into a unique pool of rules, and thfe final classification. In the next section, we review some
repeated rules are discarded. Figure 1 illustrates thiplsagn popular rule quality measures. These measures are used to

approach. decide which rule will provide the class ef
In a second step, all rules are given as input to our EA.
Internally, each rule is associated with a unique identifier I1l. RULE MEASURES

An individual, i.e., a rule set is represented as a set of rule e : : - .
; o . o A classification ruleis an intelligible representation of a
identifiers. Finally, the population is a table that contalh . L :

ece of knowledge. A rule&? is given in the form

sets of individuals. This representation scheme is very cd%I
venient, since conventional evolutionary operationshsas
mutation and crossover, can be readily implemented as simpl
manipulations of the population table. Figure 2 illustsatieis where B, calledbody, is a conjunction of conditions anH,
representation scheme. calledhead is the class value predicted by the rule.

In this work, we analyze how different rule quality measures Given a rule R and an example;, R coverse if all
might influence the classification performance of a rule sebnditions of B are verified true ire. A rule correctly covers

B—H
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fh fﬁ 1

an example if the rule covers
predicts its class.

4
the example and correctly

3)

)

When a rule is evaluated against a data set, the examples

may be distributed along four set8, B, H and H. Examples

covered by a rule belong t8, while examples having the same

class as predicted by the rule belongo Their complements,
B and H contain the examplesot coveredand the examples

incorrectly predicted by the rule. The corollary intersections

contain examples correctly covered, incorrectly coveremt,

covered but correctly predicted, and finally, not covered an

incorrectly predicted. These sets are important to coasthe
rule’s contingency matriXsee Table 1), which is the basis of
the Lavrac framework [10].

We use the notatiorf,, to denote the empirical frequency
of an eventr € {B, B} and an eveny € {H, H}. Therefore,
fzy In an empirical estimate of the probabilipyx,y). For

sake of completeness, we describe all empirical frequencie

as follows:

5)

6)

« fun is the percentage of examples covered and correctly7)

classified by a ruler;

« fi5 is the percentage of examples covered and incorrectly

classified by a ruleR;
« fi;, is the percentage of examples not coveredibut

the class predicted bi is the same class of the example;

« f35 is the percentage of examples not coveredihyand
the class predicted bR is different from the class of the
example.

The marginal frequencief,, f;, fr, f are defined as:

o f3 is the percentage of examples covereditly
« f; is the percentage of examples not coverediy

o [ is the percentage of examples correctly classified by

R, independently ifR covers or not the examples. It is

also the prior probability estimate of the class predicted

by the rule;

« f7 is the percentage of examples incorrectly classified by

R, independently ifR covers or not the examples.

The Lavrac framework allows to define different rule mea-

8)

9)

sures under a same organization. In this work, we analyze
the influence of 9 rule measures listed in Table Il. We briefly \nie carried out a number of experiments to evaluate the

describe each measure as follows:
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probability to 0.5 as fewer examples are covered by the
rule;
Lift measures the confidence Bfrelative to the prior
probability of the class predicted bi. This measure
is based on the idea that an useful rule should have a
confidence higher than a default rule that always predicts
the same class;
Conviction is similar to lift since it also relates confi-
dence with class prior probability. However, conviction
is very sensitive to the confidence of a rule. Rules with
a confidence value of 1, which it is not rare for low
coverage rules, will have an infinite conviction;
Leverage also known adPiatetsky-Shapiro’sneasure,
is derived from the concept of statistical independence.
If two eventsz andy are independent, thep(z,y) =
p(z) X p(y). Leverage measures how mugh, deviates
from f, x f3, i.e., the probability estimate assuming the
eventsh andh independent. It is expected that an useful
rule has a confidence higher than the prior probability
of the class that it predicts, |ef;—h > fr. Therefore,

b
we should look for rules thafy, > f, x fa;
X? is a well-known statistical test of independence.
It is used to measure the independence between the
rule antecedent and consequent. It is closely related
to ¢-coefficient, but it takes in account the number of
instances in the data seV{;
Jaccard is a measure of overlapping between the num-
ber of cases covered by the rule and the number of cases
that belongs to the predicted class. This measure has
maximum valuef, = frn = fns, i-€., when the rule
covers all examples of the predicted class and none
example from other classes. In contrast, its minimum
value is given whenf,, = 0, i.e., when the rule
misclassify every case it predicts;
Cosineis frequently used in text mining to measure the
similarity between two vectors of attributes. For scalar
values, cosine is similar to Jaccard measure and assume
its minimal and maximal values in the same conditions;
¢-coefficientis a statistical measure of association be-
tween two binary variables. This measure is related to
the Pearson correlation coefficient and also to Atfe
measure. Since = %2 [12], where N is the number
of data instances, thg-coefficient is independent from
the data set size.

IV. EXPERIMENTAL EVALUATION

influence of each rule quality measure in the performance of

1) Confidence also known asprecision or strength is symbolic classifiers searched by the evolutionary algorith
the probability that a ruleR will provide a correct The experiments were performed using 10 benchmark data
prediction given that it covered the example. In practiceets, collected from the UCI repository [13]. In addition,
is probability might be very high for rules that cover ave used AUC as the main measure to assess our results.

restricted number of examples;
2)

Table 1ll summarizes the main features of these data sets,
Laplace is the confidence measure with Laplace cowhich are: Identifier — identification of the data set usechin t

rection. Laplace correction is frequently used to imtext; #Examples — the total number of examples; #Attributes
prove probabilities estimates when data are scarse. T{asianti., quali.) — the total number of attributes, as wesltlze
implementation of Laplace approximates the estimatedimber of quantitative and qualitative attributes; Clagsen.,
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TABLE Il
SUMMARY OF RULE QUALITY MEASURES (ADAPTED FROM[11]).
Measure Definition Range
Confidence conf = f;—h 0...1
b
1
Laplace lapl Jon + 0...1
fo +2
Lift lift = <o 0... 4 00
i h
Conviction conv = In 0.5...1... + 0o
1 —conf
Leverage leve = fon, — (fo X fn) —0.25...0...0.25
2 2 _ (foy — fa ><fy)2
X2 XP=NXY o veini) T 0... + 00
Jaccard jacc = fbih 0...1
Jo+ fn— fon
Cosine cos = —=20h 0.../ fon---1
\ o X fn
- [
¢-coefficient ¢ — coeff = cve —1...0...1
\ fo X X f5 X S,
TABLE Il TABLE IV
DATA SETS DESCRIPTION CHROMOSOME SIZE FOR EACH DATA SET BASED ON THE MEAN NUMBER
OF RULES PROVIDED BYRIPPER
Identifier | #Examples #Attributes Classes
(quanti., quali.) (min., maj.) Data set| Chromosome size
Blood 748 4 (4, 0) (1,0 Blood 6
(24.00%, 76.00%) Breast 6
Breast 699 10 (10, 0) (benign, malignant) Bupa 8
(34.99%, 65.01%) CMC 12
Bupa 345 6 (6, 0) 1,2 Flare 6
(42.02%, 57.98%) Haberman 4
CMC 1473 92 7) (1, remaining) New-Thyroid 4
(42.73%, 57.27%) Pima 10
Flare 1066 10 (2, 8) (C-class, remaining) Vehicle 6
(17.07%, 82.93%) Yeast 8
Haberman 306 3(3,0) 2, 1)
(26.47%, 73.53%)
New-Thyroid 215 5 (5, 0) (remaining, 1-normal)
, (30.23%, 69.77%) Machine Learning algorithm Ripper. The rules from all rule
Pima 768 880 34 890(/01’ g% 11  Sets were integrated into a unique pool of rules, and the
Vehicle 946 18 (18, 0) (van, rémaining) repeated rules were discarded. Next, the pool of rules was
(23.89%, 76.11%) given as input to the evolutionary algorithm that outputted
Yeast 1484 8 (8, 0) (NUC, remaining) - s ;
(28.90%, 71.10%) Iw:ltergtleszft (a classifier). Finally, AUC was measured over

Our evolutionary algorithm was set to use 40 chromosomes
in all experiments. The chromosome size, i.e., the number of
maj.) % (min., maj.) — the label of the minority and majority|es of an individual classifier was defined according to the
classes and the percentage of minority and majority classg$erage size of the classifiers generated by Ripper in each
In order to measure the performance of the classifiers usigga set. In the Pittsburgh approach, it is a commonsense to
AUC, data sets with more than two classes were transformedifbyy variable-sized chromosomes. Therefore, the earatiy
binary classification problems by selecting one of the elassy|gorithm is free to search for rule sets with different nemb
as minority/majority class (as indicated in column Clapsegf rules using a two-point cross-over operator. In our case,
and assigning the examples from the other classes to {g noticed that a search with variable-sized chromosomes
majority/minority class. resulted in very large rule sets for most domains. Theselarg
As previously described, we used the 10-fold stratifiedile sets had a poor performance in the test set, indicating
cross-validation resampling method for generating trajr@ind  overfitting. Therefore, we opted to keep all chromosomeb wit
their correspondent test sets. In addition, 30 bootstrappifixed sizes. The chromosome size chosen for each data set is
samples with replacement were created for each training s mean number of rules induced by Ripper in the same data
We empirically chose the number of 30 bootstrapping samplest. Table IV lists the chromosome sizes for each data set.
since it allowed to create a diverse pool of rules. Incrensin The fitness function used is the AUC metric measured over
this number did not improve our results, but increased tige training examples. The selection method is the fitness-
training times. proportionate selection. The crossover operator was egpli
Each bootstrapped training set was given as input to théth probability 0.4 and the mutation operator was applied

IEEE Intelligent Informatics Bulletin December 2010 Vol.11 No.1



12 Feature Article: A Study of the Influence of Rule Measure€iassifiers Induced by Evolutionary Algorithms

with probability 0.1. Mutation and crossover rates weresgho conwviction, but with no statistical difference. This difference
based on our previous experience with EAs [14], [15]. Theetween the results presented might be motivated by the use
number of generations was limited to 20. Our implementatiai different performance measures, since error rate wad use
uses an elitism operator to ensure that the best classifiepis in [11].
in the next population. Finally, since evolutionary algoms
perform a stochastic search that might provide differestite
in each execution, we repeated each experiment 10 times and
averaged the results. In this work, we compared 9 different rule quality measures
Table V presents results obtained. All results represemt tim 10 different benchmark data sets. The rule measures were
mean AUC values calculated over the 10 pairs of trainingsed to decide which rule should provide the final classifica-
and test sets and averaged for 10 repeated executions. fith¢ in an unordered rule set. Our results indicate that the
standard deviations are also showed between parenthdses.uke of different rule measures have a marginal effect over
second column shows the results obtained by Ripper for gk classification performance assessed by the area uraler th
data sets. The next columns show the results obtained by B®C curve. Theon fidence measure presented the best mean
evolutionary algorithm for each rule quality measure. Thetb results, but with no statistical difference to the othererul
AUC for each data set is emphasized in boldface. We can neteasures.
that the EA search has improved considerably the AUC whenAs future work, we plan to investigate the use of differ-

compared with the results obtained by Ripper. However, t@t rule quality measures as a weighting factor in a voting
best AUC values are scattered throughout the table, ind@catapproach in which all fired rules contribute to the final

V. CONCLUSION

that no single measure systematically provides the beglises classification.

Since no single measure provided the best results, we
decided to rank the measures considering their mean AUC val-
ues. Table VI shows the results for this ranking. The second-
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score based on the sum of ranks for each measure, in a way
that the measure that has the lowest sum of ranks scores 1.
The measure with lowest score den fidence. Confidence
obtained the better AUC values for Vehicle and Yeast datg,
sets; the second better AUC values to Breast, CMC, Flare and
New-Thyroid data sets; the third better AUC value to Bupa?!
and Pima data set; the fourth better AUC value to Blood; angs
the fifth better AUC value to Haberman data set.

In order to analyze whether there is a statistically sigaific [4]
difference among the compared measures, we ran the Fried:
man test. The Friedman test was run with the null-hypotheses
that the performance of all rule measures is comparable nWhésl
the null-hypothesis is rejected by the Friedman test, at 95%
confidence level, we can proceed with a post-hoc test to
detect which differences among the methods are significaril
For such, we ran the Bonferroni-Dunn multiple comparisons
with a control test. 8]

The null-hypothesis was rejected by the Friedman test at
95% confidence level. So, we ran the Bonferroni-Dunn tedf!
using the measureon fidence as control. The Bonferroni- [1q
Dunn test indicate that the EA allied the meastue fidence
outperforms Ripper with 95% confidence level. However,
there are no statistically significant differences amoregrtiie [11]
quality measures.

Our results differ from previously published results. Te th
best of our knowledge, the most similar work in literatur&-?
is [11] which compares rule quality measures in the context
of association rule classification. Their results indicdtat [13]
conviction presented the best results. Our experiments indi-
cate thatcon fidence andlift performed slightly better than [14]

1The Friedman test is a nonparametric equivalent of the tefaneasures
ANOVA. See [16] for a thorough discussion regarding statdttests in
Machine Learning research.
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TABLE V
AVERAGE AUC VALUE OBTAINED BY RIPPER AND EVALUATED MEASURES

Ripper conf lapl lift conv leve X“ jace cos ¢-coeff
Blood 63.34(3.69) 67.42(6.38) 66.89(6.44) 67.74(6.25) 67.67(6.16) 66.83(6.66) 66.78(6.30) 67.34(6.28) 67.32A6 67.49(6.27)
Breast | 97.33(2.26) 97.60(1.74) 97.06(1.72) 97.84(1.28) 97.32(1.34) 97.00(1.44) 96.89(1.70) 96.79(1.81) 96.@A(L 96.75(1.90)

Bupa 67.13(6.19) 67.34(4.90)  66.06(6.37) 69.06(5.20) 67.25(4.78)  67.19(6.07)  66.49(5.51) 66.21(5.26) 66.BOH 68.42(6.09)
CMC | 68.64(2.27) 69.58(3.45) 60.13(3.35) 69.63(3.18) 69.30(3.43) 69.11(3.15) 69.32(3.34) 68.87(3.37) 69.BHB 68.96(3.49)
Flare | 56.94(2.25) 63.13(4.55) 62.20(4.76) 62.84(4.84) 62.B8) 63.43(4.85) 62.26(5.10) 62.56(4.66) 62.45(4.56) 62.30(4.86)
Haberman| 60.94(11.31) 63.53(7.95) 63.65(9.05) 62.83(8.08) 6847 62.60(7.95) 63.73(7.97) 64.09(8.02) 62.63(7.67) 63.07(7.85)
New-Thyroid 92.50(7.92) 95.06(4.92) 94.86(5.70) 93.95(5.94) 93.BR6 95.18(5.35) 94.31(6.08) 94.26(6.23) 94.43(5.85)  94.47(5.40)
Pima 69.98(2.21) 74.12(3.51) 72.28(4.34)  74.19(3.58)74.54(2.97) 71.92(4.28)  72.27(3.84)  72.50(3.36)  72.37(4.22) T72.2B}
Vehicle | 92.21(2.55) 94.42(1.90) 94.06(1.89) 93.90(1.86) 93.52(2.41) 92.98(2.22) 93.8BR 93.82(L.77) 93.52(2.21)  93.25(1.94)
Yeast | 65.99(2.13) 69.49(3.15) 68.41(2.81) 69.01(2.72) 69.02(3.37) 68.30(3.32) 68.GHB 67.78(2.66) 68.49(2.61) 68.80(2.85)

TABLE VI
RANKING OF AUC VALUES OBTAINED BY RIPPER AND EVALUATED MEASURES

Data Set| Blood Breast Bupa CMC Flare Haberman New-Thyroid Pima \Mehic Yeast| Sum | Score
Ripper 10 3 6 10 10 10 10 10 10 10 89 8
conf 4 2 3 2 2 5 2 3 1 1| 25 1

lapl 7 5 10 5 9 3 6 2 7| 58 4

lift 1 1 1 1 4 7 8 2 3 3| 31 2

conv 2 4 4 4 3 2 9 1 7 2| 38 3

leve 8 6 5 6 1 9 1 9 9 8| 62 6

x? 9 8 8 3 8 3 6 7 5 5| 62 6

jace 5 9 9 9 5 1 7 4 4 9| 62 6

cos 6 7 7 7 6 8 5 5 6 6| 63 7

¢ — coeff 3 10 2 8 7 6 4 8 8 4| 60 5
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