
1
INTRODUCTION TO DATABASE

SYSTEMS

Exercise 1.1 Why would you choose a database system instead of simply storing data
in operating system files? When would it make sense not to use a database system?

Answer 1.1 A database is an integrated collection of data, usually so large that it
has to be stored on secondary storage devices such as disks or tapes. This data can
be maintained as a collection of operating system files, or stored in a DBMS (database
management system). The advantages of using a DBMS are:

Data independence and efficient access. Database application programs are in-
dependent of the details of data representation and storage. The conceptual and
external schemas provide independence from physical storage decisions and logical
design decisions respectively. In addition, a DBMS provides efficient storage and
retrieval mechanisms, including support for very large files, index structures and
query optimization.

Reduced application development time. Since the DBMS provides several impor-
tant functions required by applications, such as concurrency control and crash
recovery, high level query facilities, etc., only application-specific code needs to
be written. Even this is facilitated by suites of application development tools
available from vendors for many database management systems.

Data integrity and security. The view mechanism and the authorization facilities
of a DBMS provide a powerful access control mechanism. Further, updates to the
data that violate the semantics of the data can be detected and rejected by the
DBMS if users specify the appropriate integrity constraints.

Data administration. By providing a common umbrella for a large collection of
data that is shared by several users, a DBMS facilitates maintenance and data
administration tasks. A good DBA can effectively shield end-users from the chores
of fine-tuning the data representation, periodic back-ups etc.

1

2 Chapter 1

Concurrent access and crash recovery. A DBMS supports the notion of a trans-
action, which is conceptually a single user’s sequential program. Users can write
transactions as if their programs were running in isolation against the database.
The DBMS executes the actions of transactions in an interleaved fashion to obtain
good performance, but schedules them in such a way as to ensure that conflicting
operations are not permitted to proceed concurrently. Further, the DBMS main-
tains a continuous log of the changes to the data, and if there is a system crash,
it can restore the database to a transaction-consistent state. That is, the actions
of incomplete transactions are undone, so that the database state reflects only the
actions of completed transactions. Thus, if each complete transaction, executing
alone, maintains the consistency criteria, then the database state after recovery
from a crash is consistent.

If these advantages are not important for the application at hand, using a collection of
files may be a better solution because of the increased cost and overhead of purchasing
and maintaining a DBMS.

Exercise 1.2 What is logical data independence and why is it important?

Answer 1.2 Answer omitted.

Exercise 1.3 Explain the difference between logical and physical data independence.

Answer 1.3 Logical data independence means that users are shielded from changes
in the logical structure of the data, while physical data independence insulates users
from changes in the physical storage of the data. We saw an example of logical data
independence in the answer to Exercise 1.2. Consider the Students relation from that
example (and now assume that it is not replaced by the two smaller relations). We
could choose to store Students tuples in a heap file, with a clustered index on the
sname field. Alternatively, we could choose to store it with an index on the gpa field,
or to create indexes on both fields, or to store it as a file sorted by gpa. These storage
alternatives are not visible to users, except in terms of improved performance, since
they simply see a relation as a set of tuples. This is what is meant by physical data
independence.

Exercise 1.4 Explain the difference between external, internal, and conceptual sche-
mas. How are these different schema layers related to the concepts of logical and
physical data independence?

Answer 1.4 Answer omitted.

Exercise 1.5 What are the responsibilities of a DBA? If we assume that the DBA
is never interested in running his or her own queries, does the DBA still need to
understand query optimization? Why?

Introduction to Database Systems 3

Answer 1.5 The DBA is responsible for:

Designing the logical and physical schemas, as well as widely-used portions of the
external schema.

Security and authorization.

Data availability and recovery from failures.

Database tuning: The DBA is responsible for evolving the database, in particular
the conceptual and physical schemas, to ensure adequate performance as user
requirements change.

A DBA needs to understand query optimization even if s/he is not interested in run-
ning his or her own queries because some of these responsibilities (database design
and tuning) are related to query optimization. Unless the DBA understands the per-
formance needs of widely used queries, and how the DBMS will optimize and execute
these queries, good design and tuning decisions cannot be made.

Exercise 1.6 Scrooge McNugget wants to store information (names, addresses, de-
scriptions of embarrassing moments, etc.) about the many ducks on his payroll. Not
surprisingly, the volume of data compels him to buy a database system. To save
money, he wants to buy one with the fewest possible features, and he plans to run it as
a stand-alone application on his PC clone. Of course, Scrooge does not plan to share
his list with anyone. Indicate which of the following DBMS features Scrooge should
pay for; in each case, also indicate why Scrooge should (or should not) pay for that
feature in the system he buys.

1. A security facility.

2. Concurrency control.

3. Crash recovery.

4. A view mechanism.

5. A query language.

Answer 1.6 Answer omitted.

Exercise 1.7 Which of the following plays an important role in representing informa-
tion about the real world in a database? Explain briefly.

1. The data definition language.

4 Chapter 1

2. The data manipulation language.

3. The buffer manager.

4. The data model.

Answer 1.7 Let us discuss the choices in turn.

The data definition language is important in representing information because it
is used to describe external and logical schemas.

The data manipulation language is used to access and update data; it is not
important for representing the data. (Of course, the data manipulation language
must be aware of how data is represented, and reflects this in the constructs that
it supports.)

The buffer manager is not very important for representation because it brings
arbitrary disk pages into main memory, independent of any data representation.

The data model is fundamental to representing information. The data model
determines what data representation mechanisms are supported by the DBMS.
The data definition language is just the specific set of language constructs available
to describe an actual application’s data in terms of the data model.

Exercise 1.8 Describe the structure of a DBMS. If your operating system is upgraded
to support some new functions on OS files (e.g., the ability to force some sequence of
bytes to disk), which layer(s) of the DBMS would you have to rewrite to take advantage
of these new functions?

Answer 1.8 Answer omitted.

Exercise 1.9 Answer the following questions:

1. What is a transaction?

2. Why does a DBMS interleave the actions of different transactions instead of exe-
cuting transactions one after the other?

3. What must a user guarantee with respect to a transaction and database consis-
tency? What should a DBMS guarantee with respect to concurrent execution of
several transactions and database consistency?

4. Explain the strict two-phase locking protocol.

5. What is the WAL property, and why is it important?

Introduction to Database Systems 5

Answer 1.9 Let us answer each question in turn:

1. A transaction is any one execution of a user program in a DBMS. This is the basic
unit of change in a DBMS.

2. A DBMS is typically shared among many users. Transactions from these users
can be interleaved to improve the execution time of users’ queries. By interleav-
ing queries, users do not have to wait for other user’s transactions to complete
fully before their own transaction begins. Without interleaving, if user A begins
a transaction that will take 10 seconds to complete, and user B wants to be-
gin a transaction, user B would have to wait an additional 10 seconds for user
A’s transaction to complete before the database would begin processing user B’s
request.

3. A user must guarantee that his or her transaction does not corrupt data or insert
nonsense in the database. For example, in a banking database, a user must guar-
antee that a cash withdraw transaction accurately models the amount a person
removes from his or her account. A database application would be worthless if
a person removed 20 dollars from an ATM but the transaction set their balance
to zero! A DBMS must guarantee that transactions are executed fully and in-
dependently of other transactions. An essential property of a DBMS is that a
transaction should execute atomically, or as if it is the only transaction running.
Also, transactions will either complete fully, or will be aborted and the database
returned to it’s initial state. This ensures that the database remains consistent.

4. Strict two-phase locking uses shared and exclusive locks to protect data. A trans-
action must hold all the required locks before executing, and does not release any
lock until the transaction has completely finished.

5. The WAL property affects the logging strategy in a DBMS. The WAL, Write-
Ahead Log, property states that each write action must be recorded in the log
(on disk) before the corresponding change is reflected in the database itself. This
protects the database from system crashes that happen during a transaction’s
execution. By recording the change in a log before the change is truly made, the
database knows to undo the changes to recover from a system crash. Otherwise,
if the system crashes just after making the change in the database but before
the database logs the change, then the database would not be able to detect his
change during crash recovery.

2
INTRODUCTION TO DATABASE

DESIGN

Exercise 2.1 Explain the following terms briefly: attribute, domain, entity, relation-
ship, entity set, relationship set, one-to-many relationship, many-to-many relationship,
participation constraint, overlap constraint, covering constraint, weak entity set, aggre-
gation, and role indicator.

Answer 2.1 Term explanations:

Attribute - a property or description of an entity. A toy department employee
entity could have attributes describing the employee’s name, salary, and years of
service.

Domain - a set of possible values for an attribute.

Entity - an object in the real world that is distinguishable from other objects such
as the green dragon toy.

Relationship - an association among two or more entities.

Entity set - a collection of similar entities such as all of the toys in the toy depart-
ment.

Relationship set - a collection of similar relationships

One-to-many relationship - a key constraint that indicates that one entity can be
associated with many of another entity. An example of a one-to-many relationship
is when an employee can work for only one department, and a department can
have many employees.

Many-to-many relationship - a key constraint that indicates that many of one
entity can be associated with many of another entity. An example of a many-
to-many relationship is employees and their hobbies: a person can have many
different hobbies, and many people can have the same hobby.

6

Introduction to Database Design 7

Participation constraint - a participation constraint determines whether relation-
ships must involve certain entities. An example is if every department entity has
a manager entity. Participation constraints can either be total or partial. A total
participation constraint says that every department has a manager. A partial
participation constraint says that every employee does not have to be a manager.

Overlap constraint - within an ISA hierarchy, an overlap constraint determines
whether or not two subclasses can contain the same entity.

Covering constraint - within an ISA hierarchy, a covering constraint determines
where the entities in the subclasses collectively include all entities in the superclass.
For example, with an Employees entity set with subclasses HourlyEmployee and
SalaryEmployee, does every Employee entity necessarily have to be within either
HourlyEmployee or SalaryEmployee?

Weak entity set - an entity that cannot be identified uniquely without considering
some primary key attributes of another identifying owner entity. An example is
including Dependent information for employees for insurance purposes.

Aggregation - a feature of the entity relationship model that allows a relationship
set to participate in another relationship set. This is indicated on an ER diagram
by drawing a dashed box around the aggregation.

Role indicator - If an entity set plays more than one role, role indicators describe
the different purpose in the relationship. An example is a single Employee entity
set with a relation Reports-To that relates supervisors and subordinates.

Exercise 2.2 A university database contains information about professors (identified
by social security number, or SSN) and courses (identified by courseid). Professors
teach courses; each of the following situations concerns the Teaches relationship set. For
each situation, draw an ER diagram that describes it (assuming no further constraints
hold).

1. Professors can teach the same course in several semesters, and each offering must
be recorded.

2. Professors can teach the same course in several semesters, and only the most
recent such offering needs to be recorded. (Assume this condition applies in all
subsequent questions.)

3. Every professor must teach some course.

4. Every professor teaches exactly one course (no more, no less).

5. Every professor teaches exactly one course (no more, no less), and every course
must be taught by some professor.

8 Chapter 2

6. Now suppose that certain courses can be taught by a team of professors jointly,
but it is possible that no one professor in a team can teach the course. Model this
situation, introducing additional entity sets and relationship sets if necessary.

Answer 2.2 Answer omitted.

Exercise 2.3 Consider the following information about a university database:

Professors have an SSN, a name, an age, a rank, and a research specialty.

Projects have a project number, a sponsor name (e.g., NSF), a starting date, an
ending date, and a budget.

Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S.
or Ph.D.).

Each project is managed by one professor (known as the project’s principal inves-
tigator).

Each project is worked on by one or more professors (known as the project’s
co-investigators).

Professors can manage and/or work on multiple projects.

Each project is worked on by one or more graduate students (known as the
project’s research assistants).

When graduate students work on a project, a professor must supervise their work
on the project. Graduate students can work on multiple projects, in which case
they will have a (potentially different) supervisor for each one.

Departments have a department number, a department name, and a main office.

Departments have a professor (known as the chairman) who runs the department.

Professors work in one or more departments, and for each department that they
work in, a time percentage is associated with their job.

Graduate students have one major department in which they are working on their
degree.

Each graduate student has another, more senior graduate student (known as a
student advisor) who advises him or her on what courses to take.

Design and draw an ER diagram that captures the information about the university.
Use only the basic ER model here; that is, entities, relationships, and attributes. Be
sure to indicate any key and participation constraints.

Introduction to Database Design 9

w
or

k_
in

M
an

ag
es

pr
oj

ec
t

pi
d

sp
on

so
r

st
ar

t_
da

te

en
d_

da
te

bu
dg

et

D
ep

t

R
un

s
W

or
k_

de
pt

of
fic

e

dn
am

e

dn
o

Pr
of

es
so

r

ss
n

ag
e

ra
nk

sp
ec

ia
lit

y

M
aj

or

W
or

k_
pr

oj

Ad
vi

so
r

G
ra

du
at

e

se
ni

or

gr
ad

ss
n

pc
_t

im
e

ag
e

ss
n

de
g_

pr
og

na
m

e

Su
pe

rv
is

es

Figure 2.1 ER Diagram for Exercise 2.3

10 Chapter 2

Answer 2.3 The ER diagram is shown in Figure 2.1.

Exercise 2.4 A company database needs to store information about employees (iden-
tified by ssn, with salary and phone as attributes), departments (identified by dno,
with dname and budget as attributes), and children of employees (with name and age
as attributes). Employees work in departments; each department is managed by an
employee; a child must be identified uniquely by name when the parent (who is an
employee; assume that only one parent works for the company) is known. We are not
interested in information about a child once the parent leaves the company.

Draw an ER diagram that captures this information.

Answer 2.4 Answer omitted.

Exercise 2.5 Notown Records has decided to store information about musicians who
perform on its albums (as well as other company data) in a database. The company
has wisely chosen to hire you as a database designer (at your usual consulting fee of
$2500/day).

Each musician that records at Notown has an SSN, a name, an address, and
a phone number. Poorly paid musicians often share the same address, and no
address has more than one phone.

Each instrument used in songs recorded at Notown has a unique identification
number, a name (e.g., guitar, synthesizer, flute) and a musical key (e.g., C, B-flat,
E-flat).

Each album recorded on the Notown label has a unique identification number, a
title, a copyright date, a format (e.g., CD or MC), and an album identifier.

Each song recorded at Notown has a title and an author.

Each musician may play several instruments, and a given instrument may be
played by several musicians.

Each album has a number of songs on it, but no song may appear on more than
one album.

Each song is performed by one or more musicians, and a musician may perform a
number of songs.

Each album has exactly one musician who acts as its producer. A musician may
produce several albums, of course.

Introduction to Database Design 11

ss
n

M
us

ic
ia

ns

na
m

e

Al
bu

m

co
py

rig
ht

D
at

e

sp
ee

d
al

bu
m

Id
en

tif
ie

r

dn
am

e

In
st

ru
m

en
t

in
st

rId
ke

y
so

ng
Id

So
ng

s tit
le

su
th

or

Pl
ay

s
Ap

pe
ar

s
Pe

rfo
rm

Pr
od

uc
er

tit
le

ad
dr

es
s

H
om

e

L
iv

es

Pl
ac

e
T

el
ep

ho
ne

ph
on

e_
no

Figure 2.2 ER Diagram for Exercise 2.5

Design a conceptual schema for Notown and draw an ER diagram for your schema.
The preceding information describes the situation that the Notown database must
model. Be sure to indicate all key and cardinality constraints and any assumptions
you make. Identify any constraints you are unable to capture in the ER diagram and
briefly explain why you could not express them.

Answer 2.5 The ER diagram is shown in Figure 2.2.

12 Chapter 2

Exercise 2.6 Computer Sciences Department frequent fliers have been complaining to
Dane County Airport officials about the poor organization at the airport. As a result,
the officials decided that all information related to the airport should be organized
using a DBMS, and you have been hired to design the database. Your first task is
to organize the information about all the airplanes stationed and maintained at the
airport. The relevant information is as follows:

Every airplane has a registration number, and each airplane is of a specific model.

The airport accommodates a number of airplane models, and each model is iden-
tified by a model number (e.g., DC-10) and has a capacity and a weight.

A number of technicians work at the airport. You need to store the name, SSN,
address, phone number, and salary of each technician.

Each technician is an expert on one or more plane model(s), and his or her exper-
tise may overlap with that of other technicians. This information about technicians
must also be recorded.

Traffic controllers must have an annual medical examination. For each traffic
controller, you must store the date of the most recent exam.

All airport employees (including technicians) belong to a union. You must store
the union membership number of each employee. You can assume that each
employee is uniquely identified by a social security number.

The airport has a number of tests that are used periodically to ensure that air-
planes are still airworthy. Each test has a Federal Aviation Administration (FAA)
test number, a name, and a maximum possible score.

The FAA requires the airport to keep track of each time a given airplane is tested
by a given technician using a given test. For each testing event, the information
needed is the date, the number of hours the technician spent doing the test, and
the score the airplane received on the test.

1. Draw an ER diagram for the airport database. Be sure to indicate the various
attributes of each entity and relationship set; also specify the key and participation
constraints for each relationship set. Specify any necessary overlap and covering
constraints as well (in English).

2. The FAA passes a regulation that tests on a plane must be conducted by a tech-
nician who is an expert on that model. How would you express this constraint in
the ER diagram? If you cannot express it, explain briefly.

Answer 2.6 Answer omitted.

Introduction to Database Design 13

Exercise 2.7 The Prescriptions-R-X chain of pharmacies has offered to give you a
free lifetime supply of medicine if you design its database. Given the rising cost of
health care, you agree. Here’s the information that you gather:

Patients are identified by an SSN, and their names, addresses, and ages must be
recorded.

Doctors are identified by an SSN. For each doctor, the name, specialty, and years
of experience must be recorded.

Each pharmaceutical company is identified by name and has a phone number.

For each drug, the trade name and formula must be recorded. Each drug is
sold by a given pharmaceutical company, and the trade name identifies a drug
uniquely from among the products of that company. If a pharmaceutical company
is deleted, you need not keep track of its products any longer.

Each pharmacy has a name, address, and phone number.

Every patient has a primary physician. Every doctor has at least one patient.

Each pharmacy sells several drugs and has a price for each. A drug could be sold
at several pharmacies, and the price could vary from one pharmacy to another.

Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs
for several patients, and a patient could obtain prescriptions from several doctors.
Each prescription has a date and a quantity associated with it. You can assume
that, if a doctor prescribes the same drug for the same patient more than once,
only the last such prescription needs to be stored.

Pharmaceutical companies have long-term contracts with pharmacies. A phar-
maceutical company can contract with several pharmacies, and a pharmacy can
contract with several pharmaceutical companies. For each contract, you have to
store a start date, an end date, and the text of the contract.

Pharmacies appoint a supervisor for each contract. There must always be a super-
visor for each contract, but the contract supervisor can change over the lifetime
of the contract.

1. Draw an ER diagram that captures the preceding information. Identify any con-
straints not captured by the ER diagram.

2. How would your design change if each drug must be sold at a fixed price by all
pharmacies?

3. How would your design change if the design requirements change as follows: If a
doctor prescribes the same drug for the same patient more than once, several such
prescriptions may have to be stored.

14 Chapter 2

ssn

age

Patient

address

name

Pri_physician Doctor

name

phy_ssn speciality

exp_years

Prescription
quentity

Sell

address phone_num

Pharmacy

Pharm_co

Make

 Drug

formula

trade_name

 date

phone_numname

price
start_date

end_date

text

Contract

supervisor

name

Figure 2.3 ER Diagram for Exercise 2.7

Introduction to Database Design 15

Answer 2.7 1. The ER diagram is shown in Figure 2.3.

2. If the drug is to be sold at a fixed price we can add the price attribute to the Drug
entity set and eliminate the price from the Sell relationship set.

3. The date information can no longer be modeled as an attribute of Prescription.
We have to create a new entity set called Prescription date and make Prescription
a 4-way relationship set that involves this additional entity set.

Exercise 2.8 Although you always wanted to be an artist, you ended up being an ex-
pert on databases because you love to cook data and you somehow confused database
with data baste. Your old love is still there, however, so you set up a database company,
ArtBase, that builds a product for art galleries. The core of this product is a database
with a schema that captures all the information that galleries need to maintain. Gal-
leries keep information about artists, their names (which are unique), birthplaces, age,
and style of art. For each piece of artwork, the artist, the year it was made, its unique
title, its type of art (e.g., painting, lithograph, sculpture, photograph), and its price
must be stored. Pieces of artwork are also classified into groups of various kinds, for
example, portraits, still lifes, works by Picasso, or works of the 19th century; a given
piece may belong to more than one group. Each group is identified by a name (like
those just given) that describes the group. Finally, galleries keep information about
customers. For each customer, galleries keep that person’s unique name, address, total
amount of dollars spent in the gallery (very important!), and the artists and groups of
art that the customer tends to like.

Draw the ER diagram for the database.

Answer 2.8 Answer omitted.

Exercise 2.9 Answer the following questions.

Explain the following terms briefly: UML, use case diagrams, statechart dia-
grams, class diagrams, database diagrams, component diagrams, and deployment
diagrams.

Explain the relationship between ER diagrams and UML.

Answer 2.9 Not yet done.

3
THE RELATIONAL MODEL

Exercise 3.1 Define the following terms: relation schema, relational database schema,
domain, attribute, attribute domain, relation instance, relation cardinality, and relation
degree.

Answer 3.1 A relation schema can be thought of as the basic information describing
a table or relation. This includes a set of column names, the data types associated
with each column, and the name associated with the entire table. For example, a
relation schema for the relation called Students could be expressed using the following
representation:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

There are five fields or columns, with names and types as shown above.

A relational database schema is a collection of relation schemas, describing one or more
relations.

Domain is synonymous with data type. Attributes can be thought of as columns in a
table. Therefore, an attribute domain refers to the data type associated with a column.

A relation instance is a set of tuples (also known as rows or records) that each conform
to the schema of the relation.

The relation cardinality is the number of tuples in the relation.

The relation degree is the number of fields (or columns) in the relation.

Exercise 3.2 How many distinct tuples are in a relation instance with cardinality 22?

Answer 3.2 Answer omitted.

16

The Relational Model 17

Exercise 3.3 Does the relational model, as seen by an SQL query writer, provide
physical and logical data independence? Explain.

Answer 3.3 The user of SQL has no idea how the data is physically represented in the
machine. He or she relies entirely on the relation abstraction for querying. Physical
data independence is therefore assured. Since a user can define views, logical data
independence can also be achieved by using view definitions to hide changes in the
conceptual schema.

Exercise 3.4 What is the difference between a candidate key and the primary key for
a given relation? What is a superkey?

Answer 3.4 Answer omitted.

53831

53832

53650

53688

53666

50000 3.3

3.4

3.2

3.8

1.8

2.0

19

18

18

19

11

12

madayan@music

guldu@music

smith@math

smith@ee

jones@cs

dave@cs

Madayan

Guldu

Smith

Smith

Jones

Dave

 sid age gpaloginname

TUPLES

(RECORDS, ROWS)

FIELDS (ATTRIBUTES, COLUMNS)

Field names

Figure 3.1 An Instance S1 of the Students Relation

Exercise 3.5 Consider the instance of the Students relation shown in Figure 3.1.

1. Give an example of an attribute (or set of attributes) that you can deduce is not
a candidate key, based on this instance being legal.

2. Is there any example of an attribute (or set of attributes) that you can deduce is
a candidate key, based on this instance being legal?

Answer 3.5 Examples of non-candidate keys include the following: {name}, {age}.
(Note that {gpa} can not be declared as a non-candidate key from this evidence alone
even though common sense tells us that clearly more than one student could have the
same grade point average.)

You cannot determine a key of a relation given only one instance of the relation. The
fact that the instance is “legal” is immaterial. A candidate key, as defined here, is a

18 Chapter 3

key, not something that only might be a key. The instance shown is just one possible
“snapshot” of the relation. At other times, the same relation may have an instance (or
snapshot) that contains a totally different set of tuples, and we cannot make predictions
about those instances based only upon the instance that we are given.

Exercise 3.6 What is a foreign key constraint? Why are such constraints important?
What is referential integrity?

Answer 3.6 Answer omitted.

Exercise 3.7 Consider the relations Students, Faculty, Courses, Rooms, Enrolled,
Teaches, and Meets In defined in Section 1.5.2.

1. List all the foreign key constraints among these relations.

2. Give an example of a (plausible) constraint involving one or more of these relations
that is not a primary key or foreign key constraint.

Answer 3.7 There is no reason for a foreign key constraint (FKC) on the Students,
Faculty, Courses, or Rooms relations. These are the most basic relations and must be
free-standing. Special care must be given to entering data into these base relations.

In the Enrolled relation, sid and cid should both have FKCs placed on them. (Real
students must be enrolled in real courses.) Also, since real teachers must teach real
courses, both the fid and the cid fields in the Teaches relation should have FKCs.
Finally, Meets In should place FKCs on both the cid and rno fields.

It would probably be wise to enforce a few other constraints on this DBMS: the length
of sid, cid, and fid could be standardized; checksums could be added to these iden-
tification numbers; limits could be placed on the size of the numbers entered into the
credits, capacity, and salary fields; an enumerated type should be assigned to the grade
field (preventing a student from receiving a grade of G, among other things); etc.

Exercise 3.8 Answer each of the following questions briefly. The questions are based
on the following relational schema:

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pcttime: integer)
Dept(did: integer, dname: string, budget: real, managerid: integer)

1. Give an example of a foreign key constraint that involves the Dept relation. What
are the options for enforcing this constraint when a user attempts to delete a Dept
tuple?

The Relational Model 19

2. Write the SQL statements required to create the preceding relations, including
appropriate versions of all primary and foreign key integrity constraints.

3. Define the Dept relation in SQL so that every department is guaranteed to have
a manager.

4. Write an SQL statement to add John Doe as an employee with eid = 101, age = 32
and salary = 15, 000.

5. Write an SQL statement to give every employee a 10 percent raise.

6. Write an SQL statement to delete the Toy department. Given the referential
integrity constraints you chose for this schema, explain what happens when this
statement is executed.

Answer 3.8 Answer omitted.

sid name login age gpa
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Figure 3.2 Students with age < 18 on Instance S

Exercise 3.9 Consider the SQL query whose answer is shown in Figure 3.2.

1. Modify this query so that only the login column is included in the answer.

2. If the clause WHERE S.gpa >= 2 is added to the original query, what is the set of
tuples in the answer?

Answer 3.9 The answers are as follows:

1. Only login is included in the answer:

SELECT S.login
FROM Students S
WHERE S.age < 18

2. The answer tuple for Madayan is omitted then.

Exercise 3.10 Explain why the addition of NOT NULL constraints to the SQL defi-
nition of the Manages relation (in Section 3.5.3) does not enforce the constraint that
each department must have a manager. What, if anything, is achieved by requiring
that the ssn field of Manages be non-null?

20 Chapter 3

Answer 3.10 Answer omitted.

Exercise 3.11 Suppose that we have a ternary relationship R between entity sets A,
B, and C such that A has a key constraint and total participation and B has a key
constraint; these are the only constraints. A has attributes a1 and a2, with a1 being
the key; B and C are similar. R has no descriptive attributes. Write SQL statements
that create tables corresponding to this information so as to capture as many of the
constraints as possible. If you cannot capture some constraint, explain why.

Answer 3.11 The following SQL statements create the corresponding relations.

CREATE TABLE A (a1 CHAR(10),
a2 CHAR(10),
b1 CHAR(10),
c1 CHAR(10),
PRIMARY KEY (a1),
UNIQUE (b1),
FOREIGN KEY (b1) REFERENCES B,
FOREIGN KEY (c1) REFERENCES C)

CREATE TABLE B (b1 CHAR(10),
b2 CHAR(10),
PRIMARY KEY (b1))

CREATE TABLE C (b1 CHAR(10),
c2 CHAR(10),
PRIMARY KEY (c1))

The first SQL statement folds the relationship R into table A and thereby guarantees
the participation constraint.

Exercise 3.12 Consider the scenario from Exercise 2.2, where you designed an ER
diagram for a university database. Write SQL statements to create the corresponding
relations and capture as many of the constraints as possible. If you cannot capture
some constraints, explain why.

Answer 3.12 Answer omitted.

Exercise 3.13 Consider the university database from Exercise 2.3 and the ER dia-
gram you designed. Write SQL statements to create the corresponding relations and
capture as many of the constraints as possible. If you cannot capture some constraints,
explain why.

The Relational Model 21

Answer 3.13 The following SQL statements create the corresponding relations.

1. CREATE TABLE Professors (prof ssn CHAR(10),
name CHAR(64),
age INTEGER,
rank INTEGER,
speciality CHAR(64),
PRIMARY KEY (prof ssn))

2. CREATE TABLE Depts (dno INTEGER,
dname CHAR(64),
office CHAR(10),
PRIMARY KEY (dno))

3. CREATE TABLE Runs (dno INTEGER,
prof ssn CHAR(10),
PRIMARY KEY (dno, prof ssn),
FOREIGN KEY (prof ssn) REFERENCES Professors,
FOREIGN KEY (dno) REFERENCES Depts)

4. CREATE TABLE Work Dept (dno INTEGER,
prof ssn CHAR(10),
pc time INTEGER,
PRIMARY KEY (dno, prof ssn),
FOREIGN KEY (prof ssn) REFERENCES Professors,
FOREIGN KEY (dno) REFERENCES Depts)

Observe that we would need check constraints or assertions in SQL to enforce the
rule that Professors work in at least one department.

5. CREATE TABLE Project (pid INTEGER,
sponsor CHAR(32),
start dateDATE,
end date DATE,
budget FLOAT,
PRIMARY KEY (pid))

6. CREATE TABLE Graduates (grad ssn CHAR(10),
age INTEGER,
name CHAR(64),
deg prog CHAR(32),

22 Chapter 3

major INTEGER,
PRIMARY KEY (grad ssn),
FOREIGN KEY (major) REFERENCES Depts)

Note that the Major table is not necessary since each Graduate has only one major
and so this can be an attribute in the Graduates table.

7. CREATE TABLE Advisor (senior ssn CHAR(10),
grad ssn CHAR(10),
PRIMARY KEY (senior ssn, grad ssn),
FOREIGN KEY (senior ssn)

REFERENCES Graduates (grad ssn),
FOREIGN KEY (grad ssn) REFERENCES Graduates)

8. CREATE TABLE Manages (pid INTEGER,
prof ssn CHAR(10),
PRIMARY KEY (pid, prof ssn),
FOREIGN KEY (prof ssn) REFERENCES Professors,
FOREIGN KEY (pid) REFERENCES Projects)

9. CREATE TABLE Work In (pid INTEGER,
prof ssn CHAR(10),
PRIMARY KEY (pid, prof ssn),
FOREIGN KEY (prof ssn) REFERENCES Professors,
FOREIGN KEY (pid) REFERENCES Projects)

Observe that we cannot enforce the participation constraint for Projects in the
Work In table without check constraints or assertions in SQL.

10. CREATE TABLE Supervises (prof ssn CHAR(10),
grad ssn CHAR(10),
pid INTEGER,
PRIMARY KEY (prof ssn, grad ssn, pid),
FOREIGN KEY (prof ssn) REFERENCES Professors,
FOREIGN KEY (grad ssn) REFERENCES Graduates,
FOREIGN KEY (pid) REFERENCES Projects)

Note that we do not need an explicit table for the Work Proj relation since every
time a Graduate works on a Project, he or she must have a Supervisor.

Exercise 3.14 Consider the scenario from Exercise 2.4, where you designed an ER
diagram for a company database. Write SQL statements to create the corresponding

The Relational Model 23

relations and capture as many of the constraints as possible. If you cannot capture
some constraints, explain why.

Answer 3.14 Answer omitted.

Exercise 3.15 Consider the Notown database from Exercise 2.5. You have decided
to recommend that Notown use a relational database system to store company data.
Show the SQL statements for creating relations corresponding to the entity sets and
relationship sets in your design. Identify any constraints in the ER diagram that you
are unable to capture in the SQL statements and briefly explain why you could not
express them.

Answer 3.15 The following SQL statements create the corresponding relations.

1. CREATE TABLE Musicians (ssn CHAR(10),
name CHAR(30),
PRIMARY KEY (ssn))

2. CREATE TABLE Instruments (instrId CHAR(10),
dname CHAR(30),
key CHAR(5),
PRIMARY KEY (instrId))

3. CREATE TABLE Plays (ssn CHAR(10),
instrId INTEGER,
PRIMARY KEY (ssn, instrId),
FOREIGN KEY (ssn) REFERENCES Musicians,
FOREIGN KEY (instrId) REFERENCES Instruments)

4. CREATE TABLE Songs Appears (songId INTEGER,
author CHAR(30),
title CHAR(30),
albumIdentifier INTEGER NOT NULL,
PRIMARY KEY (songId),
FOREIGN KEY (albumIdentifier)

References Album Producer,

5. CREATE TABLE Telephone Home (phone CHAR(11),
address CHAR(30),
PRIMARY KEY (phone),
FOREIGN KEY (address) REFERENCES Place,

24 Chapter 3

6. CREATE TABLE Lives (ssn CHAR(10),
phone CHAR(11),
address CHAR(30),
PRIMARY KEY (ssn, address),
FOREIGN KEY (phone, address)

References Telephone Home,
FOREIGN KEY (ssn) REFERENCES Musicians)

7. CREATE TABLE Place (address CHAR(30))

8. CREATE TABLE Perform (songId INTEGER,
ssn CHAR(10),
PRIMARY KEY (ssn, songId),
FOREIGN KEY (songId) REFERENCES Songs,
FOREIGN KEY (ssn) REFERENCES Musicians)

9. CREATE TABLE Album Producer (albumIdentifier INTEGER,
ssn CHAR(10),
copyrightDate DATE,
speed INTEGER,
title CHAR(30),
PRIMARY KEY (albumIdentifier),
FOREIGN KEY (ssn) REFERENCES Musicians)

Exercise 3.16 Translate your ER diagram from Exercise 2.6 into a relational schema,
and show the SQL statements needed to create the relations, using only key and null
constraints. If your translation cannot capture any constraints in the ER diagram,
explain why.

In Exercise 2.6, you also modified the ER diagram to include the constraint that tests
on a plane must be conducted by a technician who is an expert on that model. Can
you modify the SQL statements defining the relations obtained by mapping the ER
diagram to check this constraint?

Answer 3.16 Answer omitted.

Exercise 3.17 Consider the ER diagram that you designed for the Prescriptions-R-X
chain of pharmacies in Exercise 2.7. Define relations corresponding to the entity sets
and relationship sets in your design using SQL.

The Relational Model 25

Answer 3.17 The statements to create tables corresponding to entity sets Doctor,
Pharmacy, and Pharm co are straightforward and omitted. The other required tables
can be created as follows:

1. CREATE TABLE Pri Phy Patient (ssn CHAR(11),
name CHAR(20),
age INTEGER,
address CHAR(20),
phy ssn CHAR(11),
PRIMARY KEY (ssn),
FOREIGN KEY (phy ssn) REFERENCES Doctor)

2. CREATE TABLE Prescription (ssn CHAR(11),
phy ssn CHAR(11),
date CHAR(11),
quantity INTEGER,
trade name CHAR(20),
pharm id CHAR(11),
PRIMARY KEY (ssn, phy ssn),
FOREIGN KEY (ssn) REFERENCES Patient,
FOREIGN KEY (phy ssn) REFERENCES Doctor,
FOREIGN KEY (trade name, pharm id)

References Make Drug)

3. CREATE TABLE Make Drug (trade name CHAR(20),
pharm id CHAR(11),
PRIMARY KEY (trade name, pharm id),
FOREIGN KEY (trade name) REFERENCES Drug,
FOREIGN KEY (pharm id) REFERENCES Pharm co)

4. CREATE TABLE Sell (price INTEGER,
name CHAR(10),
trade name CHAR(10),
PRIMARY KEY (name, trade name),
FOREIGN KEY (name) REFERENCES Pharmacy,
FOREIGN KEY (trade name) REFERENCES Drug)

5. CREATE TABLE Contract (name CHAR(20),
pharm id CHAR(11),
start date CHAR(11),
end date CHAR(11),

26 Chapter 3

text CHAR(10000),
supervisor CHAR(20),
PRIMARY KEY (name, pharm id),
FOREIGN KEY (name) REFERENCES Pharmacy,
FOREIGN KEY (pharm id) REFERENCES Pharm co)

Exercise 3.18 Write SQL statements to create the corresponding relations to the
ER diagram you designed for Exercise 2.8. If your translation cannot capture any
constraints in the ER diagram, explain why.

Answer 3.18 Answer omitted.

Exercise 3.19 Briefly answer the following questions based on this schema:

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct time: integer)
Dept(did: integer, budget: real, managerid: integer)

1. Suppose you have a view SeniorEmp defined as follows:

CREATE VIEW SeniorEmp (sname, sage, salary)
AS SELECT E.ename, E.age, E.salary

FROM Emp E
WHERE E.age > 50

Explain what the system will do to process the following query:

SELECT S.sname
FROM SeniorEmp S
WHERE S.salary > 100,000

2. Give an example of a view on Emp that could be automatically updated by up-
dating Emp.

3. Give an example of a view on Emp that would be impossible to update (auto-
matically) and explain why your example presents the update problem that it
does.

Answer 3.19 The answer to each question is given below.

1. The system will do the following:

The Relational Model 27

SELECT S.name
FROM (SELECT E.ename AS name, E.age, E.salary

FROM Emp E
WHERE E.age > 50) AS S

WHERE S.salary > 100000

2. The following view on Emp can be updated automatically by updating Emp:

CREATE VIEW SeniorEmp (eid, name, age, salary)
AS SELECT E.eid, E.ename, E.age, E.salary

FROM Emp E
WHERE E.age > 50

3. The following view cannot be updated automatically because it is not clear which
employee records will be affected by a given update:

CREATE VIEW AvgSalaryByAge (age, avgSalary)
AS SELECT E.eid, AVG (E.salary)

FROM Emp E
GROUP BY E.age

Exercise 3.20 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers. Answer the fol-
lowing questions:

Give an example of an updatable view involving one relation.

Give an example of an updatable view involving two relations.

Give an example of an insertable-into view that is updatable.

Give an example of an insertable-into view that is not updatable.

Answer 3.20 Answer omitted.

4
RELATIONAL ALGEBRA AND

CALCULUS

Exercise 4.1 Explain the statement that relational algebra operators can be com-
posed. Why is the ability to compose operators important?

Answer 4.1 Every operator in relational algebra accepts one or more relation in-
stances as arguments and the result is always an relation instance. So the argument
of one operator could be the result of another operator. This is important because,
this makes it easy to write complex queries by simply composing the relational algebra
operators.

Exercise 4.2 Given two relations R1 and R2, where R1 contains N1 tuples, R2 con-
tains N2 tuples, and N2 > N1 > 0, give the minimum and maximum possible sizes (in
tuples) for the resulting relation produced by each of the following relational algebra
expressions. In each case, state any assumptions about the schemas for R1 and R2
needed to make the expression meaningful:

(1) R1∪R2, (2) R1∩R2, (3) R1−R2, (4) R1×R2, (5) σa=5(R1), (6) πa(R1),
and (7) R1/R2

Answer 4.2 Answer omitted.

Exercise 4.3 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

The key fields are underlined, and the domain of each field is listed after the field
name. Therefore sid is the key for Suppliers, pid is the key for Parts, and sid and pid

together form the key for Catalog. The Catalog relation lists the prices charged for
parts by Suppliers. Write the following queries in relational algebra, tuple relational
calculus, and domain relational calculus:

28

Relational Algebra and Calculus 29

1. Find the names of suppliers who supply some red part.

2. Find the sids of suppliers who supply some red or green part.

3. Find the sids of suppliers who supply some red part or are at 221 Packer Street.

4. Find the sids of suppliers who supply some red part and some green part.

5. Find the sids of suppliers who supply every part.

6. Find the sids of suppliers who supply every red part.

7. Find the sids of suppliers who supply every red or green part.

8. Find the sids of suppliers who supply every red part or supply every green part.

9. Find pairs of sids such that the supplier with the first sid charges more for some
part than the supplier with the second sid.

10. Find the pids of parts supplied by at least two different suppliers.

11. Find the pids of the most expensive parts supplied by suppliers named Yosemite
Sham.

12. Find the pids of parts supplied by every supplier at less than $200. (If any supplier
either does not supply the part or charges more than $200 for it, the part is not
selected.)

Answer 4.3 In the answers below RA refers to Relational Algebra, TRC refers to
Tuple Relational Calculus and DRC refers to Domain Relational Calculus.

1. RA

πsname(πsid((πpidσcolor=′red′Parts) �� Catalog) �� Suppliers)

TRC

{T | ∃T 1 ∈ Suppliers(∃X ∈ Parts(X.color =′ red′ ∧ ∃Y ∈ Catalog

(Y.pid = X.pid ∧ Y.sid = T 1.sid)) ∧ T.sname = T 1.sname)}

DRC

{〈Y 〉 | 〈X, Y, Z〉 ∈ Suppliers∧ ∃P, Q, R(〈P, Q, R〉 ∈ Parts

∧R =′ red′ ∧ ∃I, J, K(〈I, J, K〉 ∈ Catalog ∧ J = P ∧ I = X))}

SQL

30 Chapter 4

SELECT S.sname
FROM Suppliers S, Parts P, Catalog C
WHERE P.color=’red’ AND C.pid=P.pid AND C.sid=S.sid

2. RA
πsid(πpid(σcolor=′red′∨color=′green′Parts) �� catalog)

TRC

{T | ∃T 1 ∈ Catalog(∃X ∈ Parts((X.color = ‘red′ ∨ X.color = ‘green′)

∧X.pid = T 1.pid) ∧ T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C(〈A, B, C〉 ∈ Parts

∧(C =′ red′ ∨ C =′ green′) ∧ A = Y)}

SQL

SELECT C.sid
FROM Catalog C, Parts P
WHERE (P.color = ‘red’ OR P.color = ‘green’)

AND P.pid = C.pid

3. RA

ρ(R1, πsid((πpidσcolor=′red′Parts) �� Catalog))

ρ(R2, πsidσaddress=′221PackerStreet′Suppliers)

R1 ∪ R2

TRC

{T | ∃T 1 ∈ Catalog(∃X ∈ Parts(X.color = ‘red′ ∧ X.pid = T 1.pid)

∧T.sid = T 1.sid)

∨∃T 2 ∈ Suppliers(T 2.address =′ 221PackerStreet′ ∧ T.sid = T 2.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C(〈A, B, C〉 ∈ Parts

∧C =′ red′ ∧ A = Y)

∨∃P, Q(〈X, P, Q〉 ∈ Suppliers ∧ Q =′ 221PackerStreet′)}

SQL

Relational Algebra and Calculus 31

SELECT S.sid
FROM Suppliers S
WHERE S.address = ‘221 Packer street’

OR S.sid IN (SELECT C.sid
FROM Parts P, Catalog C
WHERE P.color=’red’ AND P.pid = C.pid)

4. RA

ρ(R1, πsid((πpidσcolor=′red′Parts) �� Catalog))

ρ(R2, πsid((πpidσcolor=′green′Parts) �� Catalog))

R1 ∩ R2

TRC

{T | ∃T 1 ∈ Catalog(∃X ∈ Parts(X.color = ‘red′ ∧ X.pid = T 1.pid)

∧∃T 2 ∈ Catalog(∃Y ∈ Parts(Y.color =′ green′ ∧ Y.pid = T 2.pid)

∧T 2.sid = T 1.sid) ∧ T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C(〈A, B, C〉 ∈ Parts

∧C =′ red′ ∧ A = Y)

∧∃P, Q, R(〈P, Q, R〉 ∈ Catalog ∧ ∃E, F, G(〈E, F, G〉 ∈ Parts

∧G =′ green′ ∧ E = Q) ∧ P = X)}

SQL

SELECT C.sid
FROM Parts P, Catalog C
WHERE P.color = ‘red’ AND P.pid = C.pid

AND EXISTS (SELECT P2.pid
FROM Parts P2, Catalog C2
WHERE P2.color = ‘green’ AND C2.sid = C.sid

AND P2.pid = C2.pid)

5. RA
(πsid,pidCatalog)/(πpidParts)

TRC

{T | ∃T 1 ∈ Catalog(∀X ∈ Parts(∃T 2 ∈ Catalog

(T 2.pid = X.pid ∧ T 2.sid = T 1.sid)) ∧ T.sid = T 1.sid)}

32 Chapter 4

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∀〈A, B, C〉 ∈ Parts

(∃〈P, Q, R〉 ∈ Catalog(Q = A ∧ P = X))}

SQL

SELECT C.sid
FROM Catalog C
WHERE NOT EXISTS (SELECT P.pid

FROM Parts P
WHERE NOT EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.sid = C.sid

AND C1.pid = P.pid))

6. RA
(πsid,pidCatalog)/(πpidσcolor=′red′Parts)

TRC

{T | ∃T 1 ∈ Catalog(∀X ∈ Parts(X.color �= ‘red′

∨∃T 2 ∈ Catalog(T 2.pid = X.pid ∧ T 2.sid = T 1.sid))

∧T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∀〈A, B, C〉 ∈ Parts

(C �= ‘red′ ∨ ∃〈P, Q, R〉 ∈ Catalog(Q = A ∧ P = X))}

SQL

SELECT C.sid
FROM Catalog C
WHERE NOT EXISTS (SELECT P.pid

FROM Parts P
WHERE P.color = ‘red’
AND (NOT EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.sid = C.sid AND

C1.pid = P.pid)))

7. RA
(πsid,pidCatalog)/(πpidσcolor=′red′∨color=′green′Parts)

Relational Algebra and Calculus 33

TRC

{T | ∃T 1 ∈ Catalog(∀X ∈ Parts((X.color �= ‘red′

∧X.color �= ‘green′) ∨ ∃T 2 ∈ Catalog

(T 2.pid = X.pid ∧ T 2.sid = T 1.sid)) ∧ T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∀〈A, B, C〉 ∈ Parts

((C �= ‘red′ ∧ C �= ‘green′) ∨ ∃〈P, Q, R〉 ∈ Catalog

(Q = A ∧ P = X))}

SQL

SELECT C.sid
FROM Catalog C
WHERE NOT EXISTS (SELECT P.pid

FROM Parts P
WHERE (P.color = ‘red’ OR P.color = ‘green’)
AND (NOT EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.sid = C.sid AND

C1.pid = P.pid)))

8. RA

ρ(R1, ((πsid,pidCatalog)/(πpidσcolor=′red′Parts)))

ρ(R2, ((πsid,pidCatalog)/(πpidσcolor=′green′Parts)))

R1 ∪ R2

TRC

{T | ∃T 1 ∈ Catalog((∀X ∈ Parts

(X.color �= ‘red′ ∨ ∃Y ∈ Catalog(Y.pid = X.pid ∧ Y.sid = T 1.sid))

∨∀Z ∈ Parts(Z.color �= ‘green′ ∨ ∃P ∈ Catalog

(P.pid = Z.pid ∧ P.sid = T 1.sid))) ∧ T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ (∀〈A, B, C〉 ∈ Parts

(C �= ‘red′ ∨ ∃〈P, Q, R〉 ∈ Catalog(Q = A ∧ P = X))

∨∀〈U, V, W 〉 ∈ Parts(W �= ‘green′ ∨ 〈M, N, L〉 ∈ Catalog

(N = U ∧ M = X)))}

34 Chapter 4

SQL

SELECT C.sid
FROM Catalog C
WHERE (NOT EXISTS (SELECT P.pid

FROM Parts P
WHERE P.color = ‘red’ AND
(NOT EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.sid = C.sid AND

C1.pid = P.pid))))
OR (NOT EXISTS (SELECT P1.pid

FROM Parts P1
WHERE P1.color = ‘green’ AND
(NOT EXISTS (SELECT C2.sid

FROM Catalog C2
WHERE C2.sid = C.sid AND

C2.pid = P1.pid))))

9. RA

ρ(R1, Catalog)

ρ(R2, Catalog)

πR1.sid,R2.sid(σR1.pid=R2.pid∧R1.sid �=R2.sid∧R1.cost>R2.cost(R1 × R2))

TRC

{T | ∃T 1 ∈ Catalog(∃T 2 ∈ Catalog

(T 2.pid = T 1.pid∧ T 2.sid �= T 1.sid

∧T 2.cost < T1.cost ∧ T.sid2 = T 2.sid)

∧T.sid1 = T 1.sid)}

DRC

{〈X, P 〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃P, Q, R

(〈P, Q, R〉 ∈ Catalog ∧ Q = Y ∧ P �= X ∧ R < Z)}

SQL

SELECT C1.sid, C2.sid
FROM Catalog C1, Catalog C2
WHERE C1.pid = C2.pid AND C1.sid �= C2.sid

AND C1.cost > C2.cost

Relational Algebra and Calculus 35

10. RA

ρ(R1, Catalog)

ρ(R2, Catalog)

πR1.pidσR1.pid=R2.pid∧R1.sid �=R2.sid(R1 × R2)

TRC

{T | ∃T 1 ∈ Catalog(∃T 2 ∈ Catalog

(T 2.pid = T 1.pid∧ T 2.sid �= T 1.sid)

∧T.pid = T 1.pid)}
DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C

(〈A, B, C〉 ∈ Catalog ∧ B = Y ∧ A �= X)}
SQL

SELECT C.pid
FROM Catalog C
WHERE EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.pid = C.pid AND C1.sid �= C.sid)

11. RA

ρ(R1, πsidσsname=′Y osemiteSham′Suppliers)

ρ(R2, R1 �� Catalog)

ρ(R3, R2)

ρ(R4(1 → sid, 2 → pid, 3 → cost), σR3.cost<R2.cost(R3 × R2))

πpid(R2 − πsid,pid,costR4)

TRC

{T | ∃T 1 ∈ Catalog(∃X ∈ Suppliers

(X.sname =′ Y osemiteSham′ ∧ X.sid = T 1.sid) ∧ ¬(∃S ∈ Suppliers

(S.sname =′ Y osemiteSham′ ∧ ∃Z ∈ Catalog

(Z.sid = S.sid ∧ Z.cost > T1.cost))) ∧ T.pid = T 1.pid)

DRC

{〈Y 〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C

(〈A, B, C〉 ∈ Suppliers ∧ C =′ Y osemiteSham′ ∧ A = X)

∧¬(∃P, Q, R(〈P, Q, R〉 ∈ Suppliers ∧ R =′ Y osemiteSham′

∧∃I, J, K(〈I, J, K〉 ∈ Catalog(I = P ∧ K > Z))))}

36 Chapter 4

SQL

SELECT C.pid
FROM Catalog C, Suppliers S
WHERE S.sname = ‘Yosemite Sham’ AND C.sid = S.sid

AND C.cost ≥ ALL (Select C2.cost
FROM Catalog C2, Suppliers S2
WHERE S2.sname = ‘Yosemite Sham’

AND C2.sid = S2.sid)

Exercise 4.4 Consider the Supplier-Parts-Catalog schema from the previous ques-
tion. State what the following queries compute:

1. πsname(πsid((σcolor=′red′Parts) �� (σcost<100Catalog)) �� Suppliers)

2. πsname(πsid((σcolor=′red′Parts) �� (σcost<100Catalog) �� Suppliers))

3. (πsname((σcolor=′red′Parts) �� (σcost<100Catalog) �� Suppliers)) ∩

(πsname((σcolor=′green′Parts) �� (σcost<100Catalog) �� Suppliers))

4. (πsid((σcolor=′red′Parts) �� (σcost<100Catalog) �� Suppliers)) ∩

(πsid((σcolor=′green′Parts) �� (σcost<100Catalog) �� Suppliers))

5. πsname((πsid,sname((σcolor=′red′Parts) �� (σcost<100Catalog) �� Suppliers)) ∩

(πsid,sname((σcolor=′green′Parts) �� (σcost<100Catalog) �� Suppliers)))

Answer 4.4 The statements can be interpreted as:

1. Find the Supplier names of the suppliers who supply a red part that costs less
than 100 dollars.

2. This Relational Algebra statement does not return anything because of the se-
quence of projection operators. Once the sid is projected, it is the only field in
the set. Therefore, projecting on sname will not return anything.

3. Find the Supplier names of the suppliers who supply a red part that costs less
than 100 dollars and a green part that costs less than 100 dollars.

4. Find the Supplier ids of the suppliers who supply a red part that costs less than
100 dollars and a green part that costs less than 100 dollars.

5. Find the Supplier names of the suppliers who supply a red part that costs less
than 100 dollars and a green part that costs less than 100 dollars.

Relational Algebra and Calculus 37

Exercise 4.5 Consider the following relations containing airline flight information:

Flights(flno: integer, from: string, to: string,
distance: integer, departs: time, arrives: time)

Aircraft(aid: integer, aname: string, cruisingrange: integer)
Certified(eid: integer, aid: integer)
Employees(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well;
every pilot is certified for some aircraft (otherwise, he or she would not qualify as a
pilot), and only pilots are certified to fly.

Write the following queries in relational algebra, tuple relational calculus, and domain
relational calculus. Note that some of these queries may not be expressible in relational
algebra (and, therefore, also not expressible in tuple and domain relational calculus)!
For such queries, informally explain why they cannot be expressed. (See the exercises
at the end of Chapter 5 for additional queries over the airline schema.)

1. Find the eids of pilots certified for some Boeing aircraft.

2. Find the names of pilots certified for some Boeing aircraft.

3. Find the aids of all aircraft that can be used on non-stop flights from Bonn to
Madras.

4. Identify the flights that can be piloted by every pilot whose salary is more than
$100,000.

5. Find the names of pilots who can operate planes with a range greater than 3,000
miles but are not certified on any Boeing aircraft.

6. Find the eids of employees who make the highest salary.

7. Find the eids of employees who make the second highest salary.

8. Find the eids of employees who are certified for the largest number of aircraft.

9. Find the eids of employees who are certified for exactly three aircraft.

10. Find the total amount paid to employees as salaries.

11. Is there a sequence of flights from Madison to Timbuktu? Each flight in the
sequence is required to depart from the city that is the destination of the previous
flight; the first flight must leave Madison, the last flight must reach Timbuktu,
and there is no restriction on the number of intermediate flights. Your query must
determine whether a sequence of flights from Madison to Timbuktu exists for any
input Flights relation instance.

38 Chapter 4

Answer 4.5 In the answers below RA refers to Relational Algebra, TRC refers to
Tuple Relational Calculus and DRC refers to Domain Relational Calculus.

1. RA

πeid(σaname=‘Boeing′ (Aircraft �� Certified))

TRC

{C.eid | C ∈ Certified ∧
∃A ∈ Aircraft(A.aid = C.aid ∧ A.aname = ‘Boeing′)}

DRC

{〈Ceid〉 | 〈Ceid, Caid〉 ∈ Certified ∧
∃Aid, AN, AR(〈Aid, AN, AR〉 ∈ Aircraft

∧Aid = Caid ∧ AN = ‘Boeing′)}

SQL

SELECT C.eid
FROM Aircraft A, Certified C
WHERE A.aid = C.aid AND A.aname = ‘Boeing’

2. RA

πename(σaname=‘Boeing′ (Aircraft �� Certified �� Employees))

TRC
{E.ename | E ∈ Employees ∧ ∃C ∈ Certified

(∃A ∈ Aircraft(A.aid = C.aid ∧ A.aname = ‘Boeing′ ∧ E.eid = C.eid))}

DRC
{〈EN〉 | 〈Eid, EN, ES〉 ∈ Employees∧
∃Ceid, Caid(〈Ceid, Caid〉 ∈ Certified∧
∃Aid, AN, AR(〈Aid, AN, AR〉 ∈ Aircraft∧
Aid = Caid ∧ AN = ‘Boeing′ ∧ Eid = Ceid)}

SQL

SELECT E.ename
FROM Aircraft A, Certified C, Employees E
WHERE A.aid = C.aid AND A.aname = ‘Boeing’ AND E.eid = C.eid

Relational Algebra and Calculus 39

3. RA
ρ(BonnToMadrid, σfrom=‘Bonn′∧to=‘Madrid′(Flights))
πaid(σcruisingrange>distance(Aircraft × BonnToMadrid))

TRC
{A.aid | A ∈ Aircraft ∧ ∃F ∈ Flights

(F.from = ‘Bonn′ ∧ F.to = ‘Madrid′ ∧ A.cruisingrange > F.distance)}

DRC
{Aid | 〈Aid, AN, AR〉 ∈ Aircraft∧
(∃FN, FF, FT, FDi, FDe, FA(〈FN, FF, FT, FDi, FDe, FA〉 ∈ Flights∧
FF = ‘Bonn′ ∧ FT = ‘Madrid′ ∧ FDi < AR))}

SQL

SELECT A.aid
FROM Aircraft A, Flights F
WHERE F.from = ‘Bonn’ AND F.to = ‘Madrid’ AND

A.cruisingrange > F.distance

4. RA
πflno(σdistance<cruisingrange∧salary>100,000(Flights �� Aircraft ��

Certified �� Employees)))

TRC {F.flno | F ∈ Flights ∧ ∃A ∈ Aircraft∃C ∈ Certified

∃E ∈ Employees(A.cruisingrange > F.distance ∧ E.salary > 100, 000∧
A.aid = C.aid ∧ E.eid = C.eid)}

DRC
{FN | 〈FN, FF, FT, FDi, FDe, FA〉 ∈ Flights∧
∃Ceid, Caid(〈Ceid, Caid〉 ∈ Certified∧
∃Aid, AN, AR(〈Aid, AN, AR〉 ∈ Aircraft∧
∃Eid, EN, ES(〈Eid, EN, ES〉 ∈ Employees

(AR > FDi ∧ ES > 100, 000∧ Aid = Caid ∧ Eid = Ceid)}

SQL

SELECT E.ename
FROM Aircraft A, Certified C, Employees E, Flights F
WHERE A.aid = C.aid AND E.eid = C.eid AND

distance < cruisingrange AND salary > 100,000

40 Chapter 4

5. RA ρ(R1, πeid(σcruisingrange>3000(Aircraft �� Certified)))
πename(Employees �� (R1 − πeid(σaname=‘Boeing′ (Aircraft �� Certified))))

TRC
{E.ename | E ∈ Employees ∧ ∃C ∈ Certified(∃A ∈ Aircraft

(A.aid = C.aid ∧ E.eid = C.eid ∧ A.cruisingrange > 3000))∧
¬(∃C2 ∈ Certified(∃A2 ∈ Aircraft(A2.aname = ‘Boeing′ ∧ C2.aid =
A2.aid ∧ C2.eid = E.eid)))}

DRC
{〈EN〉 | 〈Eid, EN, ES〉 ∈ Employees∧
∃Ceid, Caid(〈Ceid, Caid〉 ∈ Certified∧
∃Aid, AN, AR(〈Aid, AN, AR〉 ∈ Aircraft∧
Aid = Caid ∧ Eid = Ceid ∧ AR > 3000))∧
¬(∃Aid2, AN2, AR2(〈Aid2, AN2, AR2〉 ∈ Aircraft∧
∃Ceid2, Caid2(〈Ceid2, Caid2〉 ∈ Certified

∧Aid2 = Caid2 ∧ Eid = Ceid2 ∧ AN2 = ‘Boeing′)))}
SQL

SELECT E.ename
FROM Certified C, Employees E, Aircraft A
WHERE A.aid = C.aid AND E.eid = C.eid AND A.cruisingrange > 3000
AND E.eid NOT IN (SELECT C2.eid
FROM Certified C2, Aircraft A2
WHERE C2.aid = A2.aid AND A2.aname = ‘Boeing’)

6. RA
The approach to take is first find all the employees who do not have the
highest salary. Subtract these from the original list of employees and what
is left is the highest paid employees.
ρ(E1, Employees)
ρ(E2, Employees)
ρ(E3, πE2.eid(E1 ��E1.salary>E2.salary E2)
(πeidE1) − E3

TRC

{E1.eid | E1 ∈ Employees∧¬(∃E2 ∈ Employees(E2.salary > E1.salary))}

DRC

Relational Algebra and Calculus 41

{〈Eid1〉 | 〈Eid1, EN1, ES1〉 ∈ Employees∧
¬(∃Eid2, EN2, ES2(〈Eid2, EN2, ES2〉 ∈ Employees∧ ES2 > ES1))}

SQL

SELECT E.eid
FROM Employees E
WHERE E.salary = (Select MAX (E2.salary)

FROM Employees E2)

7. RA
The approach taken is similar to the solution for the previous exercise. First
find all the employees who do not have the highest salary. Remove these from
the original list of employees and what is left is the highest paid employees.
Remove the highest paid employees from the original list. What is left is the
second highest paid employees together with the rest of the employees. Then
find the highest paid employees of this new list. This is the list of the second
highest paid employees.
ρ(E1, Employees)
ρ(E2, Employees)
ρ(E3, πE2.eid(E1 ��E1.salary>E2.salary E2)
ρ(E4, E2 �� E3)
ρ(E5, E2 �� E3)
ρ(E6, πE5.eid(E4 ��E1.salary>E5.salary E5)
(πeidE3) − E6

TRC
{E1.eid | E1 ∈ Employees ∧ ∃E2 ∈ Employees(E2.salary > E1.salary

∧¬(∃E3 ∈ Employees(E3.salary > E2.salary)))}

DRC
{〈Eid1〉 | 〈Eid1, EN1, ES1〉 ∈ Employees∧
∃Eid2, EN2, ES2(〈Eid2, EN2, ES2〉 ∈ Employees(ES2 > ES1)
∧¬(∃Eid3, EN3, ES3(〈Eid3, EN3, ES3〉 ∈ Employees(ES3 > ES2))))}

SQL

SELECT E.eid
FROM Employees E
WHERE E.salary = (SELECT MAX (E2.salary)

FROM Employees E2
WHERE E2.salary �= (SELECT MAX (E3.salary)

FROM Employees E3))

42 Chapter 4

8. This cannot be expressed in relational algebra (or calculus) because there is no
operator to count, and this query requires the ability to count up to a number
that depends on the data. The query can however be expressed in SQL as follows:

SELECT Temp.eid
FROM (SELECT C.eid AS eid, COUNT (C.aid) AS cnt,

FROM Certified C
GROUP BY C.eid) AS Temp

WHERE Temp.cnt = (SELECT MAX (Temp.cnt)
FROM Temp)

9. RA
The approach behind this query is to first find the employees who are certified
for at least three aircraft (they appear at least three times in the Certified
relation). Then find the employees who are certified for at least four aircraft.
Subtract the second from the first and what is left is the employees who are
certified for exactly three aircraft.

ρ(R1, Certified)
ρ(R2, Certified)
ρ(R3, Certified)
ρ(R4, Certified)
ρ(R5, πeid(σ(R1.eid=R2.eid=R3.eid)∧(R1.aid �=R2.aid �=R3.aid)(R1 × R2 × R3)))
ρ(R6, πeid(σ(R1.eid=R2.eid=R3.eid=R4.eid)∧(R1.aid �=R2.aid �=R3.aid �=R4.aid)

(R1 × R2 × R3 × R4)))
R5 − R6

TRC
{C1.eid | C1 ∈ Certified ∧ ∃C2 ∈ Certified(∃C3 ∈ Certified

(C1.eid = C2.eid ∧ C2.eid = C3.eid∧
C1.aid �= C2.aid ∧ C2.aid �= C3.aid ∧ C3.aid �= C1.aid∧
¬(∃C4 ∈ Certified

(C3.eid = C4.eid ∧ C1.aid �= C4.aid∧
C2.aid �= C4.aid ∧ C3.aid �= C4.aid))))}

DRC
{〈CE1〉 | 〈CE1, CA1〉 ∈ Certified∧
∃CE2, CA2(〈CE2, CA2〉 ∈ Certified∧
∃CE3, CA3(〈CE3, CA3〉 ∈ Certified∧
(CE1 = CE2 ∧ CE2 = CE3∧
CA1 �= CA2 ∧ CA2 �= CA3 ∧ CA3 �= CA1∧
¬(∃CE4, CA4(〈CE4, CA4〉 ∈ Certified∧

Relational Algebra and Calculus 43

(CE3 = CE4 ∧ CA1 �= CA4∧
CA2 �= CA4 ∧ CA3 �= CA4))))}

SQL

SELECT C1.eid
FROM Certified C1, Certified C2, Certified C3
WHERE (C1.eid = C2.eid AND C2.eid = C3.eid AND

C1.aid �= C2.aid AND C2.aid �= C3.aid AND C3.aid �= C1.aid)
EXCEPT
SELECT C4.eid
FROM Certified C4, Certified C5, Certified C6, Certified C7,
WHERE (C4.eid = C5.eid AND C5.eid = C6.eid AND C6.eid = C7.eid AND

C4.aid �= C5.aid AND C4.aid �= C6.aid AND C4.aid �= C7.aid AND
C5.aid �= C6.aid AND C5.aid �= C7.aid AND C6.aid �= C7.aid)

This could also be done in SQL using COUNT.

10. This cannot be expressed in relational algebra (or calculus) because there is no
operator to sum values. The query can however be expressed in SQL as follows:

SELECT SUM (E.salaries)
FROM Employees E

11. This cannot be expressed in relational algebra or relational calculus or SQL. The
problem is that there is no restriction on the number of intermediate flights. All
of the query methods could find if there was a flight directly from Madison to
Timbuktu and if there was a sequence of two flights that started in Madison and
ended in Timbuktu. They could even find a sequence of n flights that started in
Madison and ended in Timbuktu as long as there is a static (i.e., data-independent)
upper bound on the number of intermediate flights. (For large n, this would of
course be long and impractical, but at least possible.) In this query, however, the
upper bound is not static but dynamic (based upon the set of tuples in the Flights
relation).

In summary, if we had a static upper bound (say k), we could write an algebra
or SQL query that repeatedly computes (upto k) joins on the Flights relation. If
the upper bound is dynamic, then we cannot write such a query because k is not
known when writing the query.

Exercise 4.6 What is relational completeness? If a query language is relationally
complete, can you write any desired query in that language?

Answer 4.6 Answer omitted.

44 Chapter 4

Exercise 4.7 What is an unsafe query? Give an example and explain why it is im-
portant to disallow such queries.

Answer 4.7 An unsafe query is a query in relational calculus that has an infinite
number of results. An example of such a query is:

{S | ¬(S ∈ Sailors)}

The query is for all things that are not sailors which of course is everything else. Clearly
there is an infinite number of answers, and this query is unsafe. It is important to
disallow unsafe queries because we want to be able to get back to users with a list of
all the answers to a query after a finite amount of time.

5
SQL: QUERIES, CONSTRAINTS,

TRIGGERS

Online material is available for all exercises in this chapter on the book’s webpage at

http://www.cs.wisc.edu/~dbbook

This includes scripts to create tables for each exercise for use with Oracle, IBM DB2,
Microsoft SQL Server, Microsoft Access and MySQL.

Exercise 5.1 Consider the following relations:

Student(snum: integer, sname: string, major: string, level: string, age: integer)
Class(name: string, meets at: string, room: string, fid: integer)
Enrolled(snum: integer, cname: string)
Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record
per student-class pair such that the student is enrolled in the class.

Write the following queries in SQL. No duplicates should be printed in any of the
answers.

1. Find the names of all Juniors (level = JR) who are enrolled in a class taught by
I. Teach.

2. Find the age of the oldest student who is either a History major or enrolled in a
course taught by I. Teach.

3. Find the names of all classes that either meet in room R128 or have five or more
students enrolled.

4. Find the names of all students who are enrolled in two classes that meet at the
same time.

45

46 Chapter 5

5. Find the names of faculty members who teach in every room in which some class
is taught.

6. Find the names of faculty members for whom the combined enrollment of the
courses that they teach is less than five.

7. For each level, print the level and the average age of students for that level.

8. For all levels except JR, print the level and the average age of students for that
level.

9. For each faculty member that has taught classes only in room R128, print the
faculty member’s name and the total number of classes she or he has taught.

10. Find the names of students enrolled in the maximum number of classes.

11. Find the names of students not enrolled in any class.

12. For each age value that appears in Students, find the level value that appears most
often. For example, if there are more FR level students aged 18 than SR, JR, or
SO students aged 18, you should print the pair (18, FR).

Answer 5.1 The answers are given below:

1. SELECT DISTINCT S.Sname
FROM Student S, Class C, Enrolled E, Faculty F
WHERE S.snum = E.snum AND E.cname = C.name AND C.fid = F.fid AND

F.fname = ‘I.Teach’ AND S.level = ‘JR’

2. SELECT MAX(S.age)
FROM Student S
WHERE (S.major = ‘History’)

OR S.snum IN (SELECT E.snum
FROM Class C, Enrolled E, Faculty F
WHERE E.cname = C.name AND C.fid = F.fid

AND F.fname = ‘I.Teach’)

3. SELECT C.name
FROM Class C
WHERE C.room = ‘R128’

OR C.name IN (SELECT E.cname
FROM Enrolled E
GROUP BY E.cname
HAVING COUNT (*) >= 5)

SQL: Queries, Constraints, Triggers 47

4. SELECT DISTINCT S.sname
FROM Student S
WHERE S.snum IN (SELECT E1.snum

FROM Enrolled E1, Enrolled E2, Class C1, Class C2
WHERE E1.snum = E2.snum AND E1.cname <> E2.cname
AND E1.cname = C1.name
AND E2.cname = C2.name AND C1.meets at = C2.meets at)

5. SELECT DISTINCT F.fname
FROM Faculty F
WHERE NOT EXISTS ((SELECT *

FROM Class C)
EXCEPT
(SELECTC1.room
FROM Class C1
WHERE C1.fid = F.fid))

6. SELECT DISTINCT F.fname
FROM Faculty F
WHERE 5 > (SELECT COUNT (E.snum)

FROM Class C, Enrolled E
WHERE C.name = E.cname
AND C.fid = F.fid)

7. SELECT S.level, AVG(S.age)
FROM Student S
GROUP BY S.level

8. SELECT S.level, AVG(S.age)
FROM Student S
WHERE S.level <> ‘JR’
GROUP BY S.level

9. SELECT F.fname, COUNT(*) AS CourseCount
FROM Faculty F, Class C
WHERE F.fid = C.fid
GROUP BY F.fid, F.fname
HAVING EVERY (C.room = ‘R128’)

10. SELECT DISTINCT S.sname
FROM Student S
WHERE S.snum IN (SELECT E.snum

FROM Enrolled E
GROUP BY E.snum

48 Chapter 5

HAVING COUNT (*) >= ALL (SELECT COUNT (*)
FROM Enrolled E2
GROUP BY E2.snum))

11. SELECT DISTINCT S.sname
FROM Student S
WHERE S.snum NOT IN (SELECT E.snum

FROM Enrolled E)

12. SELECT S.age, S.level
FROM Student S
GROUP BY S.age, S.level,
HAVING S.level IN (SELECT S1.level

FROM Student S1
WHERE S1.age = S.age
GROUP BY S1.level, S1.age
HAVING COUNT (*) >= ALL (SELECT COUNT (*)

FROM Student S2
WHERE s1.age = S2.age
GROUP BY S2.level, S2.age))

Exercise 5.2 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers. Write the following
queries in SQL:

1. Find the pnames of parts for which there is some supplier.

2. Find the snames of suppliers who supply every part.

3. Find the snames of suppliers who supply every red part.

4. Find the pnames of parts supplied by Acme Widget Suppliers and no one else.

5. Find the sids of suppliers who charge more for some part than the average cost of
that part (averaged over all the suppliers who supply that part).

6. For each part, find the sname of the supplier who charges the most for that part.

7. Find the sids of suppliers who supply only red parts.

8. Find the sids of suppliers who supply a red part and a green part.

SQL: Queries, Constraints, Triggers 49

9. Find the sids of suppliers who supply a red part or a green part.

10. For every supplier that only supplies green parts, print the name of the supplier
and the total number of parts that she supplies.

11. For every supplier that supplies a green part and a red part, print the name and
price of the most expensive part that she supplies.

Answer 5.2 Answer omitted.

Exercise 5.3 The following relations keep track of airline flight information:

Flights(flno: integer, from: string, to: string, distance: integer,
departs: time, arrives: time, price: real)

Aircraft(aid: integer, aname: string, cruisingrange: integer)
Certified(eid: integer, aid: integer)
Employees(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well;
every pilot is certified for some aircraft, and only pilots are certified to fly. Write each
of the following queries in SQL. (Additional queries using the same schema are listed
in the exercises for Chapter 4.)

1. Find the names of aircraft such that all pilots certified to operate them have
salaries more than $80,000.

2. For each pilot who is certified for more than three aircraft, find the eid and the
maximum cruisingrange of the aircraft for which she or he is certified.

3. Find the names of pilots whose salary is less than the price of the cheapest route
from Los Angeles to Honolulu.

4. For all aircraft with cruisingrange over 1000 miles, find the name of the aircraft
and the average salary of all pilots certified for this aircraft.

5. Find the names of pilots certified for some Boeing aircraft.

6. Find the aids of all aircraft that can be used on routes from Los Angeles to
Chicago.

7. Identify the routes that can be piloted by every pilot who makes more than
$100,000.

8. Print the enames of pilots who can operate planes with cruisingrange greater than
3000 miles but are not certified on any Boeing aircraft.

50 Chapter 5

9. A customer wants to travel from Madison to New York with no more than two
changes of flight. List the choice of departure times from Madison if the customer
wants to arrive in New York by 6 p.m.

10. Compute the difference between the average salary of a pilot and the average
salary of all employees (including pilots).

11. Print the name and salary of every nonpilot whose salary is more than the average
salary for pilots.

12. Print the names of employees who are certified only on aircrafts with cruising
range longer than 1000 miles.

13. Print the names of employees who are certified only on aircrafts with cruising
range longer than 1000 miles, but on at least two such aircrafts.

14. Print the names of employees who are certified only on aircrafts with cruising
range longer than 1000 miles and who are certified on some Boeing aircraft.

Answer 5.3 The answers are given below:

1. SELECT DISTINCT A.aname
FROM Aircraft A
WHERE A.Aid IN (SELECT C.aid

FROM Certified C, Employees E
WHERE C.eid = E.eid AND
NOT EXISTS (SELECT *

FROM Employees E1
WHERE E1.eid = E.eid AND E1.salary < 80000))

2. SELECT C.eid, MAX (A.cruisingrange)
FROM Certified C, Aircraft A
WHERE C.aid = A.aid
GROUP BY C.eid
HAVING COUNT (*) > 3

3. SELECT DISTINCT E.ename
FROM Employees E
WHERE E.salary < (SELECT MIN (F.price)

FROM Flights F
WHERE F.from = ‘Los Angeles’ AND F.to = ‘Honolulu’)

4. Observe that aid is the key for Aircraft, but the question asks for aircraft names;
we deal with this complication by using an intermediate relation Temp:

SQL: Queries, Constraints, Triggers 51

SELECT Temp.name, Temp.AvgSalary
FROM (SELECT A.aid, A.aname AS name,

AVG (E.salary) AS AvgSalary
FROM Aircraft A, Certified C, Employees E
WHERE A.aid = C.aid AND

C.eid = E.eid AND A.cruisingrange > 1000
GROUP BY A.aid, A.aname) AS Temp

5. SELECT DISTINCT E.ename
FROM Employees E, Certified C, Aircraft A
WHERE E.eid = C.eid AND

C.aid = A.aid AND
A.aname LIKE ‘Boeing%’

6. SELECT A.aid
FROM Aircraft A
WHERE A.cruisingrange > (SELECT MIN (F.distance)

FROM Flights F
WHERE F.from = ‘Los Angeles’ AND F.to = ‘Chicago’)

7. SELECT DISTINCT F.from, F.to
FROM Flights F
WHERE NOT EXISTS (SELECT *

FROM Employees E
WHERE E.salary > 100000
AND
NOT EXISTS (SELECT *

FROM Aircraft A, Certified C
WHERE A.cruisingrange > F.distance
AND E.eid = C.eid
AND A.aid = C.aid))

8. SELECT DISTINCT E.ename
FROM Employees E
WHERE E.eid IN ((SELECT C.eid

FROM Certified C
WHERE EXISTS (SELECT A.aid

FROM Aircraft A
WHERE A.aid = C.aid
AND A.cruisingrange > 3000)

AND
NOT EXISTS (SELECT A1.aid

52 Chapter 5

FROM Aircraft A1
WHERE A1.aid = C.aid
AND A1.aname LIKE ‘Boeing%’))

9. SELECT F.departs
FROM Flights F
WHERE F.flno IN ((SELECT F0.flno

FROM Flights F0
WHERE F0.from = ‘Madison’ AND F0.to = ‘New York’

AND F0.arrives < ‘18:00’)
UNION
(SELECT F0.flno
FROM Flights F0, Flights F1
WHERE F0.from = ‘Madison’ AND F0.to <> ‘New York’

AND F0.to = F1.from AND F1.to = ‘New York’
AND F1.departs > F0.arrives
AND F1.arrives < ‘18:00’)

UNION
(SELECT F0.flno
FROM Flights F0, Flights F1, Flights F2
WHERE F0.from = ‘Madison’

AND F0.to = F1.from
AND F1.to = F2.from
AND F2.to = ‘New York’
AND F0.to <> ‘New York’
AND F1.to <> ‘New York’
AND F1.departs > F0.arrives
AND F2.departs > F1.arrives
AND F2.arrives < ‘18:00’))

10. SELECT Temp1.avg - Temp2.avg
FROM (SELECT AVG (E.salary) AS avg

FROM Employees E
WHERE E.eid IN (SELECT DISTINCT C.eid

FROM Certified C)) AS Temp1,
(SELECT AVG (E1.salary) AS avg
FROM Employees E1) AS Temp2

11. SELECT E.ename, E.salary
FROM Employees E
WHERE E.eid NOT IN (SELECT DISTINCT C.eid

FROM Certified C)

SQL: Queries, Constraints, Triggers 53

AND E.salary > (SELECT AVG (E1.salary)
FROM Employees E1
WHERE E1.eid IN

(SELECT DISTINCT C1.eid
FROM Certified C1))

12. SELECT E.ename
FROM Employees E, Certified C, Aircraft A
WHERE C.aid = A.aid AND E.eid = C.eid
GROUP BY E.eid, E.ename
HAVING EVERY (A.cruisingrange > 1000)

13. SELECT E.ename
FROM Employees E, Certified C, Aircraft A
WHERE C.aid = A.aid AND E.eid = C.eid
GROUP BY E.eid, E.ename
HAVING EVERY (A.cruisingrange > 1000) AND COUNT (*) > 1

14. SELECT E.ename
FROM Employees E, Certified C, Aircraft A
WHERE C.aid = A.aid AND E.eid = C.eid
GROUP BY E.eid, E.ename
HAVING EVERY (A.cruisingrange > 1000) AND ANY (A.aname = ’Boeing’)

Exercise 5.4 Consider the following relational schema. An employee can work in
more than one department; the pct time field of the Works relation shows the percent-
age of time that a given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct time: integer)
Dept(did: integer, dname: string, budget: real, managerid: integer)

Write the following queries in SQL:

1. Print the names and ages of each employee who works in both the Hardware
department and the Software department.

2. For each department with more than 20 full-time-equivalent employees (i.e., where
the part-time and full-time employees add up to at least that many full-time
employees), print the did together with the number of employees that work in
that department.

3. Print the name of each employee whose salary exceeds the budget of all of the
departments that he or she works in.

54 Chapter 5

sid sname rating age
18 jones 3 30.0
41 jonah 6 56.0
22 ahab 7 44.0
63 moby null 15.0

Figure 5.1 An Instance of Sailors

4. Find the managerids of managers who manage only departments with budgets
greater than $1 million.

5. Find the enames of managers who manage the departments with the largest bud-
gets.

6. If a manager manages more than one department, he or she controls the sum of all
the budgets for those departments. Find the managerids of managers who control
more than $5 million.

7. Find the managerids of managers who control the largest amounts.

8. Find the enames of managers who manage only departments with budgets larger
than $1 million, but at least one department with budget less than $5 million.

Answer 5.4 Answer omitted.

Exercise 5.5 Consider the instance of the Sailors relation shown in Figure 5.1.

1. Write SQL queries to compute the average rating, using AVG; the sum of the
ratings, using SUM; and the number of ratings, using COUNT.

2. If you divide the sum just computed by the count, would the result be the same
as the average? How would your answer change if these steps were carried out
with respect to the age field instead of rating?

3. Consider the following query: Find the names of sailors with a higher rating than
all sailors with age < 21. The following two SQL queries attempt to obtain the
answer to this question. Do they both compute the result? If not, explain why.
Under what conditions would they compute the same result?

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT *

FROM Sailors S2
WHERE S2.age < 21

AND S.rating <= S2.rating)

SQL: Queries, Constraints, Triggers 55

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.age < 21)

4. Consider the instance of Sailors shown in Figure 5.1. Let us define instance S1 of
Sailors to consist of the first two tuples, instance S2 to be the last two tuples, and
S to be the given instance.

(a) Show the left outer join of S with itself, with the join condition being sid=sid.

(b) Show the right outer join of S with itself, with the join condition being
sid=sid.

(c) Show the full outer join of S with itself, with the join condition being sid=sid.

(d) Show the left outer join of S1 with S2, with the join condition being sid=sid.

(e) Show the right outer join of S1 with S2, with the join condition being sid=sid.

(f) Show the full outer join of S1 with S2, with the join condition being sid=sid.

Answer 5.5 The answers are shown below:

1. SELECT AVG (S.rating) AS AVERAGE
FROM Sailors S

SELECT SUM (S.rating)
FROM Sailors S

SELECT COUNT (S.rating)
FROM Sailors S

2. The result using SUM and COUNT would be smaller than the result using AV-
ERAGE if there are tuples with rating = NULL. This is because all the aggregate
operators, except for COUNT, ignore NULL values. So the first approach would
compute the average over all tuples while the second approach would compute the
average over all tuples with non-NULL rating values. However, if the aggregation
is done on the age field, the answers using both approaches would be the same
since the age field does not take NULL values.

3. Only the first query is correct. The second query returns the names of sailors with
a higher rating than at least one sailor with age < 21. Note that the answer to
the second query does not necessarily contain the answer to the first query. In
particular, if all the sailors are at least 21 years old, the second query will return an
empty set while the first query will return all the sailors. This is because the NOT
EXISTS predicate in the first query will evaluate to true if its subquery evaluates

56 Chapter 5

4. (a)

sid sname rating age sid sname rating age

18 jones 3 30.0 18 jones 3 30.0
41 jonah 6 56.0 41 jonah 6 56.0
22 ahab 7 44.0 22 ahab 7 44.0
63 moby null 15.0 63 moby null 15.0

(b)

sid sname rating age sid sname rating age

18 jones 3 30.0 18 jones 3 30.0
41 jonah 6 56.0 41 jonah 6 56.0
22 ahab 7 44.0 22 ahab 7 44.0
63 moby null 15.0 63 moby null 15.0

(c)

sid sname rating age sid sname rating age

18 jones 3 30.0 18 jones 3 30.0
41 jonah 6 56.0 41 jonah 6 56.0
22 ahab 7 44.0 22 ahab 7 44.0
63 moby null 15.0 63 moby null 15.0

to an empty set, while the ANY predicate in the second query will evaluate to
false if its subquery evaluates to an empty set. The two queries give the same
results if and only if one of the following two conditions hold:

The Sailors relation is empty, or

There is at least one sailor with age > 21 in the Sailors relation, and for
every sailor s, either s has a higher rating than all sailors under 21 or s has
a rating no higher than all sailors under 21.

Exercise 5.6 Answer the following questions:

1. Explain the term impedance mismatch in the context of embedding SQL com-
mands in a host language such as C.

(d)
sid sname rating age sid sname rating age

18 jones 3 30.0 null null null null
41 jonah 6 56.0 null null null null

(e)
sid sname rating age sid sname rating age

null null null null 22 ahab 7 44.0
null null null null 63 moby null 15.0

SQL: Queries, Constraints, Triggers 57

(f)

sid sname rating age sid sname rating age

18 jones 3 30.0 null null null null
41 jonah 6 56.0 null null null null
null null null null 22 ahab 7 44.0
null null null null 63 moby null 15.0

2. How can the value of a host language variable be passed to an embedded SQL
command?

3. Explain the WHENEVER command’s use in error and exception handling.

4. Explain the need for cursors.

5. Give an example of a situation that calls for the use of embedded SQL; that is, in-
teractive use of SQL commands is not enough, and some host language capabilities
are needed.

6. Write a C program with embedded SQL commands to address your example in
the previous answer.

7. Write a C program with embedded SQL commands to find the standard deviation
of sailors’ ages.

8. Extend the previous program to find all sailors whose age is within one standard
deviation of the average age of all sailors.

9. Explain how you would write a C program to compute the transitive closure of
a graph, represented as an SQL relation Edges(from, to), using embedded SQL
commands. (You need not write the program, just explain the main points to be
dealt with.)

10. Explain the following terms with respect to cursors: updatability, sensitivity, and
scrollability.

11. Define a cursor on the Sailors relation that is updatable, scrollable, and returns
answers sorted by age. Which fields of Sailors can such a cursor not update?
Why?

12. Give an example of a situation that calls for dynamic SQL; that is, even embedded
SQL is not sufficient.

Answer 5.6 Answer omitted.

Exercise 5.7 Consider the following relational schema and briefly answer the ques-
tions that follow:

