Use Wireshark to Analyze IP Packet

Objectives:
(1) Use Wireshark (Ethereal) to capture packets
(2) Analyze IP Packet
(3) Experience on Networking

Outline:
1. Introduction to Wireshark ... 1
2. Using Wireshark .. 2
 2.1 Capturing Packets .. 2
 2.2 How to look at the packets captured by Wireshark 3
3. Analyzing Packets ... 4
 3.1 Analyzing a general IP Packet .. 4
 3.2 Analyzing a HTTP Packet .. 5
4. Sniffing account and password ... 7
 4.1 Sniffing my password ... 7
 4.2 Using SSH .. 8

1. Introduction to Wireshark

Wireshark (former name Ethereal) is a network packet analyzer. It’s used for network troubleshooting, examining security problems, debugging protocol implementations, education, etc. It has all of the standard features as a protocol analyzer. What’s more, Wireshark is an open source software. You use it free under GNL.

“You could think of a network packet analyzer as a measuring device used to examine what’s going on inside a network cable, just like a voltmeter is used by an electrician to examine what’s going on inside an electric cable (but at a higher level, of course).” [1]

Benefiting from the open source, Wireshark can run on most of the perform, including Unix and Unix-like operation system, such as Linux, Solaris(SUN), FreeBSD, NetBSD, OpenBSD, Mac OS X, and also MS Windows.

GET WIRESHARK NOW:
You can install it follow the instruction on the manual. Make sure you choose WinPcap. This is very important.

2. Using Wireshark

2.1 Capturing Packets

Now that you have installed the Wireshark on your computer, now you can use it to capture the packets which is sent to your computer or bypasses. Here give you some instructions (MS Windows XP):

1. Start Wireshark: Start → all programs → Wireshark → Wireshark

2. From the menu, click “Capture” → “interfaces”

3. In the pop window, select a interface to capture. Usually it’s your network adapter card, click button “start” on right.

4. So you can capture the packets live. The result will be showed as following.
2.2 Work with packets captured by Wireshark

In this part, we will look at the packets. Before we going, take some hints:

Window Area 1:
At the top of the windows is the Menu and Tool bar, you can find all the functions of Wireshark here. Refer [1] for more details.

Windows Area 2:
Area 2 is a colorful list of all of the packets captured. Each column is a property of frame or packet and each row is a single frame or packet. Considering frame as a data entry, so this is a small database of captured frames.

Windows Area 3:
Here is an area for you to view the select frame in a structure mode; it’s always consisting of four or five hierarchical components. As show below,

1. Frame information: This row is created by Wireshark. It shows the general information of the very frame.
2. Data Link Layer. Row 2 is the Ethernet packet header
3. Network Layer. Row 3, since the payload of this Ethernet packet is an Internet Protocol packet (IP packet), this row is an IP header.
4. Transport Layer. Row 4 is a TCP header.
5. Application Layer. Finally, Row 5 is the Data which will be sent by TCP.

Windows Area 4:
In this Area, you can view the original frame as hex number. Area 4 has two parts. The one on left are sixteen columns of two-characters each. This is the
raw hexadecimal code that consist the packet. And one on right are the corresponding Unicode. If you click on an “http” row in Are 3, you might notice such word looking like “get” commands or “html” code.

3. Analyzing Packets

3.1 Analyzing a general IP Packet

Above is the IPv4 Header

Below is an example of a captured IP Header in Wireshark

<table>
<thead>
<tr>
<th>Bit: 0</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>19</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>IHL</td>
<td>Type of Service</td>
<td>Total Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification</td>
<td>Flags</td>
<td>Fragment Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to Live</td>
<td>Protocol</td>
<td>Header Checksum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Address</td>
<td>Destination Address</td>
<td>Options + Padding</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise 1:

1) Using Wireshark to capture your network card traffic for about 30 seconds.
2) Select an IP packet that carries a TCP protocol as its data.
3) Click to extend the Internet Protocol part, and extend the Flags option.
4) Look at both the Wireshark information and Hexadecimal code, Find out the IP Version, IHL, Type of Service, Total Length, Source IP and Destination IP.
5) In this packet, find out the information about Flags, Fragment offset, Time to Live, and Protocol type.
6) Click the Flags information, find its corresponding Hexadecimal code in the window below, and translate the highlighted two bytes code (such as 40 in the example) into its Binary format (0x40 == 0100 0000). Explain the Flags information, according to the Wireshark instruction. E.g. if you read your flag is 010, that indicates “don’t fragment”, if it’s 001, that means “more fragments”. Try to understand the fragmentation mechanism.
7) Click to extend the Transmission Control Protocol, find out the Source Port Destination Port and Window Size.

3.2 Analyzing a HTTP Packet

In Lab 1, we use telnet to connect the www.yahoo.com and practice the HTTP Protocol. Now we use Wireshark to have a deep understanding on HTTP Protocol. We want to know when we create an HTTP connection, what will be send to server and what will be responded from the server.

(1) Initial the Wireshark and capture the packets with filter that only considers the data transfer on HTTP and only pay attention on your computer.

(2) Open IE/Firefox/Safari/Opera to access our department’s website http://www.comp.hkbu.edu.hk/en/index.html

(3) Check the every frame which is sent by your computer and check the corresponding frame from the server.
The frame from 158.182.9.168 to 158.182.9.1 for an HTTP request. We can obtain a structure view on the HTTP packet. You can see the Request Method, Request URI, Request Version: HTTP/1.1, and other optional information.

A frame of the server responding to our request.
4. Sniffing account and password

4.1 Sniffing my password

In this session, I will demonstrate sniffing the account and password by Wireshark for an education purpose during the telnet connection. By this demonstrate you aware the security of internet is very important. **DO NOT** practice in the real world. **Stealing account and password would constitute a crime in HK.**

For telnet connection, the data is send without encryption. So if we capture the telnet data, we can see the original word directly. Follow the instruction to see what telnet transfer when we create a telnet connection.

(1) Open Wireshark, and capture the data with filter “telnet”
I suggest you add an address filter to one capture the relative frame. If your IP is 158.182.100.123, you can replace “telnet” by “telnet and ip.addr eq 158.182.100.123”.

(2) Create a telnet connection. “Start” → “run” → telnet cslinux1

Now there is some information display in Wireshark. You can check the TCP part and telnet part to get more details. Select the last two frames from the server “cslinux1”, check the Unicode in the bottom right of Wireshark.

Take attention to red area and blue dash area.

(3) You will see the echo from server will display in Wireshark.

(4) Try to input your account and password, the account and password will display in Wireshark.

4.2 Using SSH

SSH is a protocol that uses public key cryptography to transfer data securely over insecure networks, we always use it to remote access the computer on the network.

“Secure Shell or SSH is a network protocol that allows data to be exchanged using a secure channel between two networked devices. [1] Used primarily on Linux and Unix based systems to access shell accounts, SSH was designed as a
replacement for **TELNET** and other **insecure remote shells**, which sent information, notably **passwords**, in plaintext, leaving them open for interception.[2] The **encryption** used by **SSH** provides confidentiality and integrity of data over an insecure network, such as the **Internet**.” [5]

In this session, we demonstrate that we use SSH instead of Telnet to protect our data, especially the account and password. The instruction following:

(1). Initial step: get the server’s ip, eg. 158.182.155.181. Open the Wireshark and capture packets with filter which only captures the packets between your computer and the server.

(2). Use a SSH client connect to server and check the packets between yours and server. You can see the data transferred between you and the server is encrypted. You can not find the account and the password again.

Exercise 2. When you are designing a software to transfer the account and password, how to protect your account and password?

Remind you again. **DO NOT** try to steal any information from others. **Stealing account and password would constitute a crime in HK.**

References