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A B S T R A C T

Biometric cryptosystem has been proven to be a promising approach for template protection. Cryptosystems
such as fuzzy extractor and fuzzy commitment require discriminative and informative binary biometric
input to offer accurate and secure recognition. In multi-modal biometric recognition, binary features can be
produced via fusing the real-valued unimodal features and binarizing the fused features. However, when
the extracted features of certain modality are represented in binary and the extraction parameters are not
known, real-valued features of other modalities need to be binarized and the feature fusion needs to be
carried out at the binary level. In this paper, we propose a binary feature fusion method that extracts a
set of fused binary features with high discriminability (small intra-user and large inter-user variations) and
entropy (weak dependency among bits and high bit uniformity) from multiple sets of binary unimodal fea-
tures. Unlike existing fusion methods that mainly focus on discriminability, the proposed method focuses on
both feature discriminability and system security: The proposed method 1) extracts a set of weakly depen-
dent feature groups from the multiple unimodal features; and 2) fuses each group to a bit using a mapping
that minimizes the intra-user variations and maximizes the inter-user variations and uniformity of the fused
bit. Experimental results on three multi-modal databases show that fused binary feature of the proposed
method has both higher discriminability and higher entropy compared to the unimodal features and the
fused features generated from the state-of-the-art binary fusion approaches.

© 2016 Published by Elsevier B.V.

1. Introduction

Multi-modal biometric systems, consolidating multiple traits
(e.g., face, fingerprint, palmprint, voice, iris), address limitations of
unimodal biometric systems in matching accuracy, spoofing dif-
ficulty, universality, and feasibility [1]. By leveraging information
from multiple biometric sources for recognition, multi-biometric
systems generally achieve better matching accuracy [2,3] and are
much harder to spoof. In addition, multi-biometric systems are able
to recognize individuals using a subset of biometric traits via fea-
ture selection. This enables the systems to cover a wider range of
population when some of the users cannot be identified by a certain
trait.

� This paper has been recommended for acceptance by Patrick Flynn.
* Corresponding author.

E-mail addresses: csgcmai@comp.hkbu.edu.hk (G. Mai),
menghuilim@comp.hkbu.edu.hk (M. Lim), pcyuen@comp.hkbu.edu.hk (P. Yuen).

Biometric template security is a critical issue because biometrics
is unique and irrevocable once it is compromised. This security is
especially crucial in multi-biometric systems because they store and
process information about multiple biometric traits per user. Once
the system storage is compromised, sensitive biometrics information
could be revealed if biometric templates are not protected. An adver-
sary can then create physical spoofs of the traits from the revealed
templates to masquerade the target user in accessing the compro-
mised system or other systems illegitimately [4–7,49]. Even worse,
if the original biometric images corresponding to multiple traits
of a user can all be reverse-engineered from the revealed biomet-
ric templates, it would cause permanent compromise of this user’s
biometrics.

To date, several template protection approaches have been pro-
posed to ensure the security of the biometric templates. They can
be categorized into feature transformation (e.g., cancellable biomet-
ric [8], RGHE [9], BioHash [10]), biometric cryptosystem (e.g., fuzzy
extractor [11], fuzzy vault [12], fuzzy commitment [13]) and hybrid
approach [14]. In the feature transformation approach, templates
are transformed through a one-way transformation function using
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a user-specific random key. This approach provides cancellability,
where a new transformation (based on a new key) can be used if
any template is compromised. A biometric cryptosystem stores a
sketch that is generated from the enrollment template, where an
error correcting code (ECC) is employed to handle the intra-user
variations. The security of the biometric cryptosystem is based on the
randomness of the templates and the error correcting capability of
the ECC. A hybrid approach combines the advantages of both feature
transformation and biometric cryptosystem to provide stronger
security and template cancellability.

Biometric cryptosystem takes a query sample and an earlier-
generated sketch of the target user and produces a binary decision
(accept/reject) in the verification stage. In a multi-biometric cryp-
tosystem, the information of multiple traits could be fused at feature
level or score/decision level:

(a) [feature-level] features from different biometric traits are
fused and then protected by a single biometric cryptosystem.

(b) [score/decision-level] features from each biometric trait are
protected by a biometric cryptosystem and then the individ-
ual scores/decisions are fused.

The feature-level-fusion-based multi-biometric cryptosystems
are arguably more secure than the score/decision-level-fusion-
based systems [15]. In feature-level-fusion-based systems, a sketch
generated from the multi-modal template is stored, while in
score/decision-level-fusion-based systems, multiple sketches corre-
sponding to the unimodal templates are stored. As the adversarial
effort for breaking a multi-modal sketch is often much greater than
the aggregate effort for breaking the unimodal sketches, feature-
level-fusion-based systems are more secure. This has also been
justified in a recent work [15] using hill-climbing analysis.

Biometric cryptosystems such as fuzzy extractor and fuzzy com-
mitment mainly accept binary input. To produce a binary input for
biometric cryptosystems, an integrated binary string needs to be
extracted from the multi-modal features [50]. However, features of
different modalities are usually represented differently, e.g., point-
set for fingerprint [16], real-valued for face and binary for iris [17].
To extract the integrated binary string, one can either

(a) convert features of different types into point-set or real-
valued features, fuse the converted features, and binarize
them;

(b) convert point-set [18–20] and real-valued [14,21-24] features
into binary, then perform a binary feature fusion on these
features.

When commercial black-box binary feature extractors such as
IrisCode [17] and FingerCode [25] are employed for some biometric
traits, the extraction parameters such as quantization and encod-
ing information are not known. Hence, these binary features cannot
be converted to other forms of representation appropriately. In this
case, the second approach that is based on binary feature fusion is
usually adopted.

In this paper, we focus on binary feature fusion for multi-biometric
cryptosystems, where biometric features from multiple modalities
are converted to a binary representation before being fused. Gener-
ally, in a multi-biometric cryptosystem, there are three criteria for
its binary input (fused binary feature):

• Discriminability: The fused binary features have to be dis-
criminative in order not to defeat the original purpose of
recognizing users. The fused feature bits should have small
intra-user variations and large inter-user variations.

• Security: The entropy of the fused binary features have to be
adequately high in order to thwart guessing attacks, even if
the stored auxiliary data is revealed. The fused feature bits
should be highly uniform and weakly dependent among one
another.

• Privacy: The stored auxiliary data for feature extraction and
fusion should not leak substantial information on the raw
biometrics of the target user.

A straightforward method to fuse binary features is to combine
the multi-modal features using a bitwise operator (e.g., OR, XOR).
Concatenating unimodal binary features is another popular option
for binary fusion [26,27]. However, the fusion result of these methods
is often suboptimal in terms of discriminability, because the redun-
dant or unstable features cannot be removed. Selecting discrimina-
tive binary features is a better approach of obtaining discriminative
binary representation. However, similar to bitwise fusion and con-
catenation, the inherent dependency among bits cannot be improved
further. As a result, the entropy of the bit string could be limited,
leading to weak security consequence.

To produce a bit string that offers accurate and secure recognition,
we propose a binary fusion approach that can simultaneously maxi-
mize the discriminability and entropy of the fused binary output. As
the properties for achieving both discriminability and security crite-
ria can be divided into multiple-bit-based (i.e., dependency among
bits) and individual-bit-based (i.e., intra-user variations, inter-user
variations and bit uniformity). the proposed approach consists of two
stages: (i) dependency-reductive bit-grouping and (ii) discrimina-
tive within-group fusion. In the first stage, we address the multiple-
bit-based property: We extract a set of weakly dependent bit-groups
from multiple sets of binary unimodal features, such that, if the
bits in each group is fused into a single bit, these fused bits, upon
concatenation, will be weakly interdependent. Then, in the sec-
ond stage, we address the individual-bit-based properties: We fuse
bits in each bit-group into a single bit with the objective of mini-
mizing the intra-user variation, maximizing the inter-user variation
and maximizing uniformity of the bits. As maximizing bit unifor-
mity is equivalent to maximizing the inter-user variation of the
corresponding bit, which will be discussed further in Section 3.3,
the fusion function is designed to only maximize discriminabil-
ity (minimize intra-user variations and maximize inter-user varia-
tions). The preliminary version of this work has been presented in
Ref. [28].

The structure of this paper is organized as follows. In the next
section, we review several existing binary feature fusion techniques.
In Section 3, we describe the proposed two-stage binary feature
fusion. We present the experimental results to justify the effective-
ness of our fusion approach in Section 4. Finally, we draw concluding
remarks in Section 5.

2. Related work

To date, concatenation and bit selection are two typical binary
fusion approaches. Sutcu et al. [29] concatenate binary representa-
tion of iris and face together to yield the fused binary string. Kanade
et al. obtain the fused binary feature by concatenating the iris codes
of both left and right iris [26] and concatenating the binary features
of both iris and face [27]. Although concatenation of multiple binary
features is computationally efficient, this approach treats features
from multiple modalities equally and it could limit the discriminabil-
ity of the fused feature if the multi-modal features have different
discrimination power.

Alternatively, bit selection can be adopted to generate a more
discriminative fused binary feature by selecting bits with high dis-
criminability from the multi-modal features. Kelkboom et al. [23]
select a subset of reliable features based on the estimated z-score of
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the features, which is the ratio between the distance of the estimated
mean with respect to the quantization threshold and the estimated
standard deviation. Nagar et al. [30] present a discriminability-based
bit selection method to select a subset of bits from each biomet-
ric trait individually based on the genuine and impostor bit-error
probability and concatenate the selected bits together. Bits with high
discriminability are very likely to be mutually dependent because
some of the discriminative information may be represented using
multiple bits. It is rather difficult for the bit-selection approach
to select discriminative bits with high entropy for multi-biometric
cryptosystems.

Another possible approach for generating the fused binary
features from multiple unimodal binary features is to apply a trans-
formation such as PCA, LDA [31] and CCA [32] on the binary features,
followed by a binarization on the transformed feature. However,
this approach suffers from an unavoidable trade-off between depen-
dency among feature components and discriminability. For instance,
LDA and CCA features are highly discriminative but strongly interde-
pendent; while PCA features are uncorrelated but less discriminative.
With this approach, the discriminability and security criteria cannot
be fulfilled simultaneously.

3. The proposed binary feature fusion

3.1. Overview of the proposed method

The proposed two-stage binary feature fusion approach gener-
ates an S-bit binary representation z = {z1, · · · , zs, · · · , zS} from an
input binary string b = {b1, · · · , bm, · · · , bM}, where typically S �
M. The input binary string b consists of the concatenated multi-
modal binary features of a sample. The proposed approach can be
divided into two stages: (i) dependency reductive bit-grouping and
(ii) discriminative within-group fusion, where the block diagram is

shown in Fig. 1. The details of the two stages in testing phase are
described as follows:

(1) Dependency reductive bit-grouping: Input bits of b are
grouped into a set of weakly-dependent disjoint bit-groups
C = {f1, · · · , f s, · · · , fS} such that ∀s1, s2 ∈ [1, S], fs1 ∩ fs2 = ∅,⋃S

s=1 fs ⊆ {b1, · · · , bm, · · · , bM}.
(2) Discriminative within-group fusion: Bits in each group f s

are fused to a single bit zs using a group-specific mapping
function fs that maximizes the discriminability of zs.

The output bit zs of all groups is concatenated to produce the final
bit string z. To realize these two stages, optimum grouping infor-
mation in stage one and optimum within-group fusion functions in
stage two need to be sought. In stage one, the grouping informa-
tion Ĉ = {f̂1, · · · , f̂s, · · · , f̂S} represents the S groups of bit indices,
specifying which of the bits in b should be grouped together. Note
that we use ′x̂′ to denote the index of the variable x throughout
this paper unless stated otherwise. In stage two, the mapping func-
tion fs specifies to which output bit value the bits in group f s are
mapped.

3.2. Dependency reductive bit-group search

To reduce the dependency among bits in the output binary string,
a set of weakly-dependent bit-groups C need to be extracted from
the input b. One promising way to extract these weakly-dependent
bit-groups is to adopt a proper clustering technique based on a
dependency measure.

Existing clustering techniques can be categorized into partitional
clustering (e.g., k-means) and hierarchical clustering [33]. The
partitional clustering directly creates partitions of data and repre-
sents each partition using a representative (e.g., clustering center).
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Fig. 1. The proposed binary feature level fusion algorithm.
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However, the bit positions among which dependence needs to
be measured cannot be effectively represented in a metric space
because dependence does not satisfy the triangle inequality require-
ment of a metric space. As a result, partitional clustering is less
feasible in our context. The hierarchical clustering, on the other hand,
serves as a better option as it can operate efficiently based on a set
of pairwise dependencies. In this proposed method, we adopt the
agglomerative hierarchical clustering (AHC). The basic idea of AHC
is as follows: we first create multiple singleton clusters where each
cluster contains a single bit , and then we start to merge a clus-
ter pair with the highest pairwise dependency iteratively, until the
termination criterion is met.

To measure dependencies between two bits or two groups of bits,
mutual information (MI) can be adopted [34,35]. The MI of clusters
fs1 and fs2 can be expressed as

I
(
fs1 , fs2

)
= H

(
fs1

)
+ H

(
fs2

) − H
(
fs1 , fs2

)
(1)

where H(fs1 ) and H(fs2 ) denote the joint entropy of bits in an
individual cluster fs1 or fs2 , respectively, and H(fs1 , fs2 ) denotes
the joint entropy of bits enclosed by both clusters. However, the
above MI measurement is sensitive to the number of variables
(bit positions) and is proportionate to the aggregate information of
these variables. As a result, multiple MI measurements involving
different number of bit positions cannot be fairly compared dur-
ing the selection of cluster pair for cluster merging. That is, if MI
is adopted for dependency measurement, the hierarchical cluster-
ing technique will always be inclined to select a cluster pair that
involves the largest cluster for merging in every iteration, although
this cluster pair may not be the pair with the highest average bit
interdependency.

To obtain a better measure that precisely quantifies the bit inter-
dependency irrespective of the size of the clusters, we normalize the
MI using the size of clusters in the cluster pair. This normalized mea-
sure indicates how dependent on average a bit pair in a group is upon
merging. We call this normalized measure as the average mutual
information (AMI), such that

Iavg
(
fs1 , fs2

)
=

I
(
fs1 , fs2

)∣∣fs1

∣∣ × ∣∣fs2

∣∣ . (2)

With this AMI measure, we are able to identify cluster-pair with
the strongest average bit-pair dependency for merging over cluster
pairs of different sizes in each iteration. Our proposed AMI-based
AHC algorithm is shown in Algorithm 1. As strongly-dependent
cluster pairs will gradually be merged by the clustering algorithm,
we will eventually be able to obtain a set of (remaining) weakly-
dependent bit groups that were not selected for merging throughout
the algorithm.

After the algorithm terminates, the grouping information Ĉ is
obtained. It is noted that the size of each resulted group f speci-
fied in Ĉ determines the number of possible bit combinations (i.e.,
2|f | bit-combinations for groups size |f |). As we need to estimate the
occurrence probabilities of these bit combinations from the training
samples for within-group fusion search in the second stage described
in Section 3.3, it is usual that one may not have arbitrarily large
amount of training data in practice to ensure accurate estimation of
these probabilities. To overcome this problem, we restrict the maxi-
mum group size to be tsize in order to ensure the feasibility of optimal
within-group fusion search in the second stage.

Algorithm 1. AMI-based agglomerative hierarchical clustering.

The final set of S clusters is taken based on the entropy of the clus-
ters. In the ideal scenario, every resulted bit group f specified in Ĉ
should contain at least one bit entropy. According to our analysis in
Section 3.4, optimal inter-user variation of the output bit of a group
(during within-group fusion function search in the second stage) can
only be achieved when the entropy of the corresponding group is
not less than 1 bit. While this ideal scenario cannot be guaranteed
all the time especially when the input bit string contains limited
entropy, the entropy of the S clusters should be made as high as pos-
sible so that the possibility of obtaining high inter-user variation in
the resulted fused bit from each cluster in the second stage can be
heightened. Because the dependency (maximum AMI) of all cluster
pairs is non-increasing as the iteration proceeds (see Appendix A.1
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for the proof), the output grouping information Ĉ will be taken and
updated whenever one of the following conditions is satisfied:

(a) The S-th largest cluster entropy in Ĉtmp is greater or equal to
one bit;

(b) The S-th largest entropy of the clusters in Ĉ is less than one bit
and less than that in Ĉtmp.

3.3. Discriminative within-group fusion search

Suppose that we have obtained S groups of bits from the first
stage. For each group, we seek for a discriminative fusion f :
{0, 1}|f | → {0, 1} to fuse bits in group f to a single bit z. Here,
the function f maps each combination of |f | bits to a bit value.
The within-group fusion is analogous to a binary-label assignment
process, where each bit combination is assigned a binary output
label (a fused bit value). Since the dependency among fused bits has
been reduced using AMI-based AHC in stage one, to obtain a dis-
criminative bit string that contains high entropy, the fusion should
minimize the intra-user variation, maximize the inter-user variation

(c)  Chimeric B

(a) WVU Multimodal (b)  Chimeric A

Fig. 3. Sample face, fingerprint, and iris images from (a) WVU; (b) Chimeric A
(FERET, FVC2000-DB2, CASIA-Iris-Thousand); and (c) Chimeric B (FRGC, FVC2002-DB2,
ICE2006).

Table 1
Experimental settings.

WVU Chimeric A Chimeric B

Subjects 106 100 100
Samples per subject 5 8 8
Training sample 3 4 4
Testing sample 2 4 4
Genuine attempts 106 300 300
Impostor attempts 11,130 19,800 19,800

and uniformity of the output bit. Naturally, maximizing inter-user
variations has an equivalent effect of maximizing bit uniformity. This
is because a bit with maximum inter-user variation also indicates
that the bit value would distribute uniformly among the population
users. Thus, the fusion sought in the following need only to optimize
the discriminability of the output bit, i.e., minimizing the intra-user
variations and maximizing the inter-user variations.

The intra-user and inter-user variations of the fused bit z of group
f could be measured using the genuine bit-error probability pe

g and
the impostor bit-error probability pe

i , respectively. Genuine bit-error
probability is defined as the probability where different samples of
the same user are fused to different bit values, while the impostor
bit-error probability is defined as the probability where samples of
different users are fused to different bit values. Let xt denotes the t-th
bit-combination of group f , where t = {1, 2, · · · , 2|f |} and let X(0) and
X(1) denote the sets of bit-combinations in group f that to be fused to
‘0’ and ‘1’, respectively. The genuine bit-error probability of fused bit
z corresponding to group f can be expressed as

pe
g = Pr

(
fn1 ∈ X(0), fn2 ∈ X(1)|ln1 = ln2

)
=

∑
xt1 ∈X(0)

∑
xt2 ∈X(1)

Pr
(
fn1 = xt1 , fn2 = xt2 |ln1 = ln2

)
(3)

where ln1 and ln2 denote the label of n1-th and n2-th training sample,
respectively, fn1 and fn2 denote the group f corresponding to the
n1-th and n2-th training samples, n1 
= n2 and n1, n2 ∈ {1, 2, · · · , N}.

Similarly, the impostor bit-error probability can be expressed as

pe
i = Pr

(
fn1 ∈ X(0), fn2 ∈ X(1)|ln1 
= ln2

)
=

∑
xt1 ∈X(0)

∑
xt2 ∈X(1)

Pr
(
fn1 = xt1 , fn2 = xt2 |ln1 
= ln2

)
. (4)

To seek the function f that minimizes genuine and maximizes
impostor bit-error probability, we solve the following minimization
problem using the integer genetic algorithm [36,37],

min
f

(
pe

g − pe
i

)
=

∑
xt1 ∈X(0)

∑
xt2 ∈X(1)

(
Pr(fn1 = xt1 , fn2 = xt2 |ln1 = ln2 )

− Pr
(
fn1 = xt1 , fn2 = xt2 |ln1 
= ln2

))
(5)

subject to

f (xt1 ) = 0, f (xt2 ) = 1

where f (xt1 ) and f (xt1 ) denote the fused bit value of bit-combination
xt1 and xt2 , respectively. Note that this function f has to be sought for
every bit group.
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(a) WMU Multimodal (b) Chimeric A

(c) Chimeric B

Fig. 4. Comparison of area under ROC curve on (a) WVU multi-modal, (b) Chimeric A, (c) Chimeric B databases.

3.4. Discussion and analysis

An important requirement in Algorithm 1 is that each resulted bit
group (joint entropy of bits in the group) should contain at least one-
bit entropy to warrant the achievability of high inter-user variation.
This is because when the group entropy is less than one bit, the prob-
ability of one of the fused bit values would become larger than 0.5,
thus making the distribution of bit values less uniform among the
population users. In the following, we analyze how group entropy
that is less than one bit could negatively influence the impostor error
probability of the fused bit.

Let pt denotes the occurrence probability of a bit combination xt

in group f , where t = {1, 2, · · · , 2|f |}. The corresponding joint entropy
of bits in group f is expressed as

H(x) = −
2|f |∑
t=1

ptlog2pt (6)

where |f | denotes group size and
∑2|f |

t=1 pt = 1. If H(x) < 1,

(a) there exists a bit combination that has the highest occurrence
probability pmax = maxt(pt) > 0.5; and

(b) the impostor bit-error probability pe
i (the larger, the better) of

the fused bit in stage two is upper bounded by

pe
i ≤ 2pmax (1 − pmax) < 0.5. (7)

Proof. (a) To prove that there is an input bit combination that has
the highest probability pmax = maxt(pt) > 0.5 when H(x) < 1, we
construct a lower bound of entropy HL(x) w.r.t. pmax that is described
as follows:

HL(x) = max(HL1(x), HL2(x)) (8)

=

{
HL1(x) = −log2pmax, 0 < pmax ≤ 0.5

HL2(x) = Hb (pmax) , 0.5 ≤ pmax ≤ 1

where HL1(x) and HL2(x) are two lower bound functions and Hb(pmax)
is the binary entropy function

Hb(pmax) = −pmaxlog2(pmax) − (1 − pmax)log2(1 − pmax).
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The two lower bound functions HL1(x) and HL2(x) are derived as
follows:

H(x) = −
2|f |∑
t=1

ptlog2pt ≥ −
2|f |∑
t=1

ptlog2pmax = −log2pmax = HL1(x)

(9)

H(x) = −
2|f |∑
t=1

ptlog2pt ≥ −
1∑

z=0

⎛
⎝

⎛
⎝ ∑

t,f (xt)=z

pt

⎞
⎠ log2

∑
t,f (xt)=z

pt

⎞
⎠ (10)

≥ Hb (pmax) = HL2(x)

The inverse function of Eq. (8) is plotted as the solid curve in Fig. 2,
where the admissible region of pmax lies within the grey-shaded area,
indicating the possible pmax values given an entropy value H(x) of
a bit group. Based on this plot, it can be observed that when group
entropy H(x) < 1, all of the possible pmax values in the dark-grey-
shaded area are greater than 0.5, which completes the proof.

Proof. (b) The impostor bit-error probability pe
i is the probability of

getting a different fused bit value from that of the target genuine
user. Hence, we obtain the following:

pe
i = Pr(z = 0) Pr(z = 1) + Pr(z = 1) Pr(z = 0)

= 2 Pr(z = 0) Pr(z = 1) (11)

≤ 2pmax (1 − pmax)

< 0.5

With this, the lower H(x) < 1 is, the larger the pmax, and the
smaller the impostor bit-error probability pe

i will be. This completes
the proof.

4. Experimental results

4.1. Database and experiment setting

We evaluated the proposed fusion algorithm using a real and
two chimeric multi-modal databases, involving three modalities:
face, fingerprint and iris. The real multi-modal database, WVU [38],

(a) WVU Multimodal (b) Chimeric A

(c) Chimeric B

Fig. 5. Comparison of average Renyi entropy on (a) WVU multi-modal, (b) Chimeric A, (c) Chimeric B databases.
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contains images of 106 subjects, where each subject has five
multi-modal samples. The two chimeric multi-modal databases are
obtained by randomly matching images from a face, a fingerprint
and an iris database. The first chimeric multi-modal database named
Chimeric A consists of faces from FERET [39], fingerprints from
FVC2000-DB2 and irises from CASIA-Iris-Thousand [40]. The second
database named Chimeric B consists of faces from FRGC [41], fin-
gerprints from FVC2002-DB2 and irises from ICE2006 [42]. These
chimeric databases contain 100 subjects with eight multi-modal
samples per subject. Fig. 3 shows the sample images from the three
databases.

The training–testing partitions for each database is shown in
Table 1. Our testing protocol is described as follows. For the gen-
uine attempts, the first sample of each subject is matched against
the remaining samples of the subject. For the impostor attempts, the
i-th sample of each subject is matched against the i-th sample of the
remaining subjects. Consequently, the number of genuine and impos-
tor attempts in WVU multi-modal database are 106 (106×(2−1)) and
11,130 ((106×105)/2×2), respectively, while the number of genuine
and impostor attempts in the two chimeric multi-modal databases
are 300 (100 × (4 − 1)) and 19,800 ((100 × 99)/2 × 4) respectively.

Prior to evaluating the binary fusion algorithms, we extract the
binary features of face, fingerprint and iris from the databases. The
images of each modality are first processed as follows:

• Face: Proper face alignment is first applied based on the stan-
dard face landmark. To eliminate effect from variations such
as hair style and background, the face region of each sample
is cropped and resized to 61×73 pixels in FERET and FRGC
databases, and 15×20 pixels in WVU database.

• Fingerprint: We first extract minutiae from each fingerprint
using Verifinger SDK 4.2 [43]. The extracted minutiae are

converted into an ordered binary feature using the method pro-
posed in Ref. [18] without randomization. Following param-
eters in Ref. [18], each fingerprint image is represented by a
vector with length 224.

• Iris: The weighted adaptive hough and ellipsopolar transform
(WAHET) [44] is employed to segment the iris. Then, 480 real
features are extracted from the segmented iris using Ko et al.’s
extractor [45]. Both segmentation and extraction algorithms
are implemented using the iris toolkit (USIT) [46].

After preprocessing, we apply PCA on face, and LDA on fingerprint
and iris to reduce the feature dimensions to 50. Then, we encode each
feature component with a 20-bit binary vector using LSSC [24] and
obtain a 1000-bit binary feature for each modality.

In this comparative study, we compare the proposed method with
the following existing methods:

− single modality baselines: face, fingerprint, iris
− bit selection [30]
− concatenation [26,27]
− bit-wise operation: AND, OR, XOR
− decision fusion: AND, OR (denoted as ‘andd

′ and ‘ord
′ in the

experimental results, respectively)

It is noted that all of the compared methods are re-implemented
here.

For the proposed method, the parameter of largest cluster size
tsize in stage one is set to 8. Throughout the comparative study, fea-
tures produced by the evaluated methods are made to be of the
same length for comparison fairness purpose, except the concatena-
tion method. For instance, the original length of the unimodal binary
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Fig. 6. Area under ROC curve with varying qualities of biometric inputs.
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features is reduced to the evaluated length through discriminative
selection using a discriminability criterion [30]. The features of the
bit-wise operation and the results of decision-level fusion methods
are obtained from these selected uni-biometric features.

4.2. Evaluation measures for discriminability and security

4.2.1. Discriminability
The discriminability of the fused feature is measured using the

area under curve (AUC) of the receiver operating characteristic (ROC)
curve. The higher the AUC, the better the matching accuracy would
be.

4.2.2. Security
The security of the template is evaluated using quadratic Renyi

entropy [47]. Specifically, the quadratic Renyi entropy measures the
effort for searching an identified sample of the target template.
Assuming that the average impostor Hamming distance (aIHD) or the
impostor Hamming distance per bit obeys binomial distribution with
expectation p and standard deviation s , the entropy of the template
can be estimated as

H = −log2 Pr(aIHD = 0)

= −log2p0(1 − p)N∗ = −N∗log2(1 − p) (12)

where p and s denote the mean and standard deviation of the aIHD,
resp., and N* = p(1 − p)/s2 denotes the estimated number of
independent Bernoulli trials.

4.2.3. Trade-off analysis
The GAR-Security (G-S) analysis [30] is an integrated measure for

template discriminability and security in biometric cryptosystems. It
analyzes the trade-off between matching accuracy and security in a
fuzzy commitment system by varying the error correcting capabil-
ity. The G-S analysis is based on the decoding complexity of Nagar’s
ECC decoding algorithm [30], where a query is accepted only if the
corresponding decoding complexity is less than a given threshold.

A G-S point is produced via computing the GAR and the minimum
decoding complexity among all impostor attempts given an error
correcting capability. More details of the decoding complexity can be
found in [30]. We estimate the entropy of the binary feature using the
quadratic Renyi entropy [47], which is a more accurate measure than
the Daugman’s DOF [48] that is only reliable as the aIHD expectation
p = 0.5.

4.3. Discriminability evaluation

The AUC for fusion bit length from 150 to 600 is shown in Fig. 4.
It can be observed that the proposed method has comparable per-
formance compared to bit selection and concatenation on all three
databases and it outperforms the remaining methods in general. On
WVU multi-modal database, the proposed method performs as good
as the unimodal face baseline.

For the results on WVU multi-modal database in Fig. 4a, the pro-
posed method outperforms the curves of bit selection, concatenation
and face. When the bit length equals 350, the AUC of the proposed
method is 0.9961, which is slightly higher than the AUC of bit selec-
tion (0.9896), concatenation (0.9946) and the best single modality:
face (0.9890). Compared to face, the proposed method has a marginal
improvement of 0.71%.
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For the results on Chimeric A database shown in Fig. 4b, the
proposed method performs equally well with bit selection and con-
catenation methods. The AUC of the proposed method, the bit selec-
tion and the concatenation methods are 0.9992, 0.9985, and 0.9973
at 350-bit feature length, respectively. This shows a 3.4% improve-
ment of the proposed method compared to the best-performing
unimodality: face (AUC= 0.9656).

For the results of Chimeric B database in Fig. 4c, it can be observed
that the AUC of the proposed method is slightly higher than the
bit selection method when the bit length is less than 500. For this
database, the proposed method, bit selection and concatenation
methods outperform significantly the best-performing unimodality:

iris. At 350-bit feature length, the AUC of the proposed method is
0.9823 compared to the concatenation (0.9793) and bit selection
(0.9763) methods. The AUC improvement of the proposed method
is approximately 3.5% compared to iris (AUC= 0.9413) at 350-bit
feature length.

These results show that the proposed method could perform
equally well, or even slightly better than bit selection and concate-
nation although the biometric modalities could vary significantly in
quality. It is noted that the difference between the AUC of face and
fingerprint is around 7–10% on WVU multi-modal database and 2–
5% on Chimeric A database; while the difference between the AUC of
iris and face is around 10% on Chimeric B.

bit length = 500bit length = 350

(a) WVU multimodal

bit length = 200

bit length = 500bit length = 350

(b) Chimeric A

bit length = 200

bit length = 500bit length = 350

(c) Chimeric B

bit length = 200

Fig. 8. G-S trade-off analysis on (a) WVU multi-modal, (b) Chimeric A, and (c) Chimeric B.
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Additionally, it is observed that there is no guarantee on the per-
formance of features produced based on AND-, OR- and XOR-feature
fusion rule. The features produced by XOR rule are always the worst
compared to AND and OR rules.

4.4. Security evaluation

In this section, the results on template security are shown, which
is measured using quadratic Renyi entropy [47]. The average Renyi
entropy of the binary feature fused using the evaluated schemes are
plotted in Fig. 5. Here, the average Renyi entropy is the Renyi entropy
divided by the bit length of the fused features, thus ranging from 0 to
1. A higher average Renyi entropy implies stronger template security.

On all three databases, it can be observed that the proposed method
ranks second in terms of entropy. The best-performing method turns
out to be the XOR feature fusion because the features tends to be
more uniform upon XOR fusion, despite its poor performance in the
discriminability evaluation.

For the WVU multi-modal database shown in Fig. 5a, it is observed
that at 350-bit feature length, the average entropy achieved by the
proposed method is 0.4674 bit, while the XOR-feature fusion method
achieves an average entropy of 0.9603 bit, which is nearly double
of the proposed method. Besides that the ‘andd

′ method slightly
underperforms the proposed method, the remaining methods could
only achieve at most half of the average entropy of the proposed
method.

Similar results can be seen on Chimerics A and B databases in
Fig. 5b and c. When the bit length equals 350, the proposed method
achieves an average entropy of 0.4896 bit in Fig. 5b and 0.4021 bit
in Fig. 5c, that is half of that of the XOR-feature fusion method but is
at least double of that of the remaining methods.

4.5. Robustness of varying qualities of biometric inputs

In addition to produce a fused feature with high discriminabil-
ity and security, a feature fusion method should be robust to varying
qualities of biometric inputs. To demonstrate the robustness of the
proposed method in discriminability and security, we plot AUC and
average Renyi entropy of fused feature with different qualities of
inputs in Figs. 6 and 7, respectively.

The face feature from FRGC and fingerprint feature from
FVC2002-DB2 have AUC less than 0.84 and 0.9 (in most cases),
respectively and are used as low-quality inputs. The iris feature from
ICE2006 and face feature from FERET have AUC higher than 0.92 and
0.96, respectively and are used as high-quality inputs. It is noted that
high-quality inputs have average Renyi entropy at least 50% higher
than the one of low-quality inputs with the same feature length. The
experiments here contain the three possible quality combinations of
input, i.e., low + low (Figs. 6a, 7a), low + high (Figs. 6b–e, 7b–e), and
high + high (Figs. 6f, 7 f).

It is observed that in the three possible quality combinations of
inputs, the proposed method consistently achieves the highest AUC
and average Renyi entropy compared to its inputs. This shows that
the proposed method is robust to varying qualities of inputs.

4.6. Trade-off analysis between discriminability and security

Using the parameters suggested in Ref. [30], the G-S curves of the
evaluated methods are plotted in Fig. 8. The maximum acceptable
decoding complexity is fixed as 15 bits and the minimum distance
of the ECC ranges from 0.02 to 0.6 times the bit length S. It can
be observed that the proposed method outperforms the bit selec-
tion method on all three databases. This implies that the proposed
method achieves a better discriminability-security trade-off than the
bit selection method and the remaining methods.

For 40-bit security at 350-bit feature length, the proposed method
performs the best, achieving 69% GAR. This is followed by the face
(57% GAR) and bit selection method (38% GAR). For the same set-
tings on Chimeric A database, the proposed method achieves 64%
GAR, which is 13% higher than face modality and 26% higher than bit
selection method. As for Chimeric B database, the proposed method
achieves 20% GAR, which is 11% higher than the iris modality and 17%
higher than bit selection method.

5. Conclusion

In this paper, we have proposed a binary feature fusion algorithm
that can produce discriminative binary templates with high entropy
for multi-biometric cryptosystems. The proposed binary feature
fusion algorithm consists of two stages: dependency reductive bit
grouping and discriminative and uniform within-group fusion. The
first stage creates multiple weakly-interdependent bit groups using
grouping information that is obtained from an average mutual
information-based agglomerative hierarchical clustering; while the
second stage fuses the bits in each group through a function
that minimizes intra-user variation, and maximizes uniformity and
inter-user variation of the output fused bit. We have conducted
experiments on WVU multi-modal database and two chimeric
databases and the results have justified the effectiveness of the pro-
posed method in producing a highly discriminative fused template
with high entropy per multi-modal sample.
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Appendix A.

A.1. Proof of the non-increasing of the maximum AMI

Lemma 1. In the agglomerative clustering that merge cluster pairs with
maximum AMI at each iteration, let MIiter

avg and MIiter+1
avg denotes maxi-

mum AMI among all cluster-pairs in the start of iter-th and (iter + 1)-th
iteration, resp., then MIiter

avg ≥ MIiter+1
avg .

Proof. (proof by contradiction) Suppose that the cluster-set Citer =
{f1, f2, · · · , fS} in the start of iter-th iteration contains L clusters, and
the cluster-pair (fs1 , fs2 ), where s1, s1 = {1, 2, · · · , S}, is the cluster-
pair with highest AMI among all possible cluster-pairs from Citer, i.e.,
MIiter

avg = Iavg(fs1 , fs2 ). In the start of (iter + 1)-th (after iter-th) itera-
tion, cluster-pair (fs1 , fs2 ) is merged to cluster fs3 , the corresponding
cluster-set Citer+1 contains fs3 and all the clusters in Citer excluding
fs1 and fs2 , i.e.,

Citer+1 = Citer − {fs1 } − {fs2 } + {fs3 }

As MIiter
avg = Iavg(fs1 , fs2 ), Iavg(fs1 , fs2 ) greater than the AMI of all possi-

ble cluster-pair in Citer+1 excluding cluster fs3 . Therefore, if MIiter
avg <

MIiter+1
avg , there must exist a fs4 in Citer+1, such that Iavg(fs1 , fs2 ) <

Iavg(fs3 , fs4 ). Since

Iavg(fs3 , fs4 ) =
H(fs3 ) + H(fs4 ) − H(fs3 , fs4 )

|fs3 ‖ fs4 |
=

H(fs3 ) + H(fs4 ) − H(fs3 , fs4 )
(|fs1 | + |fs2 |)|fs4 | .
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Furthermore, we have

H
(
fs3

)
+ H

(
fs4

) − H
(
fs3 , fs4

)
= Iavg(fs1 , fs4 )|fs1 ‖ fs4 | + Iavg(fs2 , fs4 )|fs2 ‖ fs4 |

+H(fs1 , fs4 ) + H(fs2 , fs4 )

− (
Iavg(fs1 , fs2 ) + H(fs4 ) + H(fs1 , fs2 , fs4 )

)
≤ Iavg(fs1 , fs4 )|fs1 ‖ fs4 | + Iavg(fs2 , fs4 )|fs2 ‖ fs4 |
≤ max{Iavg(fs1 , fs4 ), Iavg(fs2 , fs4 )}(|fs1 | + |fs2 |)|fs4 |.

Finally,

Iavg(fs3 , fs4 ) ≤ max{Iavg(fs1 , fs4 ), Iavg(fs2 , fs4 )}(|fs1 | + |fs2 |)|fs4 |
(|fs1 | + |fs2 |)|fs4 |

≤ max{Iavg(fs1 , fs4 ), Iavg(fs2 , fs4 )}(|fs1 | + |fs2 |)|fs4 |
≤ Iavg(fs1 , fs2 ).

Therefore, there is no cluster fs4 that fulfill the condition
Iavg(fs1 , fs2 ) < Iavg(fs3 , fs4 ), which means that MIiter

avg ≥ MIiter+1
avg always

true. This completes the proof. �
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