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Classification Rule Discovery with Ant Colony 
Optimization 

Bo Liu1, Hussein A. Abbass2, and Bob McKay2 

  In [9], we presented a modified version of Ant-Miner (i.e. 
Ant-Miner2), where the core computation heuristic value was 
based on a simple density estimation heuristic. In this paper, we 
present a further study and introduce another ant-based 
algorithm, which uses a different pheromone updating strategy 
and state transition rule.  By comparison with the work of 
Parpinelli et al, our method can improve the accuracy of rule 
lists. 

Abstract—Ant-based algorithms or ant colony 
optimization (ACO) algorithms have been applied 
successfully to combinatorial optimization problems. More 
recently, Parpinelli and colleagues applied ACO to data 
mining classification problems, where they introduced a 
classification algorithm called Ant_Miner. In this paper, we 
present an improvement to Ant_Miner (we call it 
Ant_Miner3). The proposed version was tested on two 
standard problems and performed better than the original 
Ant_Miner algorithm. The remainder of the paper is organized as follow. In section 

1, we present the basic idea of the ant colony systems. In 
section 2, the Ant_Miner algorithm (Rafael S.Parpinelli et al, 
2000) is introduced. In section 3, the density based Ant_miner2 
is explained. In section 4, our further improved method 
(i.e.Ant_Miner3) is shown. Then the computational results are 
reported in section 5. Finally, we conclude with general 
remarks on this work and further directions for future research. 

 

I. INTRODUCTION 

Knowledge discovery in databases (KDD) is the process of 
extracting models and patterns from large databases. The term 
data mining (DM) is often used as a synonym for the KDD 
process, although strictly speaking it is just a step within KDD. 
DM refers to the process of applying the discovery algorithm to 
the data. In [5], KDD is defined as  

II. ANT COLONY SYSTEM (ACS) AND ANT_MINER  

Ant Colony Optimization (ACO) [2] is a branch of a newly 
developed form of artificial intelligence called swarm 
intelligence. Swarm intelligence is a field which studies “the 
emergent collective intelligence of groups of simple agents” [1]. 
In groups of insects, which live in colonies, such as ants and 
bees, an individual can only do simple tasks on its own, while 
the colony's cooperative work is the main reason determining 
the intelligent behavior it shows. Most real ants are blind. 
However, each ant while it is walking, deposits a chemical 
substance on the ground called pheromone [2]. Pheromone 
encourages the following ants to stay close to previous moves. 
The pheromone evaporates over time to allow search 
exploration. In a number of experiments presented in [3], 
Dorigo and Maniezzo illustrate the complex behavior of ant 
colonies. For example, a set of ants built a path to some food. 
An obstacle with two ends was then placed in their way such 
that one end of the obstacle was more distant than the other. In 
the beginning, equal numbers of ants spread around the two 
ends of the obstacle. Since all ants have almost the same speed, 
the ants going around the nearer end of the obstacle return 
before the ants going around the farther end (differential path 
effect). With time, the amount of pheromone the ants deposit 
increases more rapidly on the shorter path, and so more ants 
prefer this path. This positive effect is called autocatalysis. The 
difference between the two paths is called the preferential path 
effect; it is the result of the differential deposition of 
pheromone between the two sides of the obstacle, since the ants 

“… the process of model abstraction from large databases 
and searching for valid, novel, and nontrivial patterns and 
symptoms within the abstracted model”. 

Rule Discovery is an important data mining task since it 
generates a set of symbolic rules that describe each class or 
category in a natural way. The human mind is able to 
understand rules better than any other data mining model. 
However, these rules need to be simple and comprehensive; 
otherwise, a human won’t be able to comprehend them. 
Evolutionary algorithms have been widely used for rule 
discovery, a well known approach being learning classifier 
systems. 

To our knowledge, Parpinelli, Lopes  and  Freitas [4] were 
the first to propose Ant Colony Optimization (ACO) for 
discovering classification rules, with the system Ant-Miner. 
They argue that an ant-based search is more flexible and robust 
than traditional approaches. Their method uses a heuristic value 
based on entropy measure.  
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following the shorter path will make more visits to the source 
than those following the longer path. Because of pheromone 
evaporation, pheromone on the longer path vanishes with time.  

The goal of Ant-Miner is to extract classification rules from 
data (Parpinelli et al., 2002). The algorithm is presented in 
Figure 1. 

where ηij is a problem-dependent heuristic value for term-ij, τij 
is the amount of pheromone currently available (at time t) on 
the connection between attribute i and value I is the set of 
attributes that are not yet used by the ant. Training set = all training cases; 

WHILE (No. of  cases in the Training set >
max_uncovered_cases) 

i=0; 
REPEAT 

i=i+1; 
Anti incrementally constructs a

classification rule; 
Prune the just constructed rule; 
Update the pheromone of the trail

followed by Anti; 
UNTIL (i ≥ No_of_Ants) or (Anti constructed the
same rule as the previous No_Rules_Converg-1
Ants)  
Select the best rule among all constructed rules; 
Remove the cases correctly covered by the selected
rule from the training set; 

END WHILE 

C. Heuristic Value 

In traditional ACO, a heuristic value is usually used in 
conjunction with the pheromone value to decide on the 
transitions to be made. In Ant-Miner, the heuristic value is 
taken to be an information theoretic measure for the quality of 
the term to be added to the rule. The quality here is measured in 
terms of the entropy for preferring this term to the others, and is 
given by the following equations:  
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Figure 1. Overview of Ant-Miner (Parepinelli et al., 2002) 

A. Pheromone Initialization 
wherek is the number of classes, |Tij| is the total number of  
cases in partition Tij (partition containing the cases where 
attribute Ai has value Vij), freqTwij is the number of cases in 
partition Tij  with class w, a is the total number of attributes, 
and bi is the number of values in the domain of attribute i 

All cells in the pheromone table are initialized equally to the 
following value: 
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The higher the value of infoTij, the less likely that the ant 

will choose termij to add to its partial rule.   

D. Rule Pruning where a is the total number of attributes, bi is the number of 
values in the domain of attribute i. Immediately after the ant completes the construction of a 

rule, rule pruning is undertaken to increase the 
comprehensibility and accuracy of the rule. After the pruning 
step, the rule may be assigned a different predicted class based 
on the majority class in the cases covered by the rule antecedent. 
The rule pruning procedure iteratively removes the term whose 
removal will cause a maximum increase in the quality of the 
rule. The quality of a rule is measured using the following 
equation: 

B. Rule Construction 

Each rule in Ant-Miner contains a condition part as the 
antecedent and a predicted class. The condition part is a 
conjunction of attribute-operator-value tuples. The operator 
used in all experiments is “=” since in Ant-Miner2, just as in 
Ant-Miner, all attributes are assumed to be categorical. Let us 
assume a rule condition such as termij ≈ Ai=Vij, where Ai is the 
ith attribute and Vij is the jth value in the domain of Ai. The 
probability, that this condition is added to the current partial 
rule that the ant is constructing, is given by the following 
Equation: 

Q =
TruePos

TruePos + FalseNeg
 

 
 

 

 
 ×

TrueNeg
FalsePos + TrueNeg

 

 
 

 

 
        (5)  

where TruePos is the number of cases covered by the rule and 
having the same class as that predicted by the rule, FalsePos is 
the number of cases covered by the rule and having a different 
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class from that predicted by the rule, FalseNeg is the number of 
cases that are not covered by the rule, while having the class 
predicted by the rule, TrueNeg is the number of cases that are 
not covered by the rule which have a different class from the 
class predicted by the rule. 

E. Pheromone Update Rule 

After each ant completes the construction of its rule, 
pheromone updating is carried out as follows: 

Qttt ijijij ).()()1( τττ +=+ , term∀ ij∈ the rule    (6) 

To simulate the phenomenon of pheromone evaporation in 
real ant colony systems, the amount of pheromone associated 
with each termij which does not occur in the constructed rule 
must be decreased,. The reduction of pheromone of an unused 
term is performed by dividing the value of each τij  by the 
summation of all τij. 

III. DENSITY BASED ANT_MINER2 

In [9], we proposed an easily computable density estimation 
equation (7) instead of equation (3). It derived from the view 
that the ACO algorithm does not need accurate information in 
its heuristic value, since the pheromone should compensate for 
small potential errors in the heuristic values. In other words, a 
simpler heuristic value may do the job as well as a complex one. 
This simple heuristic produced equivalent results to the entropy 
function. 

||
_

ij

ij
ij T

classTmajority
=η                     (7) 

where: majority_classTij is the majority class in partition Tij  

IV. FURTHER PROPOSED SYSTEM (ANT_MINER3) 

It is reasonable that ants select terms according to equation 
(1); in other words, determined by pheromone amount and 
heuristic function η which measures the predictive power of a 
term. But in the above methods, the pheromone of each term is 
changed after an ant constructs a rule, while η  is always the 
same, so that the next ant tends to choose terms used in the 
previous rule, whose pheromone is increased, and is unlikely 
choose unused terms, whose pheromone is decreased. 
Consequently, the ants converge to a single constructed rule too 
quickly. This leads to a failure to produce alternative potential 
rules.  

In [9], we showed that Ant-Miner2 is computationally less 
expensive than the original Ant-Miner1, since in its innermost 
loop, it uses simple division instead of the logarithm as in 
Ant-Miner. To be more precise, each heuristic value in 
Ant-Miner1 requires 2 divisions, 1 multiplication and 1 

calculation of the logarithm, whereas Ant-Miner2 requires a 
single division. This saving in computational time did not 
change the accuracy of the method and did not require 
additional iterations.  

In the following, we propose a new pheromone updating 
method and a new state transition rule to increase the accuracy 
of classification by ACO. 

A. Our Pheromone Update Method 

After an ant constructs a rule, the amount of pheromone 
associated with each term that occurs in the constructed rule is 
updated by equation (8), and the pheromone of unused terms is 
updated by normalization. 

Note that Q varies in the range [0, 1]. The higher Q is, the 
larger the amount of pheromone associated with each used term. 
On the other hand, if Q is very small (close to zero), the 
pheromone level associated with each used term will decrease.  

)1()
1

11()1()1()( −⋅
+

−+−⋅−= t
Q

tt ijijij ττρτ        (8) 

where ρ is the pheromone evaporation rate, Q is quality of the 
constructed rule, ρ is the pheromone evaporation rate, which 
controls how fast the old path evaporates. This parameter 
controls the influence of the history on the current pheromone 
trail [6]. In our method, a large value of ρ indicates a fast 
evaporation and vice versa. We fix it at 0.1 in our experiments. 

B. Choice of Transition 

Ants can be regarded as cooperative agents in an ant colony 
system. These intelligent agents inhabit an environment 
without global knowledge, but they could benefit from the 
update of pheromones [7]. Pheromones placed on the edges in 
ACS play the role of a distributed long-term memory. This 
memory is not stored within the individual ants, but is 
distributed on the edges of the route, which allows an indirect 
form of communication. This benefits exploitation of prior 
knowledge. But it increases the probability of choosing terms 
belonging to the previously discovered rules according to 
equation (2), thus inhibiting the ants from exhibiting a bias 
toward exploration. In order to enhance the role of exploration, 
we apply the transition rule shown in figure 3 in choosing 

If   q1≤ϕ 
   Loop 
       If   q2≤ ∑

∈ iJj
ijP  

       Then  choose termij 

    Endloop 
 Else 
       Choose termij  with max Pij 
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termij, 

Figure 3.  The proposed State Transition Rule 

Where q1 and q2 are random numbers, ϕis a parameter in [0, 1], 
Ji is the number of i-th attribute values, Pij is possibility 
calculated using equation (2).  

Therefore, the result depends not only on the heuristic 
functions ηij and pheromone τij, but also on a random number, 
which increases the likelihood of choosing terms not nused in 
previously constructed rules. More precisely, q1≥ϕ 
corresponds to an exploitation of the knowledge available 
about the problem, whereas q1≤ϕ favors more exploration. ϕ is 
tunable for controlling exploration. In our experiments, it is set 
to 0.4.   

C. Diversity comparison 
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Obviously, E2>E1. 
 

V. EXPERIMENTAL RESULTS 

Our experiments used two data sets from the UCI data set 
repository[8]: the Wisconsin breast cancer database, which 
contains 699 instances, 9 integer-valued attributes and 2 classes 
(malignant and benign); and the Tic_tac_toe endgame database, 
which contains 958 instances, 9 numerate-valued attributes and 
2 classes (won and lost). We evaluate comparative performance 
of the proposed method and Ant_Miner1 using ten-fold 
cross-validation. Each Database is divided into ten partitions, 
and each method is run ten times, using a different partition as 
test set each time, with the other nine as training set. 

We use the rule list produced by a training set to predict the 
class of each case in the test set, the accuracy rate being 
calculated according to equation (9) (where the meanings of 
TruePos, Trueneg, FalseNeg, FalsePos are as in equation (5)). 
Every rule list includes a default rule, which has no condition 
and takes as its class the majority class in the set of training 

cases, so that we can apply the default rule if none of the rules 
in the list covers test case. 

Table 1 shows accuracy rates for the rule sets produced by 
Ant_miner1 and Ant_Miner3 for ten runs on the two datasets.  
The mean accuracy rate and mean number of rule sets produced 
are reported in Table 2. It can be seen that Ant_Miner3 
discovers somewhat more rules than Ant_Miner1, but the mean 
accuracy of the rule sets discovered by Ant_Miner3 is higher 
than Ant_Miner1. We conducted student’s one-tail t-tests on 
the differences between the means of the two datasets. The 
significance level is 0.04 for the Breast Cancer Database and 
0.004 for Tic-tac-toe: the differences are statistically significant. 
This shows that if ants explore a greater variety of different 
paths, then there is a higher probability that one of them will 
find an improved solution compared with the case in which 
they all converge to the same tour. 

Table 1.  Test Set Accuracy Rate (%) 
 Breast Cancer Tic_tac_toe 

Run 
Number 

Ant_ 
Miner1 

Ant_ 
Miner3 

Ant_ 
Miner1 

Ant_ 
Miner3 

1 92.05 94.32 71.28 82.97 
2 93.15 93.15 73.40 72.34 
3 91.67 91.67 67.37 78.94 
4 95.59 97.06 71.58 80.00 
5 88.41 92.75 68.42 72.63 
6 94.20 95.65 75.79 80.00 
7 90.77 93.84 74.74 81.05 
8 96.55 96.55 65.26 74.74 
9 91.04 92.54 73.68 75.79 

10 92.86 95.71 68.42 67.37 

Accuracy=
TrueNegFalsePosFalseNegTruePos

TrueNegTruePos
+++

+           

(9) 

Table 2.  Mean  accuracy rate and mean number of rule lists 

    Breast Cancer Tic_tac_toe 
Valuation 
item 

Ant_ 
Miner1 

Ant_ 
Miner3 

Ant_ 
Miner1 

Ant_ 
Miner3 

Accuracy 
rate(%) 

 92.63 94.32 70.99    76.58 

#_rules 10.1 13.2 16.5    18.58 

Although Ant_Miner3 requires marginally more ants to find 
a solution, the density-based-heuristic computational method 
compensates for ant searching time. In practice, Ant_miner1 
and Ant_miner3 required almost identical running time. 

VI. CONCLUSION 

Decision tree induction is perhaps the best known method of 
finding rules in databases. In [4], it is demonstrated that 
Ant-Miner1 produces a higher accuracy rate and fewer rules 
than decision-tree induction (C4.5). In this paper, a new 
method based on a variant of Ant_Miner1 is proposed. We 
compare the results of both methods and found that our method 
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features a higher accuracy rate than Ant_Miner1. The main 
contributions of the work are the following: 

1. Our method incorporates a tunable stochastic element 
when constructing a rule, and so provides a balance between 
exploitation and exploration in its operation. This more 
accurately models the behavior of real ants, but also, 
because it leads to a greater diversity of path choices, assists 
in finding an optimal rule. 

2. A different strategy for controlling the influence of 
pheromone values was studied. We proposed a pheromone 
update rule which can cause future ants to make better 
decisions, i.e. improving the quality of a rule and the 
accuracy of rule sets. 

The application of ACO in data mining is still in its early 
stages. In future work, we aim to further improve time 
efficiency.  

Ant_Miner3 has a number of system parameters. Detailed 
experimentation is needed to determine the effects of these 
parameters, and develop an understanding of methods to set the 
parameters appropriately for particular learning problems. 
Such an understanding is required if ACO methods are to scale 
up to real-world large scale databases. 
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