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Cellular Flow in Mobility Networks
Alfredo Milani, Eleonora Gentili and Valentina Poggioni

Abstract—Nearly all the members of adult population in major
developed countries transport a GSM/UMTS mobile terminal
which, besides its communication purpose, can be seen as a
mobility sensor, i.e. an electronic individual tag. The temporal
and spatial movements of these mobile tags being recorded allows
their flows to be analyzed without placing costly ad hoc sensors
and represents a great potential for road traffic analysis, forecast-
ing, real time monitoring and, ultimately, for the analysis and the
detection of events and processes besides the traffic domainas
well. In this paper a model which integrates mobility constraints
with cellular networks data flow is proposed in order to infer
the flow of users in the underlying mobility infrastructure. An
adaptive flow estimation technique is used to refine the flow
analysis when the complexity of the mobility network increases.
The inference process uses anonymized temporal series of cell
handovers which meet privacy and scalability requirements.
The integrated model has been successfully experimented inthe
domain of car accident detection.

Index Terms—Mobile networks, spatial data mining, traffic
flow analysis.

INTRODUCTION AND RELATED WORK

T HE basic laws governing human mobility are becom-
ing an essential part in scientific works ranging from

urban planning, road traffic forecasting to spread of biolog-
ical viruses [1], contextual marketing and advertising. New
opportunities arise for the study of human mobility with
the advent of the massive diffusion of mobile networks
for personal devices such as GSM, UMTS, IEEE 802.16
WiMAX, IEEE 802.11 WLAN. Nearly all the members of
adult population in major developed countries transport a
GSM/UMTS mobile terminal, i.e. an electronic individual tag,
with themselves. Moreover, in order to provide the service,
the data of GSM/UMTS networks are already logged by
mobile phone companies. The analysis of temporal and spatial
movements of these mobile tags allows accurate estimation of
urban/extraurban traffic flow without placing costly ad hoc
sensors. Mobile network data represent a powerful mean for
road traffic analysis, forecasting and real time monitoringand,
ultimately, for the analysis and the detection of events and
processes besides the traffic domain(e.g. traffic jam, velocity,
congestions, road work, accidents etc.), which can affect the
motion behavior of the masses (e.g. sport and leisure events,
concerts, attractive shopping areas, working/living areacyclic
processes etc.).

Techniques and models for mobile device flow analysis
[2] have mostly focused on predictive models aiming at
optimizing some mobile network system parameters such as
cell dimensioning, antenna distribution, and load balancing [3],
[4].
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On the other hand a number of projects [3], [5] try to
use the cellular network traffic to estimate different road
traffic and transportation related quantities [6], [7], [8], such
as speed and travel times between destinations [9], [10],
[11], origin/destination (O/D) matrices [12], [2], road traffic
congestions [11], road traffic volume or density [13], [14],
etc.

Many projects are also active in the relatively recent area
of mobile device localization which focuses on the positionof
the single mobile terminal for the purpose of providing spatial
contextual services.

The main limitation of the existing approaches to traffic es-
timation is the lack of a model taking explicitly into account of
the mobility and transportation infrastructures. The estimates
are often based on purely statistical correlation approaches
which usually assume users movement directions following a
uniform probability distribution. On the other hand, physical
and normative constraints to user mobility inside a cell (e.g.
as roads topology, mandatory directions etc.) are usually not
taken into account in those models, with few exceptions [15],
[4], while relationships with traffic domain external events,
such as social events and social processes (e.g. work/home
commuting, shopping periods etc.) are completely ignored.

Moreover some issues such asprivacy and scalability are
also problematic. For instance, techniques for inferringO/D
matrices [2] uses information about theLocation Areas (LA)
over the time, where aLA is a set of cells where the
mobile terminal is assumed to be located. In other words
the algorithm needs to identify time, origin and destination
LAs of the whole trip made by each single telephone, thus
representing a remarkable privacy infringement. Mobile device
localization detect the spatial position of the single user, by
using techniques based on distance from the cell antenna (for
example in [2]), or assuming the placement of special detec-
tor antennas for enhancing the accuracy of the localization.
Although the remarkable precision is obtained, in both cases
there are relevant problems of privacy and scalability. In fact,
due to the huge amount of data generated by monitoring, each
single terminal position in a cell would requires an enormous
bandwidth, storage and computational cost.

In this work we propose a model which integrates spatial
networks with mobile phone networks, in order to monitor,
analyze and predict the user traffic on the mobility infras-
tructure and to make detection and inference about social
events and processes in place, on the basis of anonymous
aggregated data. The aim is that by integrating mobility
constraints (e.g. available roads), it is possible to improve
the accuracy of predictions the cellular network based on
the mobility/transportation network and vice versa. Moreover
social event/processes which take place can also be detected,
and conversely the knowledge of those events/processes can
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improve the predictive model in the mobility domain.
In particular consider temporal data series describing the

”handover” of anonymous users, i.e. the number of users
which traverses any of the six boundaries of an hexagonal
cell in a mobile phone network. The choice of handover data
is due to different reasons: (1)Privacy issues. Anonymized
handovers can easily be made available and can be securely
and effectively transmitted while tracking the positions of a
single terminal would represent sensitive data about the indi-
vidual user behavior. (2)Performanceand scalability issues.
The size of the information to process remains constant as the
number of users increase.

The rest of the paper is organized as follows: Definitions and
relationships between spatial networks and mobility networks
are introduced in Section I, while a model for inferring spatial
mobility flow from one word data is presented in Section
II. An adaptive estimate model, used as a basis for event
detection, is presented in Section III. Experiments for car
accident detection are presented in Section IV, and discussion
on possible directions for future works in Section V concludes
the article.

I. SPATIAL NETWORK AND CELLULAR NETWORK

In this section we introduce a model for integrating the
knowledge of a spatial network which constraints users move-
ment and the knowledge of the cellular network covering the
same physical area.

A spatial network, or mobility network, is a set of physical
means and normative constraints, such as roads, railways,
underground transportation, pedestrian area, one-way lanes
and highways, which narrow the mobile user mobility. In
general more than one cellular network with different sizes
and topologies can insist on the same area. Here we assume
that a singlecellular networkis operating in the given area and
it is organized in the usual hexagonal grid of cells with each
antenna centered in a cell. According to the usual notation,
given a reference cell, say cell 0, we refer to its neighbour
cells, by numbers from 1 to 6 clockwise as shown in Fig.1.

A spatial networkS can be described asS = (N, A, D, loc)
whereN are nodes,A ⊆ N×N are directed arcs, andloc is a
location function loc : N → D mapping nodes onto positions
in the bi-dimensional area of interestD ⊆ R

2.
A cellular network M = (C, D, g, m), organized in an

hexagonal grid, is defined by a set of cellsC, a function
g : C × {1 . . .6} → C, which describes thegrid topology, (g
returns the i-th neighbour of a given cell or returns the same
cell if no i-th neighbour exists,e.g.it is on the border) anda
boolean functionm : C ×D → {T, F} checking whether a
given position ofD ⊆ R

2 belongs to a cell.
Note thatg andm should verify the hexagonal grid topology.

When a cellular networkM shares the same domain area
D with a spatial networkS0, we can consider the spatial
network ”projection” over the cells, or equivalently we cansee
C as ”cutting”S0 into a family of disjunct spatial subnetworks
{Si}. In order to identify the spatial subnetwork corresponding
to each cell, it is useful to introduce additional nodes in
correspondence of the cutting edges whenever an arc of the
spatial network crosses the boundary between two cells.

Projected spatial network. The projectionS = π(M, S0)
of S0 = (N0, A0, D, loc0) according to a cellular network
M = (C, D, g, m), is the spatial networkS = (N, A, D, loc)
obtained byS0, such that
1) ∀n ∈ N0 ⇒ n ∈ N and loc0(n) = loc(n),
2) ∀(n′, n′′) ∈ A0 s. t. ∃c ∈ C with m(loc(n′), c) =
m(loc(n′′), c) = T then n′, n′′ ∈ A, i.e. all the arcs inS0

which originates and ends in the same cell, also belong toS,
3) for each arc(n′, n′′) whose ends do not lie in the same cell,
let m(loc(n′), c′) = m(loc(n′′), c′′) = T such thatc′ 6= c′′ are
two neighbor cells, then a new noden′′′ and two new arcs,
respectively(n′, n′′′) and(n′′′, n′′) will be added to the set of
network nodesN and arcsA; the position of the new node
loc(n′′′), will be assigned such that the node lies on the border
between the two neighbors cells (note thatn′′′ belongs to both
cells, i.e.m(loc(n′′′), c′) andm(loc(n′′′), c′′) are both true ),
4) finally, if an arc ofS0 traverses more than two cells, then
the arc is cut in a series of subarcs according to the previous
procedure.

An example of a spatial network and its projection on a
cellular network is shown in Fig.1.

Cell spatial network. The projection operationπ(M, S0)
partitionsS into subnetworks. In particular for each cellc ∈ C
there is an associatedcell spatial subnetworS |c defined by
the restriction ofS to all nodes and arcs lying insidec, i.e. in
the domain areaD |c= {d ∈ D | m(c) is true}. It is possible
to identify in S |c two family of sets of nodesIc,ci

⊆ N (
respectivelyOc,ci

⊆ N) for i = 1 . . . 6, which represent the
set of nodes on the edge between the neighborsci of the cell
c and connect inbound (outbound) arcs ofc with outbound
(inbound) arcs ofci. The set of nodesIc =

⋃6
i=1 Ic,ci

and
Oc =

⋃6
i=1 Oc,ci

represent respectively thesourceand sink
nodes for the spatial subnetwork limited by cellc. Since after
the projection, by construction, it does not exists any arc of S
crossing cell boundaries,Ic andOc are the only sources and
sinks for the flow in cellc.

The projection operationπ is defined by successive incre-
mental splits upon properties of connectivity of the spatial
graph and the cell area domains. It is easy to see that projection
process can be extended for more complex characterizations
of the spatial network which consider features on arcs or
nodes, such as costs, distances, speed and time between nodes,
capacities and probabilities.

II. A N INTEGRATED MODEL FORSPATIAL AND

COMMUNICATION NETWORK

Given a spatial networkS |c delimited by a given cell
c (cell 0 or c0 in the following) the amount of user flow
inside/outside the cell is completely described by the data
available from the cell control unit. Assume thatU t

0 denotes
the amount of users in the current cellc at the time slot
t(stationary users);HOt(i, j) represents the handovers, i.e. the
amount of mobile terminals moving from the cellci towards
the cell cj at the timet, thenHOt

in =
∑6

i=1 HOt(i, 0) and
HOt

out =
∑6

i=1 HOt(0, i) represent respectively all the users
coming in and going out the reference cell at timet. In order
to relate these data to the traffic flow in the different parts the
mobility network we need to introduce some definitions.
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Fig. 1. Spatial mobility network and cellular network projection

Let P the set of connected components ofS |c, for each
p ∈ P :

• IN(p) is the set of thesource nodesof the component
p, i.e. all the nodes inp ∩ Ic,cj

, ∀j = 1..6,
• OUT (p) is the set of thesink nodesof the componentp,

i.e. all the nodes inp ∩Oc,cj
, ∀j = 1..6.

MoreoverON(k) is the set of all the nodes inIN(p) and
OUT (p) lying on the edge between cellc and its neighbor
ck.

A. Mobility Network Flow Equations

Given theHO series between the current cellc and all
its neighborsc1 . . . c6, and given the network topologyS | c
projected on the cell 0, it is possible to define an inference
model for deriving the flow of mobile users on the mobility
network.

The model is based on the flow equations which relate the
user flow in the cellular network with the flow in the spatial
network that restricts user mobility. LetU t

0 be the amount of
users in the current cellc andHOt

in, HOt
out the handover data

at the time-slott. The flow on the spatial network delimited
by the cellc is admissibleif

HOt
in + U t

0 = HOt+1
out + U t+1

0 . (1)

Considering the setP of all connected components, we can
assume that for anyp ∈ P there exists an admissible flow,
and letφt : N → N be the function assigning to each node
n ∈ N the number of usersφt(n) in the noden at the timet
and U t

0,p the users stationary at the timet in the nodes ofp
inside the cell 0, then

∀p ∈ P,
∑

n∈IN(p)

φt(n) + U t
0,p =

∑

n∈OUT (p)

φt+1(n) + U t+1
0,p .

(2)
Assuming that only the handover and stationary users data

are available from the cellular network, it is not possible to
know how the users are distributed over the paths in the cell.
So for each connected componentp ∈ P we know the exact
values ofφt(n) andU t

0,p only when, for each edgek of cell

0, IN(p) ∩ ON(k) = {n1} andOUT (p) ∩ ON(k) = {n2}.
In this case we haveφt(n1) = HOt(k, 0) and φt(n2) =
HOt(0, k).

Let consider the following equivalence relation∼ between
the elements ofP : ∀p1, p2 ∈ SP then p1 ∼ p2 ⇔
∃o1 ∈ OUT (p1), ∃o2 ∈ OUT (p2), ∃k1 ∈ {1, . . . , 6}
: o1, o2 ∈ ON(k1), or ∃i1 ∈ IN(p1), ∃i2 ∈ IN(p2),
∃k2 ∈ {1, . . . , 6} : i1, i2 ∈ ON(k2).

The relation∼ partitionsP into equivalence classes having
either sources or sinks on the same side of the cell. Therefore
it can be more useful to provide (2) with respect to the∼
equivalent classes. Since the connected components having
paths on the same edge of the cell belong to the same
equivalent class, and since

∑

n∈IN(p)∩ON(k)

φt(n) = HOt(k, 0),

∑

n∈OUT (p)∩ON(k)

φt(n) = HOt(0, k),

both equations (1) and (2) can be rewritten for each equiva-
lence class induced by the relation∼.

In practice, the equivalent classes can be thought asclusters
of pathsoriginating from or sinking to the same set of cells.

Fig.2 represents some possible spatial networks related to
the reference cell. In Fig.2.a only one connected component
exists. Then, the general flow equation (1) coincides with the
one of the connected component. In this case our model is
exact to estimate the number of users in the paths and we
say that we reachcomponent levelaccuracy. In Fig.2.b we
can see two connected components belonging to two different
clusters. In this case we reachcomponent levelaccuracy. The
cases represented in Figs.2.c and 2.d are equivalent in terms of
handover data, but they are different from the topological point
of view. While Fig.2.d has a unique connected component, we
have two connected components in Fig.2.c which belong to the
same equivalent class. Even if an equation for each connected
component can be written, the handover data are provided for
each edge (and not for single path). So the accuracy level
decreases tocluster level.

B. Inferring user flow

Assuming that the initial number of mobile user in compo-
nent clusterc at the initial time slot 0, is known, it is possible
to infer the number of stationary users in a given time slot in
the cluster by iteratively applying the flow equations generated
by the spatial network on a cellC.

In fact, from the general equation of admissible flow (1),
for each cluster of components (i.e. for each equivalent class)
we have:

U t+1
0 = HOt

in + U t
0 −HOt+1

out .

With consecutive substitutions, we obtain

U t+1
0 = HOt

in + HOt−1
in + U t−1

0 −HOt
out −HOt+1

out ;

By regroupings terms, we obtain

U t+1
0 =

t∑

j=0

HOj
in + U0

0 −

t∑

j=0

HOj+1
out , (3)
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Fig. 2. Connected components and clusters in cell spatial network

.
The inference procedure assumes that the amount of users

in stationary state inside every cluster at time 0 is known.
It is easy to note that the ability of distinguish the flow

within a connected component ofS |c is limited by the
number of classes induced by∼. In other words if two
connected components are in the same class the amount of
their individual inbound/outbound flow cannot be precisely
determined considering only the cell handovers. In the ideal
case if each connected component belongs to a distinct class,
its flow is fully described by the handovers data.

The effectiveness and accuracy of the inference technique,
based solely on handover data, greatly depends on the cell
resolution/granularity, i.e. the relative size of the cellwith
respect to the spatial network, and on the spatial network
connectivity. For instance the presence of high connectivity
subnetworks or hubs, such a square or a park, where the
mobile phone holders can move “freely” in any direction, can
narrow down the accuracy. On the other hand, a cell covering
an highway section in an area with no other road can provide
high accuracy.

III. SPATIAL NETWORKSPREDICTION AND ESTIMATION

In this section we present a prediction model based on
Markov chain and an adaptive flow estimation model which
exploits the underlying spatial network in order. These models
can improve the performance of predictions and give a better
estimate the flow within the single connected component when
inference based on flow equations cannot determine a unique
answer, i.e. the equations have not a unique solution due to
large clusters of components. The two models represent the
core modules of the event detection system presented in the
Experiments Section.

Fig. 3. State diagram: a)complete b)reduced by mobility constraints

Fig. 4. An example of different spatial networks that are unrecognizable
from their handover

A. Prediction Markov Model

The prediction model is based on the Markov model pro-
posed in [4] for mobile network management. Mobile user
movements towards/from the cell are represented by a state
diagram associated to a transition matrix assigning probabil-
ities assigned to each movement in the given time slot. A
complete state diagram for 7 direction levels is represented in
Fig.3. The parameters of the Markov model, i.e. the specific
transition probabilities, can be effectively determined by a
statistical analysis of handover series at the given time slot
granularity.

It is worth noticing that spatial network constraints can
reduce the number of states, the entries of the incidence
matrix and thus the complexity of the Markov model. For
instance the projected spatial network of Fig.4.a can reduce the
predictive model to 4 states as shown in Fig.3.b. Nevertheless
the Markov model is not adequate by itself for flow analysis
since qualitatively different mobility networks, as the ones
shown in Fig.4 can lead to the same Markov model structure.
The technique shown in Section II-B can be applied in order
to calculate the flow in clusters of connected components.

B. Flow estimation

In order to improve the accuracy of flow inference within a
class of connected component, it is possible to use an estimate
of flow distributions on sources/sinks, when deterministic
inference is not possible.

Assume that for each set of source nodesI(c, ci) (sink nodes
I(c, ci)) lying on the same borderi of cell c, the distribution
ρt(n) ∀n ∈ I(c, ci) i.e. the expected percentage of handovers
H(i, 0) (HO(0, i) )which take place at timet because of users
entering (leaving) cellc from noden is known. It is apparent
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that the flow equations can be restated in the form of estimate
for each single connected component∀p ∈ P ,

∑

n∈IN(p)
k∈1...6

σt(k, 0) + V t
0,p =

∑

n∈OUT (p)
k∈1...6

σt+1(k, 0) + V t+1
0,p (4)

where the termσt(k, 0) = HOt(k, 0) ∗ ρt(n) represents the
estimated flow through each source/sink node andV the
current estimated stationary users calculated iteratively. The
estimate can also be propagated along the mobility network
and between cells by simple boundary equations, since incom-
ing flow for a cells is the outgoing flow for its neighbor and
vice versa.

It is worth noticing that the flow estimates are also required
to be admissible, i.e. they should not contradict the general
flow equations. On the other hand, contradictions can emerge
over the time by iterating wrong estimates. For example a low
estimate of flow distribution along a path can lead to observing
many more users than expected exiting from that path in
a neighbor cell. In this case, for example, the distribution
parameters can be increased along the contradictory path to
re-establish the consistency.

On this basis it is possible to design a scheme for adap-
tive flow estimation, where the estimation parameters are
dynamically changed in order to maintain consistency between
the estimate and the observed data (i.e. handover and total
stationary users):

Adaptive Flow Estimation Scheme:
1) Estimate current flow along sources and network paths

of cell c using the real data and current distribution
parameters

2) Calculate flow constraints in neighbor cells ofc using
current estimate data and parameters

3) If current estimate conflicts with the previous constraints
for cell c then (3.1) revise distribution parameters,
σt+1 = r(σt) to establish consistency and (3.2) back-
propagate revision toc neighbors.

A key point of the adaptive algorithm is the update function
r which revises the estimate distribution parameters(σt(k, 0)).
The current implementation uses an iterative algorithm based
on PSO [16]–[18] to find the increment/decrement size distri-
bution for re-establishing the consistency.

IV. EXPERIMENTS: CAR ACCIDENT DETECTION IN

HIGHWAYS

The proposed model for the analysis and the estimation of
traffic flow in mobility network has been experimented in the
domain of car accident detection in the Great Ring Highway
(GRH) A90 surrounding the city of Rome in Italy. Timed data
series of handover logs from a major national GSM mobile
phone network has been used. The provided data regard 32
months for a cluster of 24 GSM cells covering a section of
the GRH with different cells dimensions and road density
in the domain area (see Fig.5). In addition, reports from the
national highway traffic control system have been used as a
source of car accidents events in the GRH; the salient types
of information include:start/end time of event (i.e. return to
normal traffic condition), place and direction of the event,

Fig. 5.

class of traffic impact(from 0=null to 6=complete block). The
event features which have been considered are:start/ending
time, place (i.e. mobility network connected component),
direction (which GRH lane is concerned for the event), and
type of event(car accident or generic anomalous events).

The data of the first 24 months have been used to determine
the initial values for the adaptive estimation model and the
weights of the Markov predictive model and alert thresholds,
while data of the last six months have been used from the
actual experiment of detection. The parameters have been
computed for each 15 minutes time slot on a week day base,
Monday to Saturday, while Sundays and public holidays have
been included in a different class, since their traffic behaviors
exhibit common similar patterns.

The general architecture of the detection systems is based
on different classes of indicators and thresholds which trigger
alerts in the algorithm. Indicators based on global handover
traffic in the cell are compared with the predictive model in
order to detect start/end and type of events, while indicators
of deviation from the adaptive estimation model are used to
detect the place of the event the direction of accident. The
scheme for the event detection loop is depicted below:

if event(HOin,HOout) then
eventStarted← true
if carAcc(HOin,HOout) then

if carConn()then
output estimatePlace()
output estimateDirection()

end if
end if

else
eventStarted← false

end if

Any start/end event is firstly detected by a relevant change
in global handover volumeHOin + HOout with respect to
the expectation according to the Markov based model. The
value of the corresponding thresholdϑt

g is based on the
variance of handovers volume (g represents the event type).
The beginning of an event of type car accident is related with
a sudden increase of the number ofHOin with respect to
HOout, see Fig.6). A thresholdϑt

car is compared against the
averaged differenceHOin − HOout over consecutive time
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Fig. 6. A peak in incoming handovers over thresholdϑt
car.

TABLE I
DETECTIONRESULTS

Events Precision Start≤ Direction

Algest 382 97% 85 % 98 %

Algdet 495 75% 83 % 65 %

intervals to distinguish car accidents from other events such
as anomalous increment of traffic. On the other hand the
“end” of the event is recognized by a return to a normal
traffic condition. When a potential car accident is detected,
the estimated flow allows ones to determine the location of
the event, which is decided to be the connected component/s
with the greater estimated flow variation. The direction of
the event is calculated by comparing the inbound/outbound
estimated flow in the connected component corresponding to
the highway lanes. The controlcarConn()filters out those flow
variations which are due to car accidents already detected
in the nearby cells and could be erroneously recognized as
new events. The experimental results of the original algorithm
Algest have been compared with a version,Algdet, which does
not take into account of mobility network estimates, but only
uses the deterministic inference rules. Car accidents withnull
effect on the traffic have been excluded from the statistics.

As shown in Table I, the results are quite encouraging: Both
Algest and Algdet algorithms detected all the 371 accidents
events in the traffic control report, whileAlgdet has a con-
siderable lower precision with a remarkable number of false
positives (Eventsand Precision). It is interesting to note that
thestart of event timereturned by both algorithms (Start≤) is
better, i.e. anticipated, with respect to the starting timegiven
by the national traffic control system. This is because the
mobile users data are acquired in real time, while the accident
alert reach the national traffic system by different channels,
e.g. drivers, police patrols etc., which are not always promptly
activated.

The number of false positives (Precision) of Algdet is
mostly due to the inability of distinguishing the ”noise” of
events taking place in the urban area nearby the highway, while
Algest uses the analysis of the traffic on the urban connect
component to filter out events not taking place in GRH. The
accuracy of direction detection (Direction) is found to be high.
Failure of detection are sometimes inevitable due to a number

of reasons. For example, car accidents in a lane sometimes can
slow down the traffic in the other one for different reasons:
rescuing cars blocking it, traffic police deviating the traffic
on the other lane or the phenomenon of “accident curiosity”
which draws the attention of drivers on the event slowing down
the opposite lane traffic. If this happens within the first 15
minutes time slot, the algorithm is not able to detect a suitable
direction since the two cannot be distinguished, while a finer
time granularity in the data is expected to improve the direction
detection ability. A further analysis has shown that most ofthe
false positives detected byAlgest are due to traffic variation
induced by car accidents in nearby cells. This suggests thatthe
management of connected events should be further refined.

V. FUTURE DEVELOPMENTS ANDCONCLUSIONS

Cellular networks, besides their communication purpose,
can be seen as mobility sensor networks already in place
which offer a great potential for the analysis of users flow
in an area. A model which integrates mobility constraints
and cellular networks has been proposed in order to analyze,
monitor, forecast and detect events and processes in the
mobility infrastructure. The use of cell level handover meets
data privacy and scalability requirements, while the knowledge
of the mobility infrastructure allows ones to obtain reasonable
estimates of the flow at the connected component level. The
integrated model and the proposed technique of adaptive flow
estimation have been successfully experimented in the domain
of car accident detection.

Future works includes the investigation of techniques for
the application of the model to high density urban area, where
the high road density does not allow a fine grain analysis of
the flows, although the increasing diffusion of the so called
microcells and nanocells is soon expected to provide a suitable
granularity.

More generally suitable models, which integrate ”sensors
already in place” (e.g. cellular networks, payment systems,
bus/train ticketing systems, video surveillance etc.) andmobil-
ity infrastructures constraints, are of great interest forthe anal-
ysis of social events (e.g. entertainment, sport events, festival,
commercial/leisure area attractors etc.) and social processes
(e.g. working day/vacation days cycle, work/school/home cy-
cle etc.) which involve movement of people in the physical
space and conversely, for analyzing the impact of events on the
mobility infrastructures and their planning and management.
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