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Abstract—An important decision when developing a software 

agent is the design of its internal architecture. Several models of 

deliberative and reactive architectures have already been 

proposed. However, approaches of hybrid software architectures 

that combine deliberative and reactive components, with the 

advantages of both behaviors, are still an open research topic. 

This paper analyzes the state of the art of software agent 

architectures from the basic reactive and deliberative models to 

more advanced ones like hybrid and learning software 

architectures. A case study on the design of an ontology-driven 

hybrid and learning software agent architecture is also described.  

 
Index Terms—Software Agents, Software Architectures, 

Hybrid Agents; Learning Agents; Agent-oriented Development; 

Software Design 

I. INTRODUCTION 

EVELOPING software  of  high  quality  is  difficult 

because  of  the  natural  complexity  of software.  Looking 

for appropriate techniques to confront complexity, software 

development paradigms have evolved from structured to 

object-oriented approaches to agent-oriented ones [31].  

Having the properties of autonomy, sociability and learning 

ability, software agents are a very useful software abstraction to 

the understanding, engineering and use of both complex 

software problems and solutions like distributed and open 

systems and to support the decision making process [19][23]. A 

software agent is an entity that perceives its environment 

through sensors and acts upon that environment through 

actuators [38]. Agent attributes allow to approach complexity 

of software development through appropriate mechanisms for 

software decomposition, abstraction and flexible interactions 

between components [31]. 

During the process of developing a multi-agent system, both 

the architecture of the agent society and the one of each agent 

are defined in the global and detailed design phases, 

respectively, looking for satisfying the functional and 

non-functional requirements of the system.  

A software architecture is a software computational solution 

to a problem showing how the component parts of a system 

interact, thus providing an overview of the system structure. It 

is the product of a software design technique and considered a 

bridge between requirements engineering and coding where  
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emphasis is on coordination and cooperation over computation. 

The main elements of a software architecture are components, 

connectors and cooperation and coordination mechanisms. The 

components are the computational units, like modules, objects 

or software agents. The connectors represent the interactions 

between the architecture components, for instance, the 

messages exchanged by agents in a multi-agent society. The 

cooperation and coordination mechanisms define the way in 

which the elements are arranged, for example, a layered 

architecture.   

Software architectures are represented in graphical diagrams 

based on architectural styles and design patterns. An 

architectural style [20] defines a vocabulary of components and 

connection types and a set of restrictions on how these 

components may be combined. A design pattern [35] is a 

reusable solution to a recurring problem. It shows not only the 

solution but also its restrictions and the context in which to 

apply this solution. Frequently used architectural styles and 

design patterns are pipes and filters, object-oriented, layered 

and blackboard architectures.   

Agent architectures emulate human behavior through models 

of reactive architectures, supporting instinctive or reflexive 

behavior, and deliberative architectures, supporting different 

forms of automatic reasoning (deductive, inductive and 

analogical reasoning, among others). 

A reactive architecture is ideal in cases where an immediate 

action is necessary for a certain perception, and then, its main 

advantage is the speed of the agent action. Differently, a 

deliberative architecture is suitable to support more complex 

decisions where a reasoning process should be executed to find 

the most appropriate action for a particular perception. 

Several models of deliberative and reactive architectures 

have already been proposed. However, approaches of hybrid 

software architectures that combine deliberative and reactive 

components, with the advantages of both behaviors are still an 

open research topic. These architectures have greater 

complexity in their definition and use, since they require 

synchronization between reactive and deliberative components.  

Another important aspect to be considered on the definition of 

the internal architecture of an agent is the definition of 

knowledge bases representing the agent knowledge about itself 

and the external environment. One of the most effective ways 

of representing agent knowledge bases are ontologies. An 

ontology is an explicit specification of a conceptualization [39]. 

Conceptualization refers to the abstraction of a part of the world 

(a domain) where are  represented  the  relevant  concepts  and
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their relationships. Ontologies have the advantages of being 

formal and reusable semantic representations. 

Considering that an agent has the granularity of a subsystem, 

the specification of its architecture has particular importance 

both for approaching complexity and understanding software 

solutions. 

This article analyzes the state of the art of software agent 

architectures from the basic reactive and deliberative models to 

more advanced ones like hybrid and learning software 

architectures. 

The rest of the paper is organized as follows. Section II 

introduces the basic software agent architectures and section III 

their main components. Section IV discusses current 

approaches for advanced architectures such as learning and 

hybrid ones. Section V concludes the paper.  

II. BASIC SOFTWARE AGENT ARCHITECTURES 

Basic software agent architectures currently structure just 

two types of behaviors: reactive or reflexive and deliberative by 

reasoning. However, there are different proposals for 

structuring these basic behaviors and its variations [21][38] that 

are discussed in the following sections. 

Fig. 1 illustrates the architecture of a generic agent, which 

perceives the external environment through sensors and then 

interprets the perception and transforms it into a sentence. It 

performs a mapping of the current perception to an action, 

represented in Fig. 1 by the question mark. This mapping 

occurs immediately in the case of a reactive behavior or 

through automatic reasoning otherwise. After encountering the 

sentence that represents the action, this is interpreted and the 

action is executed in the environment. 

 

 
Fig. 1. A generic software agent (adapted from [38]) 

 

A. Russel and Norvig Classification 

Russel and Norvig [38] define four basic types of 

architectures for software agents: simple reflex agents, 

reflex-agents with state, goal-based agents and utility-based 

agents. 

1) Simple reflex agents 

Simple reflex agents are considered the simplest type of 

agent where the agent's action is performed as an answer of just 

the current perception. It has a knowledge base that contains a 

set of <condition,action> rules. For each perception satisfying 

the condition, a corresponding action in the knowledge base is 

selected and performed. For instance, if the knowledge base has 

the reactive rule “if the car in front is breaking then initiate 

braking”, when perceived that “The car in front braked” the 

action “Initiate braking” would be performed. Fig. 2 and Fig. 3 

illustrate the structure of a simple reflex agent. First, the 

perception is interpreted and transformed into a sentence, and 

then the knowledge base of the agent is updated. If a matching 

is found between the sentence and the condition of a rule, the 

corresponding action sentence of the rule is selected. Finally, 

the sentence that represents the action is interpreted and the 

agent performs the action in the environment. 

 

 
Fig. 2. The structure of a simple reflex agent (adapted from [38]) 

 

 function Skeleton-Agent(percept) returns action 

 static: memory, the agent’s memory of the world 

 memory ← Update-memory(memory, percept) 

 action ← Choose-Best_action(memory) 

 memory ← Update-memory(memory, action) 

 return action  
Fig. 3. Reflex-agent algorithm [38] 

Fig. 4 illustrates a vacuum world as an example of a simple 

reflex agent architecture. This agent environment has two 

rooms called A and B. Each room can have a dirty or clean state. 

When the agent perceives that the room A is dirty it should 

perform the action "clean", then goes to the room B and do the 

same check. The operation of the vacuum agent is described in 

the algorithm of Fig. 5. 
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Fig. 4. The vacuum world: an example of a simple reflex agent [38] 

 

function REFLEX-VACUUM-AGENT([location,status]) 

returns an action 

 if status = Dirt then return Suck 

 else if location = A then return Right  

 else if location = B then return Left 

Fig. 5.  A simple reflex vaccum agent algorithm [38] 

 

2) Reflex agents with state 

A reflex agent with state differs from the previous one on the 

fact that it updates the state of the environment with each new 

perception. An action in the set of rules is selected according to 

the perception history and not just from the current perception 

(Fig. 6 and Fig. 7). Moreover, the agent with state has a world 

model, that is, contains knowledge about the environment. For 

example, when an agent crosses a street its reactive behavior 

will depend on the traffic rules that make part of the agent 

world model. 

 

Fig. 6. The structure of a reflex agent with state (adapted from [38]) 

 

function Reflex-Agent-With-State(percept) returns action 

static: state, a description of the current world state 

             rules, a set of condition-action rules 

 state ← Update-State(state, percept) 

 rule ← Rule-Match(state, rules) 

 action ← Rule-Action (rule) 

 state ← Update-State(state, action) 

 return action 

Fig. 7. An algorithm with the basic operation of a reflex agent with state [38] 

 

3) Goal-based agents 

A goal-based agent maintains the state of the environment 

and has a goal to be achieved. For that it has to perform an 

action or a sequence of several actions determined though a 

reasoning mechanism on the agent knowledge base. This makes 

them less efficient than reflex agents due to the fact that the 

processing time required to perform a reasoning process is 

usually greater than the one required by rule condition-action 

agents. In Fig. 8 the basic structure of goal-based agent is 

illustrated and        Fig. 9 describes the algorithm with the basic 

operation of this agent type. 

 

 
Fig. 8. The structure of a goal-based agent (adapted from [38]) 

 

       Fig. 9. Algorithm with the basic operation of goal-based agents [38] 

 

4) Utility-based agents 

Utility-based agents are similar to goal-base agents, but they 

also have an utility measure used to evaluate the level of 

success when reached the goal. For example, an agent whose 

goal is to go from "City A" to "City B" can achieve this goal 

taking two to four hours to complete the route. By defining a 

measure of time efficiency, the agent will know that completing 

the route in less time is better. Fig. 10 illustrates the basic 

structure of such agents and Fig. 11 describes its basic 

operation. 

 

Fig. 10. The structure of an utility-based agent (adapted from [38]) 

function  Goal-Based-Agent (percept) returns action 

static: KB, goal, search-space 

 KB ← UPDATE-KB (KB, percept) 

 goal ← FORMULATE-GOAL (KB) 

 search-space ← FORMULATE-PROBLEM (KB, goal) 

 plan ←SEARCH (search-space, goal) 

 while (plan not empty) do 

 action ← RECOMMENDATION (plan, KB) 

 plan ← remainder(plan, KB) 

 return action 
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Fig. 11. An algorithm with the basic operation of an utility-based agents [38] 

 

B. Wooldridge Classification 

Wooldridge [19][21][22] classifies basic agents into three 

main categories: deductive reasoning agents, practical 

reasoning agents and reactive agents. 

 

1) Deductive reasoning agents 

Deductive reasoning agents have a symbolic model of their 

enviroment and their behavior is explicitly represented, 

typically using logic. The agent handles this representation by 

deductive reasoning which can require considerable time to be 

performed. Fig. 12 illustrates the structure of a deductive 

reasoning agente. 

 

 

Fig. 12. The structure of a deductive reasoning agent (adapted from [21]) 

 

2) Pratical reasoning agents 

Practical reasoning agents, also called BDI agents, are their 

based on the idea that agent acts not only by deductive 

reasoning. In practical reasoning, the decision process is 

performed based on beliefs, desires and intentions. Agent 

beliefs include the agent knowledge about the world, desires 

are some kind of desirable state to be reached, and intentions 

are the actions that the agent decides to take to achieve their 

desires. 

To understand BDI agents, in [8] is given the following 

example: When a person graduates from university with a first 

degree, he/she is faced with some important choices. Typically, 

he/she proceeds in these choices by first deciding what sort of 

career to follow. For example, one might consider a career as an 

academic, or a career in industry. The process of deciding 

which career to aim for is deliberation. Once one has fixed upon 

a career, there are further choices to be made; in particular, how 

to bring about this career. Suppose that, after deliberation, you 

choose to pursue a career as an academic. The next step is to 

decide how to achieve this state of affairs. This process is 

means–ends reasoning. The end result of means–ends 

reasoning is a plan or recipe of some kind for achieving the 

chosen state of affairs. For the career example, a plan might 

involve first applying to an appropriate university for a PhD 

place, and so on. After obtaining a plan, an agent will typically 

then attempt to carry out (or execute) the plan, in order to bring 

about the chosen state of affairs. If all goes well (the plan is 

sound, and the agent’s environment cooperates sufficiently), 

then after the plan has been executed, the chosen state of affairs 

will be achieved. 

In Fig. 13 the main elements of a BDI architecture are 

illustrated. This architecture consists of a set of current beliefs 

that represent the information the agent has about its 

environment; by a belief revision function (brf - beliefs review 

function), that is the entry of a perception and current agent 

beliefs; a generation options function (generate options), which 

determines the choices of actions available to the agent 

(desires), based on their current beliefs about the environment 

and their current intentions; by a set of current options (desires), 

representing the actions available to the agent; by a filter 

function (filter) which represents the agent's deliberation 

process and determining the intentions of the agent based on 

their current beliefs, desires and intentions; by a set of current 

intentions (intentions), representing the current goal of the 

agent and by a selection function action (action) that determines 

an action to be performed on the basis of current intentions. 

 

Fig. 13. The structure of a BDI agent (adapted from [21]) 

 

The main advantages of BDI architectures, cited in [21], are 

conceptual proximity to the process of human decision and the 

informal understanding of the notions of belief, desire and 

intentions.  

function  Goal-Based-Agent (percept) returns action 

static: KB, goal, search-space 

KB ← UPDATE-KB (KB, percept) 

goal ← FORMULATE-GOAL (KB, utility_measure) 

search-space ← FORMULATE-PROBLEM (KB, goal) 

plan ←SEARCH (search-space , goal) 

while (plan not empty) do 

action ← RECOMMENDATION(plan, KB) 

plan ← REMAINDER (plan, KB) 

return action 
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3) Reactive agents 

Reactive architectures are defined with the aim of filling the 

main shortcoming of logic-based architectures: processing time. 

The goal of the architecture is reactive agent that can provide 

intelligent behavior through a set of quick and simple behaviors. 

The knowledge of the agent and its behavior is not necessarily 

represented in logic and the agent does not perform any kind of 

reasoning.  

 In Wooldridge reactive architecture (illustrated in Fig. 14) is 

defined a set of rules for direct mapping of perceptions to 

actions. Some reactive architectures are organized into layers 

with different levels of abstraction, where the lower layers have 

a higher level of priority, i.e., critical actions are performed by 

these layers. The layers can also be independent, i.e., each layer 

can process a perception and perform an action. In this case, the 

actions can be executed in parallel.  

 

 

Fig. 14. The structure of a reactive agent (adapted from [21]) 

 

 

C. Kendall Classification 

Kendall [3] defined two agent architectures organized into 

layers: layered agents and reactive agents. A difference this 

author to others is that it represents the agents through patterns. 

 

1) Reactive agents 

Kendall defines the following pattern for structuring a 

reactive agent (Fig. 15). 

Problem: How can an agent react to an environmental 

stimulus or a request from another agent when there is no 

symbolic representation and no known solution? 

Forces: An agent needs to be able to respond to a stimulus or 

a request; there may not be a symbolic representation for an 

application and an application may not have a knowledge based, 

prescriptive solution. 

Solution: A reactive agent does not have any internal symbolic 

models of its environment; it acts using a stimulus/ response 

type of behavior. It gathers sensory input, but its belief and 

reasoning layers are reduced to a set of situated action rules. A 

single reactive agent is not proactive, but a society of these 

agents can exhibit such behavior.  

Known Uses: Reactive agents have been widely used to 

simulate the behavior of ant societies and to utilize such 

societies for search and optimization. 

 

 

 
Fig. 15. The reactive agent of the Kendall architecture (adapted from [3]) 

 

 

2) Layered agents 

Kendall specified the following pattern for layered agent 

(illustrated in Fig. 16): 

Problem: How can agent behavior be best organized and 

structured into software? What software architecture best 

supports the behavior of agents? 

Forces: An agent system is complex and spans several levels 

of abstraction; there are dependencies between neighboring 

levels, with two way information flow; the software 

architecture must encompass all aspects of agency; the 

architecture must be able to address simple and sophisticated 

agent behavior. 

Solution: Agents should be decomposed  into layers because 

i) higher level or more sophisticated behavior depends on lower 

level capabilities, ii)  layers only depend on their neighbors, and 

iii)  there is  two way information flow between neighboring 

layers. The architecture structures an agent into seven layers. 

The exact number of layers may vary. In the sensory layer the 

agent perceives its environment through sensors. Agents beliefs 

are based on sensory input, so, in the beliefs layer, perceptions 

are mapped to logic sentences that are included in the agent 

knowledge base, which is part of this layer and where the agent 

maintains models of its environment and itself. In the 

Reasoning layer, when presented with a problem, the Agent 

reasons about the symbolic model in the knowledge base to 

determine what to do by selecting a particular action to perform 

on the environment. An agent selects a plan to achieve a goal. 

When the agent decides on an action, it can carry it out directly, 
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but an action that involves other agents requires collaboration.  

Once the approach to collaboration is determined, the actual 

message is formulated and eventually translated into other 

semantic and delivered to distant societies by mobility. 

Top-down, distant messages arrive by mobility. An incoming  

message is  translated  into  the  agent’s semantics, The 

collaboration layer determines whether or  not  the  agent 

should process a  message.  If the message should be processed, 

it is passed on to actions. When an action is selected for 

processing, it is passed to the reasoning layer, if necessary. 

Once a plan placed in the actions layer, it does not require the 

services of any lower layers, but it utilize higher ones. 

 

 
Fig. 16. Layered agent (adapted from [3]) 

 

3) A summary of basic agent architectures 

Table I summarizes different main architecture the 

architectures of Kendall’s discussed in this section.  

The simple reflex agent and agent with states defined by 

Russel and Norvig correspond to Wooldridge reactive agent 

and the Kendall reactive agent. A main difference is that 

Wooldridge and Kendall defines that architectures can be 

arranged in layers with increasing level of abstraction.  

The goal-based and utility-based agents defined by Russel 

and Norvig correspond to the Wooldridge deductive reasoning 

agent and Kendall layered agent. Russell and Norvig defines a 

measure of performance and utility.  Kendall organizes their 

deliberative architecture in layers. In general, these 

architectures are called deliberative architectures and use some 

kind of reasoning. 

Wooldridge defines an architecture called practical 

reasoning, also neither known as BDI agent, whose main 

concepts are not approached by Kendall and Russell and 

Norvig. 

 
TABLE I . CORRESPONDING TERMINOLOGY OF AGENT 

ARCHITECTURES 

Kind of agent Russel and Norvig Kendall Wooldridge 

Reactive Reflex agent Reactive Reactive Agent 

Reflex agent with 

state 

Agent  

Deliberative 

Goal-based agent 

Layered Agent  

Deductive 

Reasoning 

Agents 

Utility-based agent 

Practical 

Reasoning 

Agents 

III. BASIC AGENT COMPONENTS 

An agent has a set of components that are part of its internal 

architecture, also called agent structure. These components 

vary according to the agent type.  

In this section, basic components of a software agent as 

reasoning, knowledge base and communication are presented.  

 

A. The Reasoning Component 

Reasoning is the process of making inferences about a set of 

assumptions in order to obtain conclusions. There are four main 

types of reasoning: deduction, induction, abduction and 

analogy. Deliberative software agents have mechanisms of 

reasoning and use it to perform more complex actions than 

reactive ones.  

Deduction is the most rigorous kind of reasoning. When 

deduction premises are true, necessarily also be the conclusion 

will be also free. For example: “All men are mortal” (premise 

1), “Socrates is a man” (premise 2), “Therefore, Aristotle is 

mortal” (conclusion). 

Inductive reasoning part from the observation of objects and 

of the similarity between its properties. From the observation of 

the common features of a limited set of objects, an entire 

category is generalized. For example: “Canaries flies” (Premise 

1), “Parrots flies” (Premise 2), “Pigeons flies” (Premise n), 

“therefore, all birds fly” (Conclusion). Conclusion is not 

universally true, just likely to be true. 

Abductive Reasoning [30] is also called inference by the best 

explanation. In abduction, as in induction, the conclusion is not 

an universal truth, but has the probability of being true. 

Abduction prepares explanatory hypotheses for these 

observations and hypotheses are evaluated. For example, given 

the observation that “The street is wet”, the following 

hypothesis can be formulated: "It rained " (hypothesis 1) and 

"A water truck started pouring water" (hypothesis 2). But when 

a new observation like "The house roof is wet." Is obtained, the 

hypothesis 2 should be rejected and hypothesis 1 validated. 

Abductive reasoning is often used by criminologists, detectives 

and diagnosis of diseases. 

There is another reasoning process called reasoning by 

analogy, which goes from the particular to the particular. This 

process occurs with the perception and classification of objects 

according to similar features and deriving a conclusion from a 

previous experience in one or more similar situations [18]. For 

example, consider the set of individuals A, B and C, having the 

following range of characteristics: white color, thin, blond hair 

and blue eyes. Given that the individual A has the high stature 

characteristic, it should be possible to conclude that B and C are 

likely to have this feature even if not explicit in the definition. 
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Analogy is a type of reasoning often used in everyday life and 

has already been successfully applied in various fields of 

knowledge. For example, the first plans for building 

vehicles very similar to current helicopters made by Leonardo 

da Vinci mimicked the mechanisms used by birds to fly [24]. 

 

B. The Knowledge Base Component 

Another component of a deliberative agent architecture is its 

knowledge base. The agent knowledge base contains the 

knowledge of the external environment, the agent perception 

history and the knowledge of rules for mapping perceptions to 

actions. 

The most common way to represent agent knowledge is 

symbolic representation, using logic programming languages, 

like Prolog [17]  and Jess [4] and knowledge representation 

languages supporting semantic networks, frames or ontologies, 

like RDF [27] and OWL [2]. Ontologies are knowledge 

representation structures capable of expressing a set of entities 

in a given domain, their relationships and axioms, being used 

by modern knowledge-based systems as knowledge bases to 

represent and share knowledge of a particular application 

domain. They allow semantic processing of information and a 

more precise interpretation of data, providing greater 

effectiveness and usability than traditional information systems 

[32].  

Before being used by an inference engine, perceptions must 

be transformed into sentences in a knowledge representation 

language understandable by the agent. After finding, through 

reasoning, an action representing an appropriate solution for the 

perception, this action should be interpreted and performed on 

the environment. For example, in the case of the vacuum 

cleaner, a sentence that represents the action of moving forward, 

should rather be interpreted and mapped prior to electronic 

signals that indicate to the hardware of the vacuum cleaner that 

he should move. When the agent environment is artificial, like 

the Internet, the agent perceptions can be just text in natural 

language or events like a mouse click. Actions can just display 

text on the screen, send a message or trigger an event like a 

sound alarm.  

It should be distinguished between the agent internal 

knowledge and the knowledge shared with other agents of the 

society and / or external entities. The agent internal knowledge 

is just necessary for performing its own actions. Shared 

knowledge is required for agents to communicate.  

 

C. The Communication Component 

Software agents usually specialize in just certain tasks.  Thus, 

frequently, agents need to communicate to accomplish tasks 

that are beyond their individual capabilities in order to achieve 

the overall goal of the multi-agent system. Thus, in these 

systems, agents need to communicate. Communication among 

agents is based on the theory of speech acts [37] and for that, 

Agent Communication Languages  (ACLs) have been 

developed, like KQML (Knowledge Query and Manipulation 

Language)[7][41] and FIPA-ACL (Foundation for Intelligent 

Physical Agents - Agent Communication Language)  [16] for 

expressing communication acts and supporting the 

coordination and cooperation mechanisms of a multi-agent 

society architecture. 

. In the theory of speech acts, a message intent is called 

performative. For example, the intention of an agent may be a 

request such as "Can you send me the price of the blue blouse?"  

or just information like "The summer time in Brazil began on 

October 20, 2013." According to their main intentions a speech 

act can inform, question, answer, ask, offer, confirm and share.  

 

IV. ADVANCED AGENT ARCHITECTURES 

Basic agent architectures presented in the previous sections 

already have a high level of maturity, having techniques 

[11][13][33][34] and frameworks [6][14][15] that support their 

development. More advanced agent architectures such as 

learning and hybrid ones are still an open research topic. This 

section discusses these more advanced software agent 

architectures.  

 

A. Learning Agent Architectures 

The idea behind learning is that perceptions should be used 

not only to act but also to improve the agent ability to act in the 

future [38].  

Basic software agents have no learning; they act according to 

the perceptions defined in the agent design. Therefore, for new 

perceptions the agent must be reprogrammed. 

 Learning agents can at runtime change their behavior 

according to changes in the environment. In this type of agents, 

perceptions should be used not only to act but also to improve 

the agent ability to act in the future. 

 According to Russell and Norvig [38], a learning agent has 

four basic components (Fig. 17):  performance, critic, learning 

and problem generator. 

The performance component is what we have previously 

considered to be a basic agent: perceives and acts on the 

environment 

 The learning component is responsible for making the agent 

behavior improvements. It uses feedback from the critic on how 

the agent is doing and determines how the performance 

component should be modified to do better in the future. The 

critic tells the learning component about the success of the 

agent according to a fixed performance standard. The critic is 

necessary because the percepts themselves provide no 

indication of the agent success. 

The last component of the learning agent is the problem 

generator which is responsib1e for suggesting actions that will 

lead to new and informative experiences. The point is that if the 

performance element had its way, it would keep doing the 

actions that are best, given what it knows. The problem 

generator main goal is to suggest these exploratory actions. 

This is what scientists do when they carry out experiments. 

An example of the functioning of a learning agent 

architecture, the automated taxi, is given in [38]. The 

performance element consists of whatever collection of 
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knowledge and procedures the taxi has for selecting its driving 

actions. The critic observes the world and passes information 

along to the learning element. For example, after the taxi makes 

a quick left turn across three lanes of traffic, the critic observes 

the shocking language used by others drivers. From experience, 

the learning element is able to formulate a rule saying this was a 

bad action, and the performance element is modified by 

installation of the new rule. The problem generator might 

identify certain areas of behavior in need of improvement and 

suggest experiments, such as trying out the brakes on different 

road surfaces under different conditions. 

 

 
Fig. 17. The structure of a learning agent (adapted from [38])  

 

During the construction of the learning element it is 

necessary to define the learning technique to be used. 

Well-known techniques of machine learning are supervised 

learning, unsupervised learning and reinforcement learning 

[36]. 

The problem of supervised learning involves learning a 

function from a set of inputs and outputs examples which will 

be later used to produce the correct output given a new input.  

Examples of these techniques are decision trees, Bayesian 

networks and neural networks [38]. Supervised learning is 

associated with two common problems which are classification 

and regression. Classification is to assign an instance to a class 

through a classifier previously built. A classifier can be, for 

example, a decision tree or set of rules. Regression attempts to 

identify a output and represent it by a numeric value from a set 

of training data.  

A disadvantage of a supervised learning technique is that 

learning is dependent on the training examples and creating 

these training examples may require considerable time and 

effort. 

The problem of unsupervised learning involves learning 

patterns in the input and building a model or useful 

representations of the data, for example, clusters when no 

specific output values are supplied.   For example, a taxi agent 

might gradually develop a concept of “good traffic days” and 

“bad traffic days” without ever being given labelled examples 

of each [38]. This could be done through the development of 

clusters.  

A cluster is a collection of objects that are similar to each 

other (according to some pre-defined similarity criterion) and 

not similar to objects belonging to other clusters. So it could be 

constructed clusters representing "good traffic days" and "bad 

traffic days". These clusters could have characteristic values as 

"time spent route" and "fuel cost". After clusters construction, 

the agent could learn which days probably has good traffic. 

Clusters do not always have adequate exits after completion of 

the training dataset. When this happens, it is necessary to 

evaluate why the output is not appropriate. Some data output is 

not correct because there were used insufficient training 

examples or there were defined non-relevant features for the 

objects that compose the clusters. 

Reinforcement learning is inspired in the behaviorist 

psychology where an agent learns to act in a way that 

maximizes rewards in the long term.  Reinforcements are 

obtained through the interaction of the agent with the 

environment and can be positive (reward) or negative 

(punishment). In reinforcement learning there is no examples of 

correct output. The reinforcement obtained through interaction 

with the environment is used to assess the agent behavior and is 

associated with a performance standard establishing whether 

that reinforcement is positive or negative. Better agent 

performance is obtained through experience. 

A reinforcement learning example is of a mouse that moves 

about a maze trying to get the cheese while avoiding the deadly 

trap. The mouse does not know beforehand the layout of the 

maze or the placing of the cheese/trap. At each square, it must 

choose whether to move up, down, left or right. The mouse will 

explore the maze to find the cheese. After finding the cheese, it 

will already know which path took to find the cheese (positive 

reinforcement), but it still tries to find a shorter way to the 

cheese (to maximize its performance measure). After various 

experiences in the maze it will learn the shortest path from the 

starting point until the cheese. 

 

B. Hybrid Agent Architectures 

Hybrid architectures, also known as layered architectures 

have emerged from the need to gather in a single agent reactive 

and deliberative behavior. Wooldridge classifies this type of 

architecture into two groups [21]: hybrid architectures in 

horizontal layers and hybrid architectures in vertical layers.  

In horizontal layers hybrid architectures (Fig. 18), each 

software layer is connected directly to a sensor and an actuator. 

In this type of architecture each layer works as an independent 

agent. One advantage of organizing horizontally layered 

architectures is the clear separation of the different agent 

behaviors within the architecture, where each layer can act 

independently of the other, even in parallel. One of the 

problems with this architecture type is that the overall behavior 

of the agent cannot be consistent. To solve this, usually a 

control layer is also designed to ensure a coherent overall 

behavior.  

 In vertical layers hybrid agent architectures, perceptions and 

actions are handled by more than one layer. In these 
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architectures, layers can be further subdivided into a 

single-passage (Fig. 19) and two-passages (Fig. 20) 

architectures.  In the architecture of a single-passage, the 

control flow passes sequentially through each layer until 

reaching the final layer where the action to be performed in the 

environment is generated. In the two-passages architecture, 

information flows to reach the final layer (first pass) and 

control then flows back down (second pass). 

  

 

 
Fig. 18. A horizontal layered agent architecture (adapted from [21]) 

 

 

 

 
Fig. 19. A vertical layered agent architecture of a single-passage (adapted from 

[21]) 

Russell and Norvig [38] also propose a hybrid architecture 

(Fig. 21). The agent architecture has two main components they 

called subsystems: a deliberative and a reflex systems. The goal 

of the architecture is to exhibit more efficient agent behavior by 

converting deliberative decisions into reflective ones, making 

the agent actions more fast and efficient.  

 

 
Fig. 20. A vertical layered agent architecture of two-passages (adapted from 

[21]) 

 
Fig. 21. Another proposal of a hybrid agent architecture (adapted from [38]) 

Examples of current hybrid architectures are SOAR [5][10], 

ACT-R (Adaptive Control of Thought–Rational)[9], 

INTERRAP (Integration of Reactive Behavior and Rational 

Planning) [29]. A common feature of most proposal of current 

hybrid architectures is that they are cognitive. A cognitive 

architecture aims at developing agents capable of acting using 

human cognitive phenomena such as memory, learning, 

decision making and natural language processing [28]. 

SOAR was one of the first proposals of hybrid architectures. 

It has a development environment and a framework to support 

the creation of agents according to their definitions. It is also a 

goal-driven cognitive architecture that integrates reasoning, 

reactive execution, planning and various learning techniques, 

aiming at creating a software system having similar cognitive 

abilities as humans. The SOAR agent architecture is illustrated 

in Fig. 22. This architecture is composed of a working memory, 

also known as short term memory, a long-term memory, a 

reasoning module, modules responsible for managing the agent 

perceptions and actions and learning modules.  
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Fig. 22. The SOAR hybrid agent architecture [5] 

 

ACT-R is a programming environment that supports the 

development of hybrid agents. The ACT-R hybrid architecture 

(Fig. 23) attempts to emulate cognitive processes of human 

cognition such as knowledge acquisition and learning through a 

production system. It consists of a perceptual/motor layer, a 

cognition layer and a buffer intermediate layer. In the 

perceptual/motor layer, input and output information 

processing is emulated through the human visual, motor, 

speech and hearing modules. In the cognition layer, the 

memory of the agent is represented by declarative and 

production modules. The declarative memory corresponds to 

the reactive part of the system and consists of "chunks". A 

chunk is an attribute-value structure; with a special type of 

attribute called "ISA" that determines the type of the chunk. 

The production memory is formed by condition-action rules 

and an inference engine to select actions in the knowledge base. 

The representation of the two types of memories for the agent is 

what makes ACT-R a hybrid architecture. The intermediate 

module ACT-R buffers is the working memory of the agent. It 

corresponds to the knowledge used only when performing a 

particular task. This knowledge can be retrieved both by the 

declarative memory and the production memory. Learning in 

the ACT-R architecture is by "chunking" which basically 

consists in useful pieces of information (chunks) that are stored 

in the declarative memory for future use. 

The InteRRaP architecture (Fig. 24) is a two-passages hybrid 

architecture that supports the development of reactive agents 

and goal-based agents. It is organized into layers together with 

a control structure and a knowledge base associated with each 

layer.  It consists of five main components: an interface with the 

world (WIF), a component-based behavior (BBC), a plan-based 

component (PBC), a cooperation component (CC) and the 

agent knowledge base. The WIF component enables perception, 

action and agent communication. The BBC component 

supports reactive behavior and represents procedural 

knowledge. The PBC component contains planning 

mechanisms for constructing agent plans.  The CC component 

contains a mechanism to compose these plans. The knowledge 

base of InteRRaP consists of three layers. The lowest layer 

contains facts that represent a model of the agent environment 

as well as representations of actions and behavior patterns. The 

second layer contains the agent mental model. The third layer 

consists of the agent social model, which provides strategies for 

cooperation with other agents. 

 

 
Fig. 23. The ACT-R hybrid agent architecture [26] 

 

 
Fig. 24. The InteRRaP hybrid agent architecture [29] 

 

Qinzhou and Lei [12] define a hybrid agent architecture 

using case-based reasoning and unsupervised learning (Fig. 25) 

composed of eight modules: a knowledge module in charge of 

storing a set of cases and a set of rules; a module responsible for 

the condition-action rules corresponding to the reactive 

behavior; a perception module responsible for receiving 

information from the environment, a learning module that uses 

unsupervised learning algorithms to increase the efficiency of 

case retrieval; a retrieval module whose main function is to 

compare and perform the similarity computation between a 

new case with an old case in the case base; a decision module 

which corresponds to the deliberative behavior, responsible for 

performing a process of reasoning on cases using the set of 

rules from the knowledge module; an execution module 

responsible for performing actions on the environment; and a 
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communication module responsible for the interactions 

between agents, which uses the KQML[7].  

 

 
Fig. 25. The Qinzhou and Lei hybrid agent architecture [25] 

Table II shows a comparison between the SOAR, ACT-R, 

INTERRAP and Qinzhou and Lei hybrid architectures  by 

considering the characteristics of their reactive and deliberative 

components, the applied learning technique and the 

representation mechanisms of the knowledge base.  

Among these architectures, and probably among all hybrid 

architectures of the state of the art, the broader one  is the 

SOAR architecture which includes various forms of learning 

and mechanisms for representing the agent knowledge base. 

SOAR also provides tools for developing agents, updated 

documentation and examples of implemented agents for 

various problems.  

 

 
Table II.  A Comparison of Hybrid Agent Architectures  

Features 

Reactive  

Component 

Deliberative 

Component 

Learning 

Technique 

Knowledge base 

representation 

Architecture 

 

SOAR 

 

Reactive  

with state 
Deductive 

Reinforcement, 

episodic, 

chunking and 

semantic 

 Condition-action 

rules, state graphs 

and semantic 

memory. 

ACT-R 
Reactive  

with state 
Deductive Chunking 

Rules, facts and 

procedural 

knowledge 

INTERRAP 
Reactive  

with state 
BDI No learning 

 

Procedural 

knowledge 

 

 

Qinzhou and 

Lei 

Architecture 

Reactive  

simple 
RBC 

Unsupervised 

learning 
Cases 

The ACT-R architecture differs from the SOAR architecture 

because it is more restricted in relation to the alternative 

representation of the agent knowledge base. However, this 

architecture has a wider treatment of perceptions, including 

representing images and voice.  

INTERRAP's main advantage over other hybrid 

architectures presented in this section, is its layered 

organization, considering that the definition of several 

independent components inserts complexity in the architecture 

design, making necessary to manage the interactions between 

the components.  

The architecture of Qinzhou and Lei differs from the others 

by using case-based reasoning and unsupervised learning to 

classify similar cases in a class according to the most relevant 

characteristics of the cases. 

 

V. CASE STUDY 

OHAA (“Ontology-driven Hybrid Agent Architectures”) is 

an ontology-driven hybrid and learning agent architecture that 

combine deliberative and reactive components joining the 

advantages of both behaviors to improve the decision making 

process. Thus, the agent may have a reactive behavior or a 

deliberative one depending on its perception and available 

behavior.  

 

 
Fig. 26. The structure of OHAA Architecture 

Additionally, the architecture allows learning new reactive 

rules through recurrent solutions to the same perception from 

the deliberative system, which will be stored in the agent 

knowledge base.   Also, the learning component supports the 

evolution of deliberative to reactive behavior. Finally, in 

OHAA, the knowledge base is represented as an ontology thus 

enabling knowledge improvement through reuse. Fig. 26 

illustrates the OHAA basic structure. 

A first approach of the OHAA functioning is described as 

follows. 

1. Interpreting the perception; 

2. Mapping the perception to a sentence; 

3. Asserting the perception sentence in the knowledge 

base ontology; 

4. If there is a rule for the perception, the corresponding 
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action to perform is selected by the reactive system; 

5. If there is no a reflex action corresponding to the 

perception, this will be treated by the deliberative 

system that will reason to find the most appropriate 

action; 

6. Upon completion of the action, the agent will perceive 

a feedback from the environment about the success or 

failure of the performed action; 

7. In the critical component, which is fed by a 

performance standard of the agent actions from the 

environment, the feedback perception will be 

evaluated. If the action was poorly evaluated by the 

critical, this component informs the learning 

component; 

8. If the action was assessed as good, this behavior will 

remain in the knowledge base; 

9. Following, the learning component makes 

recommendations for improvements in the actions of 

the agent; 

10. These recommendations are passed to the problem 

generator component which, in turn can generate a 

new set of possible actions for the agent; 

11. When the agent performs these new actions, suggested 

by the problem generator component, it will have a 

feedback perception and the process restarts; 

12. Finally, actions repeatedly well evaluated will be 

transformed into reactive rules; 

13. When the agent performs these new actions, suggested 

by the problem generator component, it will have a 

feedback perception and the process restarts; 

14. Finally, actions repeatedly well evaluated will be 

transformed by the learning component into reactive 

rules. 

 

A. A simples example 

Consider a genealogy tree as the OHAA environment (Fig. 

27). By traversing the tree the agent just perceives who are the 

parents of a given person.  

OHAA also has knowledge about genealogy (Fig. 28) so it 

can conclude through deductive reasoning who are the kins of a 

given person. For example, through the knowledge base 

inference rules of the deliberative system of Fig. 28, the agent 

can conclude that Bob and Julie are cousins. 

 

 
Fig. 27. Genealogy Environment 

If the action generated through the inference that  conclude 

that “Bob and Julie are cousins” is repeatedly well evaluated 

then it could be transformed by the learning component into a 

reactive rule. When the rule becomes reactive, the agent does 

not need to reason once the environment is static. Then, the 

knowledge base of the agent will be updated with the 

information that “Bob and Julie are cousins”. In the knowledge 

base (Fig. 29) this reactive rule is represented by the “cousins 

(bob, julie).” fact. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 28. Facts and inference rules in the reactive and deliberative systems of the 

OHAA knowledge base 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 29. The representation of a learned reactive rule in the OHAA knowledge 

base 

 

VI. CONCLUDING REMARKS 

This paper presented a study about basic and advanced 

software agent architectures. The main features of reactive and 

deliberative agent architectures, their internal components and 

how they relate to each other were described. Hybrid 

architectures which combine both reactive and deliberative 

agent behavior and learning architectures allowing the 

improvement of the agent behavior were also analyzed.  

Considering that they simulate better intelligent human 

behavior, current work focuses on the design of hybrid and 

learning architectures, providing frameworks and design tools 

for agent construction. 

Additionally, the OHAA hybrid architecture has also been 

introduced. The OHAA Architecture combines deliberative and 

reactive components joining the advantages of both behaviors 

to improve the decision making process. A learning component 

also was defined in OHAA, responsible for learning new agent 

behaviors and for transforming deliberative behaviors into 

reactive ones.  

An example of OHAA utilization and a comparative study of 

Deliberative system 

parent(X,Y) :- father(X,Y). 

parent(X,Y) :- mother(X,Y). 

brothers(X,Y) :- parent(X,Z),parent(Y,Z). 

cousins(X,Y) :- brothers(A,B),parent(X,A),parent(Y,B). 

 

Reactive system 

father(michael,james). 

father(lily,james). 

father(bob,michael). 

mother(michael,mary). 

mother(lily,mary). 

mother(julie,lily). 

cousins(bob,julie). 

Deliberative system 

parent(X,Y) :- father(X,Y). 

parent(X, Y) :- mother(X,Y). 

brothers(X,Y):- parent(X,Z),parent(Y,Z). 

cousins(X,Y):-brothers(A,B),parent(X,A),parent(Y,B). 

 

Reactive system 

father(Michael,James). 

father(Lily,James). 

father(Bob,Michael). 

mother(Michael,Mary). 

mother(Lily,Mary). 

mother(Julie,Lily). 
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main approaches of hybrid agent architectures have been also 

discussed. 

The hybrid architecture OHAA is still in an early stage. 

Current work looks for detailing the architecture components 

and evaluating its effectiveness through the design and 

implementation of an initial prototype and the development of a 

case study in the family law legal field using case-based 

reasoning [1] and instance-based learning [24].  

Further work will specify a technique and implementing a 

tool for constructing agents using the OHAA architecture. 

More evaluation experiments will be conducted using 

deductive reasoning and reinforcement learning [40]. 
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