
8 Feature Article: A Survey on Software Agent Architectures

December 2013 Vol.14 No.1 IEEE Intelligent Informatics Bulletin

Abstract—An important decision when developing a software

agent is the design of its internal architecture. Several models of

deliberative and reactive architectures have already been

proposed. However, approaches of hybrid software architectures

that combine deliberative and reactive components, with the

advantages of both behaviors, are still an open research topic.

This paper analyzes the state of the art of software agent

architectures from the basic reactive and deliberative models to

more advanced ones like hybrid and learning software

architectures. A case study on the design of an ontology-driven

hybrid and learning software agent architecture is also described.

Index Terms—Software Agents, Software Architectures,

Hybrid Agents; Learning Agents; Agent-oriented Development;

Software Design

I. INTRODUCTION

EVELOPING software of high quality is difficult

because of the natural complexity of software. Looking

for appropriate techniques to confront complexity, software

development paradigms have evolved from structured to

object-oriented approaches to agent-oriented ones [31].

Having the properties of autonomy, sociability and learning

ability, software agents are a very useful software abstraction to

the understanding, engineering and use of both complex

software problems and solutions like distributed and open

systems and to support the decision making process [19][23]. A

software agent is an entity that perceives its environment

through sensors and acts upon that environment through

actuators [38]. Agent attributes allow to approach complexity

of software development through appropriate mechanisms for

software decomposition, abstraction and flexible interactions

between components [31].

During the process of developing a multi-agent system, both

the architecture of the agent society and the one of each agent

are defined in the global and detailed design phases,

respectively, looking for satisfying the functional and

non-functional requirements of the system.

A software architecture is a software computational solution

to a problem showing how the component parts of a system

interact, thus providing an overview of the system structure. It

is the product of a software design technique and considered a

bridge between requirements engineering and coding where

Rosario Girardi and Adriana Leite are with the Computer Science

Department – DEINF/GESEC，Federal University of Maranhão, Brazil

(E-mails: rosariogirardi@gmail.com, adri07lc@gmail.com).

This work is supported by CAPES and FAPEMA, institutions of the

Brazilian Government for scientific and technologic development.

emphasis is on coordination and cooperation over computation.

The main elements of a software architecture are components,

connectors and cooperation and coordination mechanisms. The

components are the computational units, like modules, objects

or software agents. The connectors represent the interactions

between the architecture components, for instance, the

messages exchanged by agents in a multi-agent society. The

cooperation and coordination mechanisms define the way in

which the elements are arranged, for example, a layered

architecture.

Software architectures are represented in graphical diagrams

based on architectural styles and design patterns. An

architectural style [20] defines a vocabulary of components and

connection types and a set of restrictions on how these

components may be combined. A design pattern [35] is a

reusable solution to a recurring problem. It shows not only the

solution but also its restrictions and the context in which to

apply this solution. Frequently used architectural styles and

design patterns are pipes and filters, object-oriented, layered

and blackboard architectures.

Agent architectures emulate human behavior through models

of reactive architectures, supporting instinctive or reflexive

behavior, and deliberative architectures, supporting different

forms of automatic reasoning (deductive, inductive and

analogical reasoning, among others).

A reactive architecture is ideal in cases where an immediate

action is necessary for a certain perception, and then, its main

advantage is the speed of the agent action. Differently, a

deliberative architecture is suitable to support more complex

decisions where a reasoning process should be executed to find

the most appropriate action for a particular perception.

Several models of deliberative and reactive architectures

have already been proposed. However, approaches of hybrid

software architectures that combine deliberative and reactive

components, with the advantages of both behaviors are still an

open research topic. These architectures have greater

complexity in their definition and use, since they require

synchronization between reactive and deliberative components.

Another important aspect to be considered on the definition of

the internal architecture of an agent is the definition of

knowledge bases representing the agent knowledge about itself

and the external environment. One of the most effective ways

of representing agent knowledge bases are ontologies. An

ontology is an explicit specification of a conceptualization [39].

Conceptualization refers to the abstraction of a part of the world

(a domain) where are represented the relevant concepts and

A Survey on Software Agent Architectures

Rosario Girardi and Adriana Leite

D

Feature Article: Rosario Girardi and Adriana Leite 9

IEEE Intelligent Informatics Bulletin December 2013 Vol.14 No.1

their relationships. Ontologies have the advantages of being

formal and reusable semantic representations.

Considering that an agent has the granularity of a subsystem,

the specification of its architecture has particular importance

both for approaching complexity and understanding software

solutions.

This article analyzes the state of the art of software agent

architectures from the basic reactive and deliberative models to

more advanced ones like hybrid and learning software

architectures.

The rest of the paper is organized as follows. Section II

introduces the basic software agent architectures and section III

their main components. Section IV discusses current

approaches for advanced architectures such as learning and

hybrid ones. Section V concludes the paper.

II. BASIC SOFTWARE AGENT ARCHITECTURES

Basic software agent architectures currently structure just

two types of behaviors: reactive or reflexive and deliberative by

reasoning. However, there are different proposals for

structuring these basic behaviors and its variations [21][38] that

are discussed in the following sections.

Fig. 1 illustrates the architecture of a generic agent, which

perceives the external environment through sensors and then

interprets the perception and transforms it into a sentence. It

performs a mapping of the current perception to an action,

represented in Fig. 1 by the question mark. This mapping

occurs immediately in the case of a reactive behavior or

through automatic reasoning otherwise. After encountering the

sentence that represents the action, this is interpreted and the

action is executed in the environment.

Fig. 1. A generic software agent (adapted from [38])

A. Russel and Norvig Classification

Russel and Norvig [38] define four basic types of

architectures for software agents: simple reflex agents,

reflex-agents with state, goal-based agents and utility-based

agents.

1) Simple reflex agents

Simple reflex agents are considered the simplest type of

agent where the agent's action is performed as an answer of just

the current perception. It has a knowledge base that contains a

set of <condition,action> rules. For each perception satisfying

the condition, a corresponding action in the knowledge base is

selected and performed. For instance, if the knowledge base has

the reactive rule “if the car in front is breaking then initiate

braking”, when perceived that “The car in front braked” the

action “Initiate braking” would be performed. Fig. 2 and Fig. 3

illustrate the structure of a simple reflex agent. First, the

perception is interpreted and transformed into a sentence, and

then the knowledge base of the agent is updated. If a matching

is found between the sentence and the condition of a rule, the

corresponding action sentence of the rule is selected. Finally,

the sentence that represents the action is interpreted and the

agent performs the action in the environment.

Fig. 2. The structure of a simple reflex agent (adapted from [38])

 function Skeleton-Agent(percept) returns action

 static: memory, the agent’s memory of the world

 memory ← Update-memory(memory, percept)

 action ← Choose-Best_action(memory)

 memory ← Update-memory(memory, action)

 return action
Fig. 3. Reflex-agent algorithm [38]

Fig. 4 illustrates a vacuum world as an example of a simple

reflex agent architecture. This agent environment has two

rooms called A and B. Each room can have a dirty or clean state.

When the agent perceives that the room A is dirty it should

perform the action "clean", then goes to the room B and do the

same check. The operation of the vacuum agent is described in

the algorithm of Fig. 5.

10 Feature Article: A Survey on Software Agent Architectures

December 2013 Vol.14 No.1 IEEE Intelligent Informatics Bulletin

.

Fig. 4. The vacuum world: an example of a simple reflex agent [38]

function REFLEX-VACUUM-AGENT([location,status])

returns an action

 if status = Dirt then return Suck

 else if location = A then return Right

 else if location = B then return Left

Fig. 5. A simple reflex vaccum agent algorithm [38]

2) Reflex agents with state

A reflex agent with state differs from the previous one on the

fact that it updates the state of the environment with each new

perception. An action in the set of rules is selected according to

the perception history and not just from the current perception

(Fig. 6 and Fig. 7). Moreover, the agent with state has a world

model, that is, contains knowledge about the environment. For

example, when an agent crosses a street its reactive behavior

will depend on the traffic rules that make part of the agent

world model.

Fig. 6. The structure of a reflex agent with state (adapted from [38])

function Reflex-Agent-With-State(percept) returns action

static: state, a description of the current world state

 rules, a set of condition-action rules

 state ← Update-State(state, percept)

 rule ← Rule-Match(state, rules)

 action ← Rule-Action (rule)

 state ← Update-State(state, action)

 return action

Fig. 7. An algorithm with the basic operation of a reflex agent with state [38]

3) Goal-based agents

A goal-based agent maintains the state of the environment

and has a goal to be achieved. For that it has to perform an

action or a sequence of several actions determined though a

reasoning mechanism on the agent knowledge base. This makes

them less efficient than reflex agents due to the fact that the

processing time required to perform a reasoning process is

usually greater than the one required by rule condition-action

agents. In Fig. 8 the basic structure of goal-based agent is

illustrated and Fig. 9 describes the algorithm with the basic

operation of this agent type.

Fig. 8. The structure of a goal-based agent (adapted from [38])

 Fig. 9. Algorithm with the basic operation of goal-based agents [38]

4) Utility-based agents

Utility-based agents are similar to goal-base agents, but they

also have an utility measure used to evaluate the level of

success when reached the goal. For example, an agent whose

goal is to go from "City A" to "City B" can achieve this goal

taking two to four hours to complete the route. By defining a

measure of time efficiency, the agent will know that completing

the route in less time is better. Fig. 10 illustrates the basic

structure of such agents and Fig. 11 describes its basic

operation.

Fig. 10. The structure of an utility-based agent (adapted from [38])

function Goal-Based-Agent (percept) returns action

static: KB, goal, search-space

 KB ← UPDATE-KB (KB, percept)

 goal ← FORMULATE-GOAL (KB)

 search-space ← FORMULATE-PROBLEM (KB, goal)

 plan ←SEARCH (search-space, goal)

 while (plan not empty) do

 action ← RECOMMENDATION (plan, KB)

 plan ← remainder(plan, KB)

 return action

Feature Article: Rosario Girardi and Adriana Leite 11

IEEE Intelligent Informatics Bulletin December 2013 Vol.14 No.1

Fig. 11. An algorithm with the basic operation of an utility-based agents [38]

B. Wooldridge Classification

Wooldridge [19][21][22] classifies basic agents into three

main categories: deductive reasoning agents, practical

reasoning agents and reactive agents.

1) Deductive reasoning agents

Deductive reasoning agents have a symbolic model of their

enviroment and their behavior is explicitly represented,

typically using logic. The agent handles this representation by

deductive reasoning which can require considerable time to be

performed. Fig. 12 illustrates the structure of a deductive

reasoning agente.

Fig. 12. The structure of a deductive reasoning agent (adapted from [21])

2) Pratical reasoning agents

Practical reasoning agents, also called BDI agents, are their

based on the idea that agent acts not only by deductive

reasoning. In practical reasoning, the decision process is

performed based on beliefs, desires and intentions. Agent

beliefs include the agent knowledge about the world, desires

are some kind of desirable state to be reached, and intentions

are the actions that the agent decides to take to achieve their

desires.

To understand BDI agents, in [8] is given the following

example: When a person graduates from university with a first

degree, he/she is faced with some important choices. Typically,

he/she proceeds in these choices by first deciding what sort of

career to follow. For example, one might consider a career as an

academic, or a career in industry. The process of deciding

which career to aim for is deliberation. Once one has fixed upon

a career, there are further choices to be made; in particular, how

to bring about this career. Suppose that, after deliberation, you

choose to pursue a career as an academic. The next step is to

decide how to achieve this state of affairs. This process is

means–ends reasoning. The end result of means–ends

reasoning is a plan or recipe of some kind for achieving the

chosen state of affairs. For the career example, a plan might

involve first applying to an appropriate university for a PhD

place, and so on. After obtaining a plan, an agent will typically

then attempt to carry out (or execute) the plan, in order to bring

about the chosen state of affairs. If all goes well (the plan is

sound, and the agent’s environment cooperates sufficiently),

then after the plan has been executed, the chosen state of affairs

will be achieved.

In Fig. 13 the main elements of a BDI architecture are

illustrated. This architecture consists of a set of current beliefs

that represent the information the agent has about its

environment; by a belief revision function (brf - beliefs review

function), that is the entry of a perception and current agent

beliefs; a generation options function (generate options), which

determines the choices of actions available to the agent

(desires), based on their current beliefs about the environment

and their current intentions; by a set of current options (desires),

representing the actions available to the agent; by a filter

function (filter) which represents the agent's deliberation

process and determining the intentions of the agent based on

their current beliefs, desires and intentions; by a set of current

intentions (intentions), representing the current goal of the

agent and by a selection function action (action) that determines

an action to be performed on the basis of current intentions.

Fig. 13. The structure of a BDI agent (adapted from [21])

The main advantages of BDI architectures, cited in [21], are

conceptual proximity to the process of human decision and the

informal understanding of the notions of belief, desire and

intentions.

function Goal-Based-Agent (percept) returns action

static: KB, goal, search-space

KB ← UPDATE-KB (KB, percept)

goal ← FORMULATE-GOAL (KB, utility_measure)

search-space ← FORMULATE-PROBLEM (KB, goal)

plan ←SEARCH (search-space , goal)

while (plan not empty) do

action ← RECOMMENDATION(plan, KB)

plan ← REMAINDER (plan, KB)

return action

12 Feature Article: A Survey on Software Agent Architectures

December 2013 Vol.14 No.1 IEEE Intelligent Informatics Bulletin

3) Reactive agents

Reactive architectures are defined with the aim of filling the

main shortcoming of logic-based architectures: processing time.

The goal of the architecture is reactive agent that can provide

intelligent behavior through a set of quick and simple behaviors.

The knowledge of the agent and its behavior is not necessarily

represented in logic and the agent does not perform any kind of

reasoning.

 In Wooldridge reactive architecture (illustrated in Fig. 14) is

defined a set of rules for direct mapping of perceptions to

actions. Some reactive architectures are organized into layers

with different levels of abstraction, where the lower layers have

a higher level of priority, i.e., critical actions are performed by

these layers. The layers can also be independent, i.e., each layer

can process a perception and perform an action. In this case, the

actions can be executed in parallel.

Fig. 14. The structure of a reactive agent (adapted from [21])

C. Kendall Classification

Kendall [3] defined two agent architectures organized into

layers: layered agents and reactive agents. A difference this

author to others is that it represents the agents through patterns.

1) Reactive agents

Kendall defines the following pattern for structuring a

reactive agent (Fig. 15).

Problem: How can an agent react to an environmental

stimulus or a request from another agent when there is no

symbolic representation and no known solution?

Forces: An agent needs to be able to respond to a stimulus or

a request; there may not be a symbolic representation for an

application and an application may not have a knowledge based,

prescriptive solution.

Solution: A reactive agent does not have any internal symbolic

models of its environment; it acts using a stimulus/ response

type of behavior. It gathers sensory input, but its belief and

reasoning layers are reduced to a set of situated action rules. A

single reactive agent is not proactive, but a society of these

agents can exhibit such behavior.

Known Uses: Reactive agents have been widely used to

simulate the behavior of ant societies and to utilize such

societies for search and optimization.

Fig. 15. The reactive agent of the Kendall architecture (adapted from [3])

2) Layered agents

Kendall specified the following pattern for layered agent

(illustrated in Fig. 16):

Problem: How can agent behavior be best organized and

structured into software? What software architecture best

supports the behavior of agents?

Forces: An agent system is complex and spans several levels

of abstraction; there are dependencies between neighboring

levels, with two way information flow; the software

architecture must encompass all aspects of agency; the

architecture must be able to address simple and sophisticated

agent behavior.

Solution: Agents should be decomposed into layers because

i) higher level or more sophisticated behavior depends on lower

level capabilities, ii) layers only depend on their neighbors, and

iii) there is two way information flow between neighboring

layers. The architecture structures an agent into seven layers.

The exact number of layers may vary. In the sensory layer the

agent perceives its environment through sensors. Agents beliefs

are based on sensory input, so, in the beliefs layer, perceptions

are mapped to logic sentences that are included in the agent

knowledge base, which is part of this layer and where the agent

maintains models of its environment and itself. In the

Reasoning layer, when presented with a problem, the Agent

reasons about the symbolic model in the knowledge base to

determine what to do by selecting a particular action to perform

on the environment. An agent selects a plan to achieve a goal.

When the agent decides on an action, it can carry it out directly,

Feature Article: Rosario Girardi and Adriana Leite 13

IEEE Intelligent Informatics Bulletin December 2013 Vol.14 No.1

but an action that involves other agents requires collaboration.

Once the approach to collaboration is determined, the actual

message is formulated and eventually translated into other

semantic and delivered to distant societies by mobility.

Top-down, distant messages arrive by mobility. An incoming

message is translated into the agent’s semantics, The

collaboration layer determines whether or not the agent

should process a message. If the message should be processed,

it is passed on to actions. When an action is selected for

processing, it is passed to the reasoning layer, if necessary.

Once a plan placed in the actions layer, it does not require the

services of any lower layers, but it utilize higher ones.

Fig. 16. Layered agent (adapted from [3])

3) A summary of basic agent architectures

Table I summarizes different main architecture the

architectures of Kendall’s discussed in this section.

The simple reflex agent and agent with states defined by

Russel and Norvig correspond to Wooldridge reactive agent

and the Kendall reactive agent. A main difference is that

Wooldridge and Kendall defines that architectures can be

arranged in layers with increasing level of abstraction.

The goal-based and utility-based agents defined by Russel

and Norvig correspond to the Wooldridge deductive reasoning

agent and Kendall layered agent. Russell and Norvig defines a

measure of performance and utility. Kendall organizes their

deliberative architecture in layers. In general, these

architectures are called deliberative architectures and use some

kind of reasoning.

Wooldridge defines an architecture called practical

reasoning, also neither known as BDI agent, whose main

concepts are not approached by Kendall and Russell and

Norvig.

TABLE I . CORRESPONDING TERMINOLOGY OF AGENT

ARCHITECTURES

Kind of agent Russel and Norvig Kendall Wooldridge

Reactive Reflex agent Reactive Reactive Agent

Reflex agent with

state

Agent

Deliberative

Goal-based agent

Layered Agent

Deductive

Reasoning

Agents

Utility-based agent

Practical

Reasoning

Agents

III. BASIC AGENT COMPONENTS

An agent has a set of components that are part of its internal

architecture, also called agent structure. These components

vary according to the agent type.

In this section, basic components of a software agent as

reasoning, knowledge base and communication are presented.

A. The Reasoning Component

Reasoning is the process of making inferences about a set of

assumptions in order to obtain conclusions. There are four main

types of reasoning: deduction, induction, abduction and

analogy. Deliberative software agents have mechanisms of

reasoning and use it to perform more complex actions than

reactive ones.

Deduction is the most rigorous kind of reasoning. When

deduction premises are true, necessarily also be the conclusion

will be also free. For example: “All men are mortal” (premise

1), “Socrates is a man” (premise 2), “Therefore, Aristotle is

mortal” (conclusion).

Inductive reasoning part from the observation of objects and

of the similarity between its properties. From the observation of

the common features of a limited set of objects, an entire

category is generalized. For example: “Canaries flies” (Premise

1), “Parrots flies” (Premise 2), “Pigeons flies” (Premise n),

“therefore, all birds fly” (Conclusion). Conclusion is not

universally true, just likely to be true.

Abductive Reasoning [30] is also called inference by the best

explanation. In abduction, as in induction, the conclusion is not

an universal truth, but has the probability of being true.

Abduction prepares explanatory hypotheses for these

observations and hypotheses are evaluated. For example, given

the observation that “The street is wet”, the following

hypothesis can be formulated: "It rained " (hypothesis 1) and

"A water truck started pouring water" (hypothesis 2). But when

a new observation like "The house roof is wet." Is obtained, the

hypothesis 2 should be rejected and hypothesis 1 validated.

Abductive reasoning is often used by criminologists, detectives

and diagnosis of diseases.

There is another reasoning process called reasoning by

analogy, which goes from the particular to the particular. This

process occurs with the perception and classification of objects

according to similar features and deriving a conclusion from a

previous experience in one or more similar situations [18]. For

example, consider the set of individuals A, B and C, having the

following range of characteristics: white color, thin, blond hair

and blue eyes. Given that the individual A has the high stature

characteristic, it should be possible to conclude that B and C are

likely to have this feature even if not explicit in the definition.

14 Feature Article: A Survey on Software Agent Architectures

December 2013 Vol.14 No.1 IEEE Intelligent Informatics Bulletin

Analogy is a type of reasoning often used in everyday life and

has already been successfully applied in various fields of

knowledge. For example, the first plans for building

vehicles very similar to current helicopters made by Leonardo

da Vinci mimicked the mechanisms used by birds to fly [24].

B. The Knowledge Base Component

Another component of a deliberative agent architecture is its

knowledge base. The agent knowledge base contains the

knowledge of the external environment, the agent perception

history and the knowledge of rules for mapping perceptions to

actions.

The most common way to represent agent knowledge is

symbolic representation, using logic programming languages,

like Prolog [17] and Jess [4] and knowledge representation

languages supporting semantic networks, frames or ontologies,

like RDF [27] and OWL [2]. Ontologies are knowledge

representation structures capable of expressing a set of entities

in a given domain, their relationships and axioms, being used

by modern knowledge-based systems as knowledge bases to

represent and share knowledge of a particular application

domain. They allow semantic processing of information and a

more precise interpretation of data, providing greater

effectiveness and usability than traditional information systems

[32].

Before being used by an inference engine, perceptions must

be transformed into sentences in a knowledge representation

language understandable by the agent. After finding, through

reasoning, an action representing an appropriate solution for the

perception, this action should be interpreted and performed on

the environment. For example, in the case of the vacuum

cleaner, a sentence that represents the action of moving forward,

should rather be interpreted and mapped prior to electronic

signals that indicate to the hardware of the vacuum cleaner that

he should move. When the agent environment is artificial, like

the Internet, the agent perceptions can be just text in natural

language or events like a mouse click. Actions can just display

text on the screen, send a message or trigger an event like a

sound alarm.

It should be distinguished between the agent internal

knowledge and the knowledge shared with other agents of the

society and / or external entities. The agent internal knowledge

is just necessary for performing its own actions. Shared

knowledge is required for agents to communicate.

C. The Communication Component

Software agents usually specialize in just certain tasks. Thus,

frequently, agents need to communicate to accomplish tasks

that are beyond their individual capabilities in order to achieve

the overall goal of the multi-agent system. Thus, in these

systems, agents need to communicate. Communication among

agents is based on the theory of speech acts [37] and for that,

Agent Communication Languages (ACLs) have been

developed, like KQML (Knowledge Query and Manipulation

Language)[7][41] and FIPA-ACL (Foundation for Intelligent

Physical Agents - Agent Communication Language) [16] for

expressing communication acts and supporting the

coordination and cooperation mechanisms of a multi-agent

society architecture.

. In the theory of speech acts, a message intent is called

performative. For example, the intention of an agent may be a

request such as "Can you send me the price of the blue blouse?"

or just information like "The summer time in Brazil began on

October 20, 2013." According to their main intentions a speech

act can inform, question, answer, ask, offer, confirm and share.

IV. ADVANCED AGENT ARCHITECTURES

Basic agent architectures presented in the previous sections

already have a high level of maturity, having techniques

[11][13][33][34] and frameworks [6][14][15] that support their

development. More advanced agent architectures such as

learning and hybrid ones are still an open research topic. This

section discusses these more advanced software agent

architectures.

A. Learning Agent Architectures

The idea behind learning is that perceptions should be used

not only to act but also to improve the agent ability to act in the

future [38].

Basic software agents have no learning; they act according to

the perceptions defined in the agent design. Therefore, for new

perceptions the agent must be reprogrammed.

 Learning agents can at runtime change their behavior

according to changes in the environment. In this type of agents,

perceptions should be used not only to act but also to improve

the agent ability to act in the future.

 According to Russell and Norvig [38], a learning agent has

four basic components (Fig. 17): performance, critic, learning

and problem generator.

The performance component is what we have previously

considered to be a basic agent: perceives and acts on the

environment

 The learning component is responsible for making the agent

behavior improvements. It uses feedback from the critic on how

the agent is doing and determines how the performance

component should be modified to do better in the future. The

critic tells the learning component about the success of the

agent according to a fixed performance standard. The critic is

necessary because the percepts themselves provide no

indication of the agent success.

The last component of the learning agent is the problem

generator which is responsib1e for suggesting actions that will

lead to new and informative experiences. The point is that if the

performance element had its way, it would keep doing the

actions that are best, given what it knows. The problem

generator main goal is to suggest these exploratory actions.

This is what scientists do when they carry out experiments.

An example of the functioning of a learning agent

architecture, the automated taxi, is given in [38]. The

performance element consists of whatever collection of

Feature Article: Rosario Girardi and Adriana Leite 15

IEEE Intelligent Informatics Bulletin December 2013 Vol.14 No.1

knowledge and procedures the taxi has for selecting its driving

actions. The critic observes the world and passes information

along to the learning element. For example, after the taxi makes

a quick left turn across three lanes of traffic, the critic observes

the shocking language used by others drivers. From experience,

the learning element is able to formulate a rule saying this was a

bad action, and the performance element is modified by

installation of the new rule. The problem generator might

identify certain areas of behavior in need of improvement and

suggest experiments, such as trying out the brakes on different

road surfaces under different conditions.

Fig. 17. The structure of a learning agent (adapted from [38])

During the construction of the learning element it is

necessary to define the learning technique to be used.

Well-known techniques of machine learning are supervised

learning, unsupervised learning and reinforcement learning

[36].

The problem of supervised learning involves learning a

function from a set of inputs and outputs examples which will

be later used to produce the correct output given a new input.

Examples of these techniques are decision trees, Bayesian

networks and neural networks [38]. Supervised learning is

associated with two common problems which are classification

and regression. Classification is to assign an instance to a class

through a classifier previously built. A classifier can be, for

example, a decision tree or set of rules. Regression attempts to

identify a output and represent it by a numeric value from a set

of training data.

A disadvantage of a supervised learning technique is that

learning is dependent on the training examples and creating

these training examples may require considerable time and

effort.

The problem of unsupervised learning involves learning

patterns in the input and building a model or useful

representations of the data, for example, clusters when no

specific output values are supplied. For example, a taxi agent

might gradually develop a concept of “good traffic days” and

“bad traffic days” without ever being given labelled examples

of each [38]. This could be done through the development of

clusters.

A cluster is a collection of objects that are similar to each

other (according to some pre-defined similarity criterion) and

not similar to objects belonging to other clusters. So it could be

constructed clusters representing "good traffic days" and "bad

traffic days". These clusters could have characteristic values as

"time spent route" and "fuel cost". After clusters construction,

the agent could learn which days probably has good traffic.

Clusters do not always have adequate exits after completion of

the training dataset. When this happens, it is necessary to

evaluate why the output is not appropriate. Some data output is

not correct because there were used insufficient training

examples or there were defined non-relevant features for the

objects that compose the clusters.

Reinforcement learning is inspired in the behaviorist

psychology where an agent learns to act in a way that

maximizes rewards in the long term. Reinforcements are

obtained through the interaction of the agent with the

environment and can be positive (reward) or negative

(punishment). In reinforcement learning there is no examples of

correct output. The reinforcement obtained through interaction

with the environment is used to assess the agent behavior and is

associated with a performance standard establishing whether

that reinforcement is positive or negative. Better agent

performance is obtained through experience.

A reinforcement learning example is of a mouse that moves

about a maze trying to get the cheese while avoiding the deadly

trap. The mouse does not know beforehand the layout of the

maze or the placing of the cheese/trap. At each square, it must

choose whether to move up, down, left or right. The mouse will

explore the maze to find the cheese. After finding the cheese, it

will already know which path took to find the cheese (positive

reinforcement), but it still tries to find a shorter way to the

cheese (to maximize its performance measure). After various

experiences in the maze it will learn the shortest path from the

starting point until the cheese.

B. Hybrid Agent Architectures

Hybrid architectures, also known as layered architectures

have emerged from the need to gather in a single agent reactive

and deliberative behavior. Wooldridge classifies this type of

architecture into two groups [21]: hybrid architectures in

horizontal layers and hybrid architectures in vertical layers.

In horizontal layers hybrid architectures (Fig. 18), each

software layer is connected directly to a sensor and an actuator.

In this type of architecture each layer works as an independent

agent. One advantage of organizing horizontally layered

architectures is the clear separation of the different agent

behaviors within the architecture, where each layer can act

independently of the other, even in parallel. One of the

problems with this architecture type is that the overall behavior

of the agent cannot be consistent. To solve this, usually a

control layer is also designed to ensure a coherent overall

behavior.

 In vertical layers hybrid agent architectures, perceptions and

actions are handled by more than one layer. In these

16 Feature Article: A Survey on Software Agent Architectures

December 2013 Vol.14 No.1 IEEE Intelligent Informatics Bulletin

architectures, layers can be further subdivided into a

single-passage (Fig. 19) and two-passages (Fig. 20)

architectures. In the architecture of a single-passage, the

control flow passes sequentially through each layer until

reaching the final layer where the action to be performed in the

environment is generated. In the two-passages architecture,

information flows to reach the final layer (first pass) and

control then flows back down (second pass).

Fig. 18. A horizontal layered agent architecture (adapted from [21])

Fig. 19. A vertical layered agent architecture of a single-passage (adapted from

[21])

Russell and Norvig [38] also propose a hybrid architecture

(Fig. 21). The agent architecture has two main components they

called subsystems: a deliberative and a reflex systems. The goal

of the architecture is to exhibit more efficient agent behavior by

converting deliberative decisions into reflective ones, making

the agent actions more fast and efficient.

Fig. 20. A vertical layered agent architecture of two-passages (adapted from

[21])

Fig. 21. Another proposal of a hybrid agent architecture (adapted from [38])

Examples of current hybrid architectures are SOAR [5][10],

ACT-R (Adaptive Control of Thought–Rational)[9],

INTERRAP (Integration of Reactive Behavior and Rational

Planning) [29]. A common feature of most proposal of current

hybrid architectures is that they are cognitive. A cognitive

architecture aims at developing agents capable of acting using

human cognitive phenomena such as memory, learning,

decision making and natural language processing [28].

SOAR was one of the first proposals of hybrid architectures.

It has a development environment and a framework to support

the creation of agents according to their definitions. It is also a

goal-driven cognitive architecture that integrates reasoning,

reactive execution, planning and various learning techniques,

aiming at creating a software system having similar cognitive

abilities as humans. The SOAR agent architecture is illustrated

in Fig. 22. This architecture is composed of a working memory,

also known as short term memory, a long-term memory, a

reasoning module, modules responsible for managing the agent

perceptions and actions and learning modules.

Feature Article: Rosario Girardi and Adriana Leite 17

IEEE Intelligent Informatics Bulletin December 2013 Vol.14 No.1

Fig. 22. The SOAR hybrid agent architecture [5]

ACT-R is a programming environment that supports the

development of hybrid agents. The ACT-R hybrid architecture

(Fig. 23) attempts to emulate cognitive processes of human

cognition such as knowledge acquisition and learning through a

production system. It consists of a perceptual/motor layer, a

cognition layer and a buffer intermediate layer. In the

perceptual/motor layer, input and output information

processing is emulated through the human visual, motor,

speech and hearing modules. In the cognition layer, the

memory of the agent is represented by declarative and

production modules. The declarative memory corresponds to

the reactive part of the system and consists of "chunks". A

chunk is an attribute-value structure; with a special type of

attribute called "ISA" that determines the type of the chunk.

The production memory is formed by condition-action rules

and an inference engine to select actions in the knowledge base.

The representation of the two types of memories for the agent is

what makes ACT-R a hybrid architecture. The intermediate

module ACT-R buffers is the working memory of the agent. It

corresponds to the knowledge used only when performing a

particular task. This knowledge can be retrieved both by the

declarative memory and the production memory. Learning in

the ACT-R architecture is by "chunking" which basically

consists in useful pieces of information (chunks) that are stored

in the declarative memory for future use.

The InteRRaP architecture (Fig. 24) is a two-passages hybrid

architecture that supports the development of reactive agents

and goal-based agents. It is organized into layers together with

a control structure and a knowledge base associated with each

layer. It consists of five main components: an interface with the

world (WIF), a component-based behavior (BBC), a plan-based

component (PBC), a cooperation component (CC) and the

agent knowledge base. The WIF component enables perception,

action and agent communication. The BBC component

supports reactive behavior and represents procedural

knowledge. The PBC component contains planning

mechanisms for constructing agent plans. The CC component

contains a mechanism to compose these plans. The knowledge

base of InteRRaP consists of three layers. The lowest layer

contains facts that represent a model of the agent environment

as well as representations of actions and behavior patterns. The

second layer contains the agent mental model. The third layer

consists of the agent social model, which provides strategies for

cooperation with other agents.

Fig. 23. The ACT-R hybrid agent architecture [26]

Fig. 24. The InteRRaP hybrid agent architecture [29]

Qinzhou and Lei [12] define a hybrid agent architecture

using case-based reasoning and unsupervised learning (Fig. 25)

composed of eight modules: a knowledge module in charge of

storing a set of cases and a set of rules; a module responsible for

the condition-action rules corresponding to the reactive

behavior; a perception module responsible for receiving

information from the environment, a learning module that uses

unsupervised learning algorithms to increase the efficiency of

case retrieval; a retrieval module whose main function is to

compare and perform the similarity computation between a

new case with an old case in the case base; a decision module

which corresponds to the deliberative behavior, responsible for

performing a process of reasoning on cases using the set of

rules from the knowledge module; an execution module

responsible for performing actions on the environment; and a

18 Feature Article: A Survey on Software Agent Architectures

December 2013 Vol.14 No.1 IEEE Intelligent Informatics Bulletin

communication module responsible for the interactions

between agents, which uses the KQML[7].

Fig. 25. The Qinzhou and Lei hybrid agent architecture [25]

Table II shows a comparison between the SOAR, ACT-R,

INTERRAP and Qinzhou and Lei hybrid architectures by

considering the characteristics of their reactive and deliberative

components, the applied learning technique and the

representation mechanisms of the knowledge base.

Among these architectures, and probably among all hybrid

architectures of the state of the art, the broader one is the

SOAR architecture which includes various forms of learning

and mechanisms for representing the agent knowledge base.

SOAR also provides tools for developing agents, updated

documentation and examples of implemented agents for

various problems.

Table II. A Comparison of Hybrid Agent Architectures

Features

Reactive

Component

Deliberative

Component

Learning

Technique

Knowledge base

representation

Architecture

SOAR

Reactive

with state
Deductive

Reinforcement,

episodic,

chunking and

semantic

 Condition-action

rules, state graphs

and semantic

memory.

ACT-R
Reactive

with state
Deductive Chunking

Rules, facts and

procedural

knowledge

INTERRAP
Reactive

with state
BDI No learning

Procedural

knowledge

Qinzhou and

Lei

Architecture

Reactive

simple
RBC

Unsupervised

learning
Cases

The ACT-R architecture differs from the SOAR architecture

because it is more restricted in relation to the alternative

representation of the agent knowledge base. However, this

architecture has a wider treatment of perceptions, including

representing images and voice.

INTERRAP's main advantage over other hybrid

architectures presented in this section, is its layered

organization, considering that the definition of several

independent components inserts complexity in the architecture

design, making necessary to manage the interactions between

the components.

The architecture of Qinzhou and Lei differs from the others

by using case-based reasoning and unsupervised learning to

classify similar cases in a class according to the most relevant

characteristics of the cases.

V. CASE STUDY

OHAA (“Ontology-driven Hybrid Agent Architectures”) is

an ontology-driven hybrid and learning agent architecture that

combine deliberative and reactive components joining the

advantages of both behaviors to improve the decision making

process. Thus, the agent may have a reactive behavior or a

deliberative one depending on its perception and available

behavior.

Fig. 26. The structure of OHAA Architecture

Additionally, the architecture allows learning new reactive

rules through recurrent solutions to the same perception from

the deliberative system, which will be stored in the agent

knowledge base. Also, the learning component supports the

evolution of deliberative to reactive behavior. Finally, in

OHAA, the knowledge base is represented as an ontology thus

enabling knowledge improvement through reuse. Fig. 26

illustrates the OHAA basic structure.

A first approach of the OHAA functioning is described as

follows.

1. Interpreting the perception;

2. Mapping the perception to a sentence;

3. Asserting the perception sentence in the knowledge

base ontology;

4. If there is a rule for the perception, the corresponding

Feature Article: Rosario Girardi and Adriana Leite 19

IEEE Intelligent Informatics Bulletin December 2013 Vol.14 No.1

action to perform is selected by the reactive system;

5. If there is no a reflex action corresponding to the

perception, this will be treated by the deliberative

system that will reason to find the most appropriate

action;

6. Upon completion of the action, the agent will perceive

a feedback from the environment about the success or

failure of the performed action;

7. In the critical component, which is fed by a

performance standard of the agent actions from the

environment, the feedback perception will be

evaluated. If the action was poorly evaluated by the

critical, this component informs the learning

component;

8. If the action was assessed as good, this behavior will

remain in the knowledge base;

9. Following, the learning component makes

recommendations for improvements in the actions of

the agent;

10. These recommendations are passed to the problem

generator component which, in turn can generate a

new set of possible actions for the agent;

11. When the agent performs these new actions, suggested

by the problem generator component, it will have a

feedback perception and the process restarts;

12. Finally, actions repeatedly well evaluated will be

transformed into reactive rules;

13. When the agent performs these new actions, suggested

by the problem generator component, it will have a

feedback perception and the process restarts;

14. Finally, actions repeatedly well evaluated will be

transformed by the learning component into reactive

rules.

A. A simples example

Consider a genealogy tree as the OHAA environment (Fig.

27). By traversing the tree the agent just perceives who are the

parents of a given person.

OHAA also has knowledge about genealogy (Fig. 28) so it

can conclude through deductive reasoning who are the kins of a

given person. For example, through the knowledge base

inference rules of the deliberative system of Fig. 28, the agent

can conclude that Bob and Julie are cousins.

Fig. 27. Genealogy Environment

If the action generated through the inference that conclude

that “Bob and Julie are cousins” is repeatedly well evaluated

then it could be transformed by the learning component into a

reactive rule. When the rule becomes reactive, the agent does

not need to reason once the environment is static. Then, the

knowledge base of the agent will be updated with the

information that “Bob and Julie are cousins”. In the knowledge

base (Fig. 29) this reactive rule is represented by the “cousins

(bob, julie).” fact.

Fig. 28. Facts and inference rules in the reactive and deliberative systems of the

OHAA knowledge base

Fig. 29. The representation of a learned reactive rule in the OHAA knowledge

base

VI. CONCLUDING REMARKS

This paper presented a study about basic and advanced

software agent architectures. The main features of reactive and

deliberative agent architectures, their internal components and

how they relate to each other were described. Hybrid

architectures which combine both reactive and deliberative

agent behavior and learning architectures allowing the

improvement of the agent behavior were also analyzed.

Considering that they simulate better intelligent human

behavior, current work focuses on the design of hybrid and

learning architectures, providing frameworks and design tools

for agent construction.

Additionally, the OHAA hybrid architecture has also been

introduced. The OHAA Architecture combines deliberative and

reactive components joining the advantages of both behaviors

to improve the decision making process. A learning component

also was defined in OHAA, responsible for learning new agent

behaviors and for transforming deliberative behaviors into

reactive ones.

An example of OHAA utilization and a comparative study of

Deliberative system

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

brothers(X,Y) :- parent(X,Z),parent(Y,Z).

cousins(X,Y) :- brothers(A,B),parent(X,A),parent(Y,B).

Reactive system

father(michael,james).

father(lily,james).

father(bob,michael).

mother(michael,mary).

mother(lily,mary).

mother(julie,lily).

cousins(bob,julie).

Deliberative system

parent(X,Y) :- father(X,Y).

parent(X, Y) :- mother(X,Y).

brothers(X,Y):- parent(X,Z),parent(Y,Z).

cousins(X,Y):-brothers(A,B),parent(X,A),parent(Y,B).

Reactive system

father(Michael,James).

father(Lily,James).

father(Bob,Michael).

mother(Michael,Mary).

mother(Lily,Mary).

mother(Julie,Lily).

20 Feature Article: A Survey on Software Agent Architectures

December 2013 Vol.14 No.1 IEEE Intelligent Informatics Bulletin

main approaches of hybrid agent architectures have been also

discussed.

The hybrid architecture OHAA is still in an early stage.

Current work looks for detailing the architecture components

and evaluating its effectiveness through the design and

implementation of an initial prototype and the development of a

case study in the family law legal field using case-based

reasoning [1] and instance-based learning [24].

Further work will specify a technique and implementing a

tool for constructing agents using the OHAA architecture.

More evaluation experiments will be conducted using

deductive reasoning and reinforcement learning [40].

REFERENCES

[1] A. Aamodt, E. Plaza, “Case-Based Reasoning: Foundation Issues,

Methodological Variations, and System Approaches”, AICOM, Vol. 7:

1,1994, pp. 39-59.

[2] B Motik, “OWL 2 web ontology language: Structural specification and

functional-style syntax”, W3C recommendation, v. 27, 2009

[3] E. A. Kendall, P. V. Krishna, C.V. Pathak, C. B. Suresh, “Patterns of

intelligent and mobile agents”. In Proceedings of the second international

conference on Autonomous agents, 1998, pp. 92-99.

[4] E. Friedman-Hill, “JESS in Action. Greenwich”, CT: Manning, 2003.

[5] E. Laird, “The Soar cognitive architecture”, MIT Press, 2012.

[6] F. Bellifemine, G. Caire, D. Greenwood, “Developing Multi-Agent

Systems with JADE”, Wiley, 2007, ISBN: 978-0-470-05747-6.

[7] F. Tim, Y. Labrou, J. Mayfield, “KQML as an agent

communication language”. Computer Science Department. University

of Maryland Baltimore County. Baltimore, USA, 1993.

[8] G. Weiss, “Multiagent Systems Intelligent” In: Robotics and Autonomous

Agents series, The MIT Press, 2013.

[9] J. Ball, “Explorations in ACT-R Based Cognitive Modeling-Chunks,

Inheritance, Production Matching and Memory in Language Analysis,” In:

Proceedings of the AAAI Fall Symposium: Advances in Cognitive Systems,

2011, pp. 10-17.

[10] J. Laird, “The Soar 9 Tutorial”, University of Michigan, 2012.

[11] J. Mylopoulos, J. Castro, M. Kolp, “The Evolution of Tropos”. In:

Seminal Contributions to Information Systems Engineering. Springer

Berlin Heidelberg, 2013, p. 281-287.

[12] K. Riesbeck, C. Schank, “Inside Case-based Reasoning”, Psychology

Press, 2013.

[13] K. Vivekanandan, D. RAMA, “Analysing the Scope for Testing in PASSI

Methodology”. International Journal, v. 3, n. 1, 2013.

[14] L. Braubach, A. Pokahr, “Jadex Active Components Framework-BDI

Agents for Disaster Rescue Coordination”, In: Software Agents, Agent

Systems and Their Applications,volume 32 of NATO Science for Peace

and Security Series, IOS Press, 2012.

[15] L. Braubach, A., Pokahr, “Developing Distributed Systems with Active

Components and Jadex”, Scalable Computing: Practice and Experience,

v. 13, n. 2, 2012.

[16] L. Shujun, M. Kokar, “Agent Communication Language. Flexible

Adaptation in Cognitive Radios”, Springer New York, 2013, pp. 37-44.

[17] L. Sterling, E. Shapiro, “The Art of Prolog: Advanced Programming

Techniques”, 2nd Edition, MIT Press, 1994, 688 pages, ISBN

0-262-19338-8.

[18] L.W. Lloyd. “Legal Reason: The Use of Analogy in Legal Argument”,

New York: Cambridge University Press, 2005.

[19] M. Wooldridge, P. Ciancarini. “Agent- oriented Software Engineering:

The State of the Art”, In: "Agent-Oriented Software Engineering",

Springer-Verlag, Lecture Notes in AI Volume 1957, 2000.

[20] M. Shaw, Garlan, D. “Software architecture: perspectives on an

emerging discipline”, Prentice Hall, 1996.

[21] M. Wooldridge, “An Introduction to Multiagent Systems”, 2nd ed.,Wiley

Publishing, 2009.

[22] M. Wooldridge, “Intelligent Agents”, In: “Multi-agent Systems – A

Modern Approach to Distributed Artificial Intelligence”, G. Weiss (ed.),

The MIT Press, 1999.

[23] N. R. Jennings, "On Agent-based Software Engineering", Artificial

Intelligence Journal, 2000, pp. 277-296.

[24] N. Jiang et al., “Application of bionic design in product form design”, In:

Computer-Aided Industrial Design & Conceptual Design (CAIDCD),

2010, pp. 431-434.

[25] N. Qinzhou, H. Lei, “Design of case-based hybrid agent structure for

machine tools of intelligent design system”, In: 2012 Software

Engineering and Service Science (ICSESS 2012), pp.59-62, 2012.

[26] N. Taatgen, A. Niels, C. Lebiere, J. R. Anderson, “Modeling paradigms in

ACT-R”, Cognition and multi-agent interaction: From cognitive

modeling to social simulation, 2006, pp. 29-52.

[27] O. Lassila, R. Swick, “RDF/XML syntax specification”. W3C

Recommendation, v. 22, 2010.

[28] P. Langley, J. Laird, J. Rogers, “Cognitive architectures: Research issues

and challenges”, In: Cognitive Systems Research, v. 10, n. 2, p. 141-160,

2009.

[29] P. Müller, M. Pischel, “The agent architecture InteRRaP: Concept and

application” 2011.

[30] P. Thagard, E.C. SHELLEY, “Abductive Reasoning: Logic, Visual

Thinking, and Coherence”, In: M.L, 1997.

[31] R. Girardi, “An Analysis of the Contributions of the Agent Paradigm for

the Development of Complex Systems”, In: Joint meeting of the 5th

World Multiconference on Systemics, Cybernetics and Informatics (SCI

2001) and the 7th International Conference on Information Systems

Analysis and Synthesis (ISAS 2001), 2001, pp. 388-393.

[32] R. Girardi, “Guiding Ontology Learning and Population by Knowledge

System Goals”, In: Proceedings of the International Conference on

Knowledge Engineering and Ontology Development, Ed. INSTIIC,

Valence, 2010, p. 480 – 484.

[33] R. Girardi, A. Leite, “Knowledge Engineering Support for

Agent-Oriented Software Reuse”, In: M. Ramachandran. (Org.).

Knowledge Engineering for Software Development Life Cycles: Support

Technologies and Applications. Hershey: IGI Global, v. I, p. 177-195,

2011.

[34] R. Girardi, A. Leite, “The Specification of Requirements in the

MADAE-Pro Software Process”, iSys: Revista Brasileira de Sistemas de

Informação, v. 3, p. 3, 2010.

[35] R. Johnson, R. Helm, J. Vlissides, “Design Patterns: Elements of

Reusable Object-Oriented Software”. Addison-Wesley Professional,

1994.

[36] R. Sutton, R. Richard, A. Barto, G. Andrew, “Reinforcement learning: An

introduction”, Cambridge: MIT press, 1998.

[37] S. Kuroda, “A formal theory of speech acts. Linguistics and philosophy”,

v. 9, n. 4, p. 495-524, 1986.

[38] S. Russel, P. Norvig, “Artificial Intelligence: A Modern Approach ”, 3nd

ed., Prentice-Hall, 2009.

[39] T. Gruber, “Toward principles for the design of ontologies used for

knowledge sharing”, International Journal of Human-Computer Studies,

v. 43, n. 5, p. 907-928, 1995.

[40] T. Mitchell, “Machine Learning”, McGraw-Hill, Book, USA, 1997.

[41] X. Wu, J. Sun, “Study on a KQML-based intelligent multi-agent system”

In: Intelligent Computation Technology and Automation (ICICTA), 2010

International Conference on. IEEE, 2010. p. 466-469.

