
24 Feature Article: Multiplex Network Mining: A Brief Survey

Multiplex Network Mining: A Brief Survey
Rushed Kanawati

Abstract—Multiplex network model has been recently pro-
posed as a mean to capture high level complexity in real-world
interaction networks. A multiplex network can roughly be defined
as a multi-layer network. Each layer contains the same set of
nodes but a different type of links. In spite of its simplicity, the
model allows handling multi-relationnal, heterogeneous, dynamic
and even attributed networks. However, working with multiplex
networks requiers redefining and adapting almost all basic met-
rics and algorithms generally used to analyse complex networks.
In this paper we provide an overview of recent algorithmic
advances in mining and analyzing multiplex networks. We review
also some publicly available tools for multiplex network analysis.

Index Terms—Complex networks, Multiplex network, Multi
relationnal networks, community detection, link prediction

I. INTRODUCTION

NETWORKS have proved to be a useful tool to model
structural complexity of a variety of complex systems in

different domains including sociology, biology, ethology and
computer science. Most studies until recently have focused
on analyzing simple static networks. However, real complex
network are heterogeneous (nodes and links may have differ-
ent types) and/or dynamic. For example, in a social network,
people are linked with different types of ties: friendship, family
relationship, professional relationship,. . . , etc. Moreover these
relationships may evolve with time. The concept of multiplex
networks has been introduced with the goal to provide an
expressive model for modeling real-world complex networks
[1], [2], [3]. A multiplex network is roughly defined as a multi-
layer graph where each layer contains the same set of nodes
but interconnected by different types of links.

Figure 1 illustrates an exemple of a multiplex network.
This is a 3-layer social network where layers represent ad-
vice, friendship and co-work relationships among partners and
associates of a corporate law firm [4].

Fig. 1. Lazega law-firm network - visualization performed using muxviz
package [5]

This simple extension of the basic graph model is powerful
enough though to allow modeling different types of networks
including:

R. Kanawati is an associate professor at LIPN CNRS UMR 7030, University
Paris 13 e-mail: rushed.kanawati@lipn.fr

• multi-relational network: where each layer encodes one
relation type,

• dynamic network: where a layer corresponds to the
network state at a given time stamp,

• attributed network: where additional layers can be de-
fined over the node set as a similarity graph induced by a
similarity measure applied to the set of node’s attributes.

However, analysis of multiplex networks requiers redefining
most of the basic concepts and metrics usually used for com-
plex network analysis including: node’s degree, neighborhood,
paths and node’s centralities [6], [7], [3]. It requiers also
providing new algorithms to handle basic complex networks
analysis tasks such as community detection [8] and link
prediction [9]. In this paper, we provide a brief review of
recent algorithmic advances for multiplex network analysis
and mining. In section II a formal definition of multiplex
networks is provided and basic used notations are introduced.
Section III defines basic node characterization metrics in
multiplex networks. In the following section main algorithms
for community detection in multiplex networks are reviewed.
Section V gives brief informations about available multiplex
network analysis tools. Finally we conclude in section VI

II. DEFINITIONS AND NOTATIONS

A multiplex network is defined as a triplet G =< V,E, C >
where V is a set of nodes, E = {E1, . . . , Eα} is a set of α
types of edges between nodes in V . We have Ek = {(vi, vj) :
i 6= j, vi, vj ∈ V }. C is the set of coupling links that represent
links between a node and itself across different layers. We
have C = {(v, v, l, k) : v ∈ V, l, k ∈ [1, α], l 6= k}. Where
(v, v, l, k) denotes a link from node v in layer l to node v in
layer k. Different coupling schemes can be applied. Figure 2
illustrates the two most basic couplings :
• Ordinal coupling: where a node in one layer is connected

to itself in adjacent layers. In other words (v, v, l, k) ∈
C if |l − k| == 1. This is the default coupling when
using multiplex networks to model dynamic networks.

• Categorical coupling: where a node in one layer in
connected to itself in each other layer. This is the default
coupling when representing multi-relationnal networks.

Fig. 2. Ordinal and categorical couplings
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Other coupling schemes can also be considered as discussed
in [10].

Typically, one first operation to apply to multiplex networks
is network flatten. This consists on transforming the multiplex
into a monoplex network. The goal is to have a baseline
for comparing different multiplex networks. This can allow
applying classical network analysis tools to multiplex ones.
Flattened network is obtained by applying a layer aggregation
function. In general, a layer aggregation approach transform-
s a multiplex network into a weighted monoplex graph :
G =< V,E,W > where W is a weight matrix. Different
weights computations approaches can be applied. One simple
aggregation function is the binary weighting: two nodes u, v
are linked in the aggregated simple graph if there is at least one
layer in the multiplex where these nodes are linked. Formally
we have:

wij =

{
1 if ∃1 ≤ i ≤ α : (i, j) ∈ Ei
0 otherwise

(1)

Other layer aggregation functions have been also proposed
[11], [12], [13]. Whatever is the applied aggregation function,
the aggregation process will lead to information loss since
different types of links will treated indifferently. In [14]
authors explore to which extent some layers of a multiplex
network can be merged without information loss. Table I mains
notations used later in this paper.

TABLE I
MULTIPLEX NETWORKS: NOTATIONS

Notation Description

A[k] Slice k Adjacency matrix
d
[k]
i Degree of node i in slice k
dtoti =

∑α
s=1 d

[s]
i Total degree of node i

m[k] edge number in slice k
Γ(v)[k] = {u ∈ V : (u, v) ∈ Ek} Neighbor’s of v in slice k
Γ(v)tot = ∪s∈{1,...,α}Γ(v)[s] Neighbors of v in all α slices
SPath[k](u, v) Shortest path length between

nodes u and v in slice k

III. CENTRALITIES & DYADIC METRICS

Computing basic centralities (degree, proximity, between-
ness, etc.) requires first defining basic concepts such as node’s
degree, node’s neighborhood and shortest paths in multiplex
networks [3]. We discuss these basic issues in next paragraphs.

Neighborhood: Different options can be considered to
define the neighborhood of a node in a multiplex. One simple
approach is to make the union of all neighbors across all
layers. Another more restrictive definition is to compute the
intersection of node’s neighbors sets across all layers. In [3],
[15], authors define a multiplex neighborhood of a node by
introducing a threshold on the number of layers in which two
nodes are linked. Formally we have:

Γm(v) = {u ∈ V such that count(i) > m : A[i]
vy > 0}

We extend further this definition by proposing a similarity-
guided neighborhood: Neighbors of a node v are computed as

a subset of Γ(v)tot composed of nodes having a similarity with
v exceeding a given threshold δ. using the classical Jaccard
similarity function this can be formally written as follows:

Γmux(v) = {x ∈ Γ(v)tot :
Γ(v)tot ∩ Γ(x)tot

Γ(v)tot ∪ Γ(x)tot
≥ δ} (2)

δ ∈ [0, 1] is the applied threshold.
The threshold δ allow to fine-tune the neighborhood size

ranging from the most restrictive definition (interaction of
neighborhood sets across all layers) to the most loose defi-
nition (the union of all neighbors across all layers).

Node degree: The degree of a node is defined as the
cardinality of the set of direct neighbors. By defining the
multiplex neighborhood function we can define directly a
multiplex node degree function. Another interesting multiplex
degree function has been proposed in [6]. It defines the
multiplex degree of a node as the entropy of node’s degrees
in each layer. In a formal way we can write:

dmultiplexi = −
α∑
k=1

d
[k]
i

d
[tot]
i

log

(
d

[k]
i

d
[tot]
i

)
(3)

The basic idea underlying this proposition, is that a node
should be involved in more than one layer in order to qualify;
otherwise its value is zero. The degree of a node i is null if
all its neighbors are concentrated in a single layer. However,
it reaches its maximum value if the number of neighbors is
the same in all layers. This can be useful if we have no prior
information about the importance of each layer in the studied
multiplex but we want to stress that all layers are important
to the target analysis task.
Shortest path: Two approaches can be applied to compute the
length of the shortest-path between two nodes in a multiplex
network: The first approach consist in computing the shortest-
path in an aggregated network. The second approach consists
in computing an aggregation of the shortest path lengths across
all layers.

IV. COMMUNITY DETECTION

In real-world complex networks nodes are generally ar-
ranged in tightly knit groups that are loosely connected one to
each other. Such groups are called communities. Community
members are generally admitted to share common proprieties.
Hence, unfolding the community structure of a network could
give us many insights about the overall structure of the
network. This problem has attracted much of attention in past
years. Most of existing approaches are designed for simple
networks, where all edges are of the same type [16]. Different
approaches have been recently proposed to cope with this
problem in the context of multiplex networks [8]. We can
classify existing approaches into two broad classes:

1) Applying monoplex approaches: the basic idea is to
transform the problem into a problem of community
detection in simple networks [17], [18].

2) Extending existing algorithms to deal directly with mul-
tiplex networks [19], [20].

Next we detail both approaches.
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A. Applying monoplex approaches

One first approach consists appling layer aggregation ap-
proaches and then apply classical communjity detection on
the flatten network [12], [17]. In [21] an original multiplex
transformation approach is proposed. It consists of mapping
a multiplex to a 3-uniform hyper-graph H = (V ∗, E∗) such
that the node set in the hyper-graph is V ∗ = V ∪ 1, ..., α
and (u, v, i) ∈ E∗if∃l : Aluv 6= 0, u, v ∈ V, i ∈ 1, ..., α.
Community detection algorithms in hyper-graphs can then
be applied on the obtained graph. In [20] a multi-objective
approach is applied. The idea is to apply a classical community
detection algorithm to a first layer. For all consecutive layers a
bi-objective optimization approach is applied in order to detect
communities that maximize both the modularity in the current
layer and the similarity to the community structure detected on
the previous layer. This approach can be applied to multiplex
networks where ordinal coupling is applied.

Another way is to to apply a classical community detection
to each layer of a multiplex then merging obtained partitions
using ensemble clustering approaches [22].

B. Extending monoplex approaches to the multiplex case

Few studies have addressed the problem of simultaneous
exploration of all layers of a multiplex network for the
detection of communities. [11] is among the first studies that
have tried to extend existing approaches to multiplex setting.
The leading role that modularity and its optimization have
played in the context of community detection in simple graphs
has naturally motivated works to generalize the modularity
to the case of multiplex networks. A generalized modularity
function is proposed in [23]. This is given as:

Qmultiplex(P ) =
1

2µ

∑
c∈P

∑
i,j∈c

k,l:1→α

((
A

[k]
ij − λk

d
[k]
i d

[k]
j

2m[k]

))
(4)

Where µ =
∑

k:1→α
m[k] is a normalization factor, and λk is

a resolution factor as introduced [24] in order to cope with the
modularity resolution problem. Approaches based on optimiz-
ing the multiplex modularity are likely to have the same draw-
backs of those optimizing the original modularity function
for monoplex approaches [25]. This motivates exploring other
approaches for community detection. The Infomap algorithm
[26] has also been extended to the multiplex case [27]. In [28]
an adaptation of the Walktrap community detection algorithm
[29] is proposed. A seed-centric approach is also proposed in
[30].

C. Evaluation criteria

The problem of evaluating community detection algorithm
still to be an open problem despite the great amount of work
conducted in this field [31]. Since few multiplex networks
with ground truth partitions are available, unsupervised evalu-
ation metrics are generally used. These include the multiplex
modularity (Q) (see 4), the redundancy (ρ) criteria and the
complementarity (γ) criteria introduced in [12].

Redundancy criteria (ρ) [12] : The redundancy ρ com-
putes the average of the redundant link of each intra-
community in all multiplex layers. The intuition is that the
link intra-community should be recurring in different layers.
The computing of this indicator is as follows: We denote by:
• P the set of couple (u, v) which are directly connected

to at least one layer.
• ¯̄P the set of couple (u, v) which are directly connected

in at least two layers.
• Pc ⊂ P represents all links in the community c
• ¯̄Pc ⊂ ¯̄P the subset of ¯̄P and which are also in c.
The redundancy of the community c is given by:

ρ(c) =
∑

(u,v)∈ ¯̄Pc

‖ {k : ∃A[k]
uv 6= 0} ‖

α× ‖ Pc ‖
(5)

The quality of a given multiplex partition is defined as
follow:

ρ(P) =
1

‖ P ‖
∑
c∈P

ρ(c) (6)

γ(P ) =
1

‖P‖
∑
c∈P

γ(c) (7)

Complementarity criteria (γ) [12] : The complementarity
γ is the conjunction of three measures :
• Variety Vc : this is the proportion of occurrence of the

community c across layers of the multiplex.

Vc =

α∑
s=1

‖∃(i, j) ∈ c/A[s]
ij 6= 0‖

α− 1
(8)

• Exclusivity εc : this is the number of pairs of nodes, in
community c, that are connected exclusively in one layer.

εc =

α∑
s=1

‖Pc,s‖
‖Pc‖

(9)

with Pc : is the set of pairs (i, j) in community c that are
connected at least in one layer. Pc,s : is the set of pairs
(i, j) in community c that are connected exclusively in
layer s.

• Homogeneity Hc : this captures how uniform is the
distribution of the number of edges, in the community
c, per layer. The idea is that intra-community links must
have a uniform distribution among all layers.

Hc =

{
1 if σc = 0
1− σc

σmax
c

otherwise (10)

with

avgc =

α∑
s=1

‖Pc,s‖
α

σc =

√√√√ α∑
s=1

(‖Pc,s‖ − avgc)2

α

σmaxc =

√
(max(‖ Pc,d ‖)−min(‖ Pc,d ‖))2

2
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The higher the complementarity the better is the partition.
The complementarity is then given by the following formula:

γ(c) = Vc × εc ×Hc

V. MULTIPLEX ANALYSIS TOOLS

Recently, two different packages for multiplex network anal-
ysis have been released: muxviz [5] and muna [32]. The first
is an R package that focuses mainly on multiplex network vi-
sualisation (see figure 1). It provides also a support for imple-
menting some layer-aggregation approaches and implements
generalized modularity–based community detection algorithm.
The second package Muna, is provided as an extension of the
igraph graph analysis API [33]. It is provided in two versions
R and Python as is provided under GPL licence and can be
downloaded from http://lipn.fr/∼kanawati/software. A special
attention in Muna is made to the problem of community
detection and evaluation in multiplex networks. It actually
provides an extensive set of different community detection and
evaluation approaches.

VI. CONCLUSION

The curent maturity of network science coupled with the
availability of huge amount of heterogeneous data in different
fields allow today a move to a more complex representations
of real-world interactions. The multiplex network model is
one promising option. It is powerful enough to model multi
relational, dynamic and attributed networks. Therefore this
model is attracting an increasing attention form different
researchers from different communities. In this paper we have
provided a quick survey of recent advances in the field of
multiplex network analysis and mining.

REFERENCES
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