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Abstract—Entity coreference resolution is generally considered
one of the most difficult tasks in natural language understanding.
Though extensively investigated for more than 50 years, the task
is far from being solved. Its difficulty stems from its reliance
on sophisticated knowledge sources and inference mechanisms.
Nevertheless, significant progress has been made on learning-
based coreference research since its inception two decades ago.
This paper provides an overview of the major milestones made
in learning-based coreference research.

Index Terms—text mining, natural language processing, infor-
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I. INTRODUCTION

ENTITY coreference resolution is generally considered
one of the most difficult tasks in natural language pro-

cessing (NLP). The task involves determining which entity
mentions in a text or dialogue refer to the same real-world
entity. Despite being investigated for 50 years in the NLP
community, the task is still far from being solved. To better
understand its difficulty, consider the following sentence:

The Queen Mother asked Queen Elizabeth II to
transform her sister, Princess Margaret, into a viable
princess by summoning a renowned speech therapist,
Nancy Logue, to treat her speech impediment.

A coreference system should partition the entity mentions
in this sentence into three coreference chains — QE (Queen
Elizabeth II and the first occurrence of her), PM (sister,
Princess Margaret and the second occurrence of her), and NL
(a renowned speech therapist and Nancy Logue) — and three
singletons, The Queen Mother, a viable princess, and speech
impediment.

While human audiences have few problems with identifying
these co-referring mentions, the same is not true for automatic
coreference resolvers. For instance, resolving the two occur-
rences of her in this example is challenging for a coreference
resolver. To resolve the first occurrence of her, a resolver
would determine whether it is coreferent with The Queen
Mother or Queen Elizabeth II, but the portion of the sentence
preceding the pronoun does not contain sufficient information
for correctly resolving it. The only way to correctly resolve the
pronoun is to employ the background knowledge that Princess
Margaret is Queen Elizabeth II’s sister. To resolve the second
occurrence of her, if a resolver employs the commonly-used
heuristic that selects the closest grammatically compatible
mention in the subject position as its antecedent, it will
wrongly posit Nancy Logue as its antecedent. Even if the
sentence did not mention that Nancy Logue was a speech
therapist, a human would have no problem with correctly
resolving the pronoun (to Princess Margaret), because he
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could easily rule out Nancy Logue as the correct antecedent
by employing the commonsense knowledge that it does not
make sense for Person A to summon Person B to treat Person
B’s problem.

From this example, we can see that background knowledge,
which is typically difficult for a machine to acquire, plays an
important role in coreference resolution. In general, however,
the difficulty of coreference resolution, particularly the res-
olution of pronouns and common noun phrases, stems from
its reliance on sophisticated knowledge sources and inference
mechanisms [1]. Despite its difficulty, coreference resolution
is a core task in information extraction: it is the fundamental
technology for consolidating the textual information about an
entity, which is crucial for essentially all NLP application-
s, such as question answering, information extraction, text
summarization, and machine translation. For instance, given
the question When was Mozart born?, a question-answering
system should search for the answer in a set of documents
retrieved by a search engine that contain the keywords in the
question. If the answer appears in the sentence He was born
in Salzburg, Austria, in 27 January 1756, the system can be
sure that 27 January 1756 is the correct answer only if the
pronoun He is coreferent with Mozart.

As coreference resolution is inherently a clustering task, it
has received a lot of attention in the machine learning and data
mining communities, where the task has been tackled under
different names, such as record linkage/matching and duplicate
detection. Some researchers have focused on name matching,
where the goal is to determine whether the names appearing
in two records in a database refer to the same entity. The focus
on name matching effectively ignores pronoun resolution and
common noun phrase resolution, which are arguably the most
difficult subtasks of entity coreference resolution [2].

There is a recent surge of interest in pronoun resolution
in the knowledge representation community owing to the
Winograd Schema Challenge (WSC). The WSC was motivated
by the following pair of sentences, which was originally used
by Winograd [3] to illustrate the difficulty of NLP:

(1) The city council refused the women a permit because they
feared violence.

(2) The city council refused the women a permit because they
advocated violence.

Using world knowledge, humans can easily resolve the
occurrences of they in sentences (1) and (2) to The city council
and the women respectively. However, these pronouns are
difficult to resolve automatically. One reason for this is that
these pronouns are compatible with both candidate antecedents
in number, gender, and semantic class. Another reason is that
correct resolution may not be possible without understanding
the two events mentioned in a sentence, but such understanding
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typically requires background knowledge. Levesque [4] argued
that the resolution of difficult-to-resolve pronouns in twin
sentences like these constitutes a task that can serve as an
appealing alternative to the Turing Test. The WSC is currently
being promoted by Commonsense Reasoning1, so we expect
to see continued progress on this task.

Our goal in this paper is to provide the reader with an
overview of the major milestones made in learning-based
entity coreference research since its inception 20 years ago.
For a detailed treatment of this topic, we refer the reader to
a recent book edited by Poesio et al. [5]. Given Levesque’s
aforementioned proposal that the resolution of difficult-to-
resolve pronouns can serve as an appealing alternative to the
Turing Test, we believe that the entity coreference task will
be of interest to the general intelligence systems community.

II. BRIEF HISTORY

Learning-based entity coreference research was to a large
extent stimulated by the public availability of coreference-
annotated corpora that were produced as a result of three large-
scale evaluations of coreference systems:

The MUC evaluations. The coreference evaluations conduct-
ed as part of the DARPA-sponsored MUC-6 [6] and MUC-
7 [7] conferences provided the first two publicly available
coreference corpora, the MUC-6 corpus (30 training texts and
30 test texts) and the MUC-7 corpus (30 training texts and 20
test texts). They also defined the coreference task that the NLP
community sees today. In particular, the MUC organizers de-
cided that the task should focus exclusively on identity coref-
erence resolution, ignoring other kinds of coreference relations
that would be challenging even for humans to identify, such
as bridging (e.g., set-subset relations, part-whole relations).
A significant byproduct of the MUC coreference evaluation
was the first evaluation metric for coreference resolution, the
MUC scoring metric [8]. Virtually all learning-based resolvers
developed between 1995 and 2004 were trained and evaluated
on the MUC corpora using the MUC metric.

The ACE evaluations. As part of NIST-sponsored ACE evalu-
ations, which began in the late 1990s, four coreference corpora
were released, namely ACE-2, ACE03, ACE04, and ACE05.
To encourage multilingual coreference research, ACE04 and
ACE05 were composed of coreference-annotated texts not
only for English, but also for Chinese and Arabic. These two
corpora were also heavily used for training and evaluation in
part because they were much larger than the MUC corpora.
For instance, the ACE04 and ACE05 English coreference
training corpora were composed of 443 and 599 documents,
respectively. Unlike MUC, which requires the identification
of coreferent entities regardless of their semantic types, ACE
focused on a restricted, simpler version of the coreference task,
requiring that coreference chains be identified only for entities
belonging to one of the ACE entity types (e.g., PERSON,
ORGANIZATION, GPE, FACILITY, LOCATION). Virtually all
resolvers developed between 2004 and 2010 were trained and
evaluated on one of these ACE corpora.

1http://commonsensereasoning.org/winograd.html

To evaluate coreference systems in the official ACE eval-
uations, the ACE metric was developed, but it was never
popularly used by coreference researchers. Two important
scoring measures were developed during this period, namely
B3 [9] and CEAF [10].

Direct comparisons among the different coreference systems
developed at that time were difficult for at least two reasons.
First, different resolvers were evaluated on different corpora
(ACE04 vs. ACE05) using different evaluation metrics (B3

vs. CEAF). Second, and more importantly, they were trained
and evaluated on different train-test splits of the ACE corpora,
owing to the fact that the ACE organizers released only
the training portion but not the official test portion of the
ACE corpora. Worse still, some resolvers were evaluated on
gold rather than system (i.e., automatically extracted) entity
mentions [11], reporting substantially better results than end-
to-end resolvers. This should not be surprising: coreference on
gold mentions is a substantially simplified version of the coref-
erence task because system mentions typically significantly
outnumber gold mentions. Some of these complications were
referred to as “conundrums” in entity coreference resolution
and discussed in detail by Stoyanov et al. [12].
The CoNLL 2011 and 2012 shared tasks. The CoNLL
2011 [13] and 2012 [14] shared tasks focused on English
and multilingual (English, Chinese, and Arabic) coreference
resolution, respectively, using the OntoNotes 5.0 corpus [15]
for training and evaluation. These shared tasks were important
for two reasons. First, they directed researchers’ attention back
to the challenging unrestricted coreference tasks that were
originally defined in MUC while providing substantially more
data for training and evaluation. Second, and more impor-
tantly, they facilitated performance comparisons of different
resolvers, making it possible to determine the state of the art.
Specifically, they standardized not only the train-test partition
of the OntoNotes corpus, but also the evaluation metric, the
CoNLL metric [13], which is the unweighted average of MUC,
B3, and CEAF. Virtually all resolvers developed since 2011
were evaluated on this corpus.

III. EVALUATION MEASURES

Designing evaluation measures for coreference resolution is
by no means a trivial task. In this section, we describe the four
most commonly-used coreference evaluation measures, each
of which reports performance in terms of recall, precision,
and F-score. Below we use the terms coreference chains and
coreference clusters interchangeably. For a coreference chain
C, we define |C| as the number of mentions in C. Key chains
and system chains refer to gold coreference chains and system-
generated coreference chains, respectively. In addition, K(d)
and S(d) refer to the set of gold chains and the set of system-
generated chains in document d, respectively. Specifically,

K(d) = {Ki : i = 1, 2, · · · , |K(d)|},

S(d) = {Sj : j = 1, 2, · · · , |S(d)|},

where Ki is a chain in K(d) and Sj is a chain in S(d).
|K(d)| and |S(d)| are the number of chains in K(d) and S(d),
respectively.
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A. MUC

MUC [8] is a link-based metric. Given a document d, recall
is computed as the number of common links between the key
chains and the system chains in d divided by the number of
links in the key chains. Precision is computed as the number of
common links divided by the number of links in the system
chains. Below we show how to compute (1) the number of
common links, (2) the number of key links, and (3) the number
of system links.

To compute the number of common links, a partition P (Si)
is created for each system chain Si using the key chains.
Specifically,

P (Sj) = {Ci
j : i = 1, 2, · · · , |K(d)|} (1)

Each subset Ci
j in P (Si) is formed by intersecting Sj with

Ki. Note that |Ci
j | = 0 if Sj and Ki have no mentions in

common. Since there are |K(d)| ∗ |S(d)| subsets in total, the
number of common links is

c(K(d),S(d)) =

|S(d)|∑
j=1

|K(d)|∑
i=1

wc(C
i
j),

where wc(C
i
j) =

{
0 if |Ci

j | = 0;
|Ci

j | − 1 if |Ci
j | > 0.

(2)

Intuitively, wc(C
i
j) can be interpreted as the “weight” of Ci

j .
In MUC, the weight of a cluster is defined as the minimum
number of links needed to create the cluster, so wc(C

i
j) =

|Ci
j | − 1 if |Ci

j | > 0.
The number of links in the key chains, K(d), is calculated

as:

k(K(d)) =

|K(d)|∑
i=1

wk(Ki), (3)

where wk(Ki) = |Ki|− 1. The number of links in the system
chains, s(S(d)), is calculated as:

s(S(d)) =

|S(d)|∑
j=1

ws(Sj), (4)

where ws(Sj) = |Sj | − 1.

B. B3

MUC’s often-criticized weakness is that it fails to reward
successful identification of singleton clusters. To address this
weakness, B3 [9] first computes the recall and precision for
each mention, and then averages these per-mention values to
obtain the overall recall and precision.

Let mn be the nth mention in document d. Its recall,
R(mn), and precision, P (mn), are computed as follows. Let
Ki and Sj be the key chain and the system chain that contain
mn, respectively, and let Ci

j be the set of mentions appearing
in both Sj and Ki.

R(mn) =
wc(C

i
j)

wk(Ki)
, P (mn) =

wc(C
i
j)

ws(Sj)
, (5)

where wc(C
i
j) = |Ci

j |, wk(Ki) = |Ki|, and ws(Sj) = |Sj |.

C. CEAF

While B3 addresses the shortcoming of MUC, Luo [10]
presents counter-intuitive results produced by B3, which it
attributes to the fact that B3 may use a key/system chain more
than once when computing recall and precision. To ensure that
each key/system chain will be used at most once in the scoring
process, his CEAF scoring metric scores a coreference parti-
tion by finding an optimal one-to-one mapping (or alignment)
between the chains in K(d) and those in S(d).

Since the mapping is one-to-one, not all key chains and sys-
tem chains will be involved in it. Let Kmin(d) and Smin(d) be
the set of key chains and the set of system chains involved in
the alignment, respectively. The alignment can be represented
as a one-to-one mapping function g, where

g(Ki) = Sj ,Ki ∈ Kmin(d) and Sj ∈ Smin(d).

The score of g, Φ(g), is defined as

Φ(g) =
∑

Ki∈Kmin(D)

φ(Ki, g(Ki)),

where φ is a function that computes the similarity between a
gold chain and a system chain. The optimal alignment, g∗, is
the alignment whose Φ value is the largest among all possible
alignments, and can be computed efficiently using the Kuhn-
Munkres algorithm [16].

Given g∗, the recall (R) and precision (P) of a system
partition can be computed as follows:

R =
Φ(g∗)∑|K(d))|

i=1 φ(Ki,Ki)
, P =

Φ(g∗)∑|S(d))|
j=1 φ(Sj , Sj)

.

As we can see, at the core of CEAF is the similarity function
φ. Luo defines two different φ functions, φ3 and φ4:

φ3(Ki, Sj) = |Ki ∩ Sj | = wc(C
i
j) (6)

φ4(Ki, Sj) =
2|Ki ∩ Sj |
|Ki|+ |Sj |

=
2 ∗ wc(C

i
j)

wk(Ki) + ws(Sj)
(7)

φ3 and φ4 result in mention-based CEAF (a.k.a. CEAFm)
and entity-based CEAF (a.k.a. CEAFe), respectively.

D. BLANC

BLANC [17], a Rand-index-based coreference evaluation
measure, is designed to address a major weakness shared by
B3 and CEAF: the B3 and CEAF F-scores typically squeeze
up too high when many singleton mentions are present in
a document. To address this weakness, BLANC first com-
putes recall, precision, and F-score separately for coreferent
mention pairs and non-coreferent mention pairs. The BLANC
recall/precision/F-score is then computed as the unweighted
average of the recall/precision/F-score of the coreferent men-
tion pairs and the recall/precision/F-score of the non-coreferent
mention pairs.

IV. MODELS

In this section, we examine the major learning-based models
for entity coreference resolution.
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A. Mention-Pair Models

Despite their conceptual simplicity, mention-pair models are
arguably the most influential coreference model. A mention-
pair model is a binary classifier that determines whether
a pair of mentions is co-referring or not. Hence, to train
a mention-pair model, each training instance corresponds
to a pair of mentions and is represented by local features
encoding each of the two mentions and their relationships.
Any learning algorithm can be used to train a mention-pair
model, which can then be applied to classify the test instances.
However, these pairwise classification decisions could violate
transitivity, which is an inherent property of the coreference
relation. As a result, a separate clustering mechanism, such
as single-link clustering [18] and best-first clustering [2], is
needed to coordinate the pairwise decisions and construct a
partition. Specifically, these clustering algorithms process the
mentions in a test text in a left-to-right manner. For each
mention encountered, they select as its antecedent either the
closest or the most probable preceding coreferent mention. No
antecedent will be selected for the mention if it does not have
any preceding coreferent mention.

It was around this time that Ng and Cardie [19] raised the
question of whether anaphoricity should be modeled explicitly
in coreference resolution. Anaphoricity determination is the
task of determining whether a mention is anaphoric (i.e., it is
coreferent with a preceding mention) or non-anaphoric (i.e.,
it starts a new coreference chain).

To motivate anaphoricity determination, consider the two
aforementioned clustering algorithms, which do not perform
anaphoricity determination explicitly. Specifically, s mention
is implicitly posited as non-anaphoric if none of its preceding
mentions is classified as coreferent with it. Ng and Cardie [19]
hypothesize that performing anaphoricity determination prior
to coreference resolution could improve the precision of a
mention-pair model, as the model will only need to resolve
mentions that are determined to be anaphoric by the anaphoric-
ity model. While anaphoricity determination is by no means
an easier task than coreference resolution, many years of
research on the explicit modeling of anaphoricity have resulted
in models that can benefit coreference. One such successful
attempt was made by Denis and Baldridge [20], who perform
joint inference over the outputs of two independently-trained
models, the anaphoricity model and the mention-pair model.

B. Mention-Ranking Models

A major weakness of mention-pair models is that they
consider each candidate antecedent of an anaphoric mention
to be resolved independently of other candidate antecedents.
As a result, they can only determine how good a candidate
antecedent is relative to the anaphoric mention, but not how
good it is relative to other candidate antecedents.

Ranking models address this weakness by allowing all can-
didate antecedents of a mention to be ranked simultaneously
[21]–[23]. Since a mention ranker simply ranks candidate
antecedents, it cannot determine if a mention is anaphoric.
One way to address this problem is to apply an independently

trained anaphoricity classifier to identify non-anaphoric men-
tions prior to ranking [23]. Another, arguably better, way is to
jointly learn coreference and anaphoricity by augmenting the
candidate set of each mention to be resolved with a dummy
candidate antecedent so that the mention will be classified as
non-anaphoric if it is resolved to the dummy [24].

C. Entity-Based Models

Another major weakness of mention-pair models concerns
their limited expressiveness: they can only employ features de-
fined on no more than two mentions. However, the information
extracted from the two mentions alone may not be sufficient
for making an informed coreference decision, especially if
the candidate antecedent is a pronoun (which is semantically
empty) or a mention that lacks descriptive information such
as gender (e.g., Clinton).

Entity-based models aim to address the expressiveness
problem. To motivate these models, consider a document that
consists of three mentions: Mr. Clinton, Clinton, and she.
A mention-pair model may determine that Mr. Clinton and
Clinton are coreferent using string-matching features, and that
Clinton and she are coreferent based on proximity and lack of
evidence for gender and number disagreement. However, these
two pairwise decisions together with transitivity imply that
Mr. Clinton and she will end up in the same cluster, which is
incorrect due to gender mismatch. This kind of error arises in
part because the later coreference decisions are not dependent
on the earlier ones. In particular, had the model taken into
consideration that Mr. Clinton and Clinton were in the same
cluster, it probably would not have posited that she and Clinton
are coreferent. Specifically, the increased expressiveness of
entity-based models stems from their ability to exploit cluster-
level (a.k.a. non-local) features, which are features defined on
an arbitrary subset of the mentions in a coreference cluster. In
our example, it would be useful to have a cluster-level feature
that encodes whether the gender of a mention is compatible
with the gender of each of the mentions in a preceding cluster,
for instance.

Many machine-learned entity-based models have been de-
veloped over the years. The most notable ones include the
entity-based versions of mention-pair models and mention-
ranking models. Entity-mention models, the entity-based ver-
sion of mention-pair models, determine whether a mention is
coreferent with a preceding, possibly partially-formed, cluster
[25], [26]. Despite their improved expressiveness, early entity-
mention models have not yielded particularly encouraging
results. Cluster-ranking models, on the other hand, are the
entity-based version of mention-ranking models [24]. They
rank preceding clusters rather than candidate antecedents,
and have been shown to outperform entity-mention models,
mention-pair models, and mention-ranking models.

While the entity-based models discussed so far have all
attempted to process the mentions in a test text in a left-
to-right manner, easy-first models aim to make easy linking
decisions first, and then use the information extracted from
the clusters established thus far to help identify the difficult
links. More specifically, an easy-first resolver is composed of
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a pipeline of sieves, each of which is composed of a set of
hand-crafted or learned rules for classifying a subset of the
mention pairs in the test set. Being an easy-first approach,
the sieves in the pipeline are arranged in decreasing order
of precision. Given the pipeline setup, the later sieves can
exploit the decisions made by the earlier sieves. The most
well-known resolver that employs an easy-first approach is
arguable Stanford’s resolver [27], which won the CoNLL-
2011 shared task. Ratinov and Roth’s easy-first resolver [28]
improves Stanford’s resolver by allowing earlier decisions to
be overridden and corrected by later sieves.

Entity-based models are also trained by Culotta et al. [29]
and Stoyanov and Eisner [30]. Specifically, they propose a
“learning to cluster” approach to train coreference models to
perform agglomerative clustering of the entity mentions, each
of which is initially is in its own cluster.

D. Structured Models

Recent years have seen a popular line of work that views
coreference resolution as a structured prediction task: rather
than resolving a mention to a preceding mention/cluster, a
structured model predicts a structure from which a coreference
partition can be directly recovered.

The first such attempts are made by McCallum and Well-
ner [11] and Finley and Joachims [31], who train models to
directly induce coreference partitions. Specifically, McCallum
and Wellner train a log-linear model to induce a distribution
over the possible partitions of a set of mentions so that the
correct partition is the most probable. Finley and Joachims, on
the other hand, learn to rank candidate coreference partitions
by training a max-margin ranking model.

While learning to partition is a novel idea, partition-based
models are not particularly popular. One reason is that they
force us to classify each pair of mentions, which is not
desirable as not all coreference links are equally easy to
identify. Fortunately, to establish a cluster of n mentions,
only n − 1 coreference links are needed. So, rather than
learning a partition, Fernandes et al. [32] (FDM) propose
learning a coreference tree using the links that are easy to
identify, and then recovering a partition from the tree. To
learn to predict coreference trees, FDM employ the latent
structured voted perceptron algorithm. The model parameters
are weights defined on features that are commonly-used in
mention-pair models. In each iteration, the highest-scoring
(i.e., maximum spanning) tree is decoded using the Chu-Liu-
Edmonds algorithm [33], [34]. Their resolver achieved the
highest average score over all languages in the CoNLL-2012
shared task. As noted by FDM, feature induction plays an
important role in their resolver. Their feature induction method
learns feature conjunctions, which are derived from the paths
of a decision tree-based mention-pair model.

Seeing no reason to predict structures as complicated as
trees, Durrett and Klein [35] (D&K) simplify the corefer-
ence task by proposing a model that predicts for each test
document the most probable antecedent structure, which is
a vector of antecedents storing the antecedent chosen for
each mention (null if the mention is non-anaphoric) in the

document. Effectively, it is a mention-ranking model, but
it is trained to maximize the conditional likelihood of the
correct antecedent structure given a document. Inference is
easy: the most probable candidate antecedent of a mention is
selected to be its antecedent independently of other mentions.
One of the innovations of D&K’s model is the use of a
task-specific loss function. Specifically, D&K employ a loss
function that is a weighted sum of the counts of three error
types: the number of false anaphors, the number of false non-
anaphors, and the number of wrong links. Following FDM,
D&K employ feature conjunctions. Perhaps most interestingly,
D&K achieved state-of-the-art performance by training their
model only on conjunctions of lexical features.

Motivated in part by the recent successes of neural models
for NLP tasks, Wiseman et al. [36] train a neural-based
mention-ranking model which, like D&K’s model, employs
a task-specific loss function. However, rather than following
the recent trend on training linear models using feature con-
junctions [32], [35], [37], some of which are rather complex,
Wiseman et al. pioneered using a neural network to learn
non-linear representations of raw features (i.e., the original
features, without any conjunctions), achieving state-of-the-art
results. Most recently, Wiseman et al. [38] and Clark and
Manning [39] further improved the performance of neural
coreference models by incorporating cluster-based features.
These are the first attempts to learn non-linear models of
coreference resolution. Given their promising results, they
deserve further investigations.

V. KNOWLEDGE SOURCES

Early learning-based coreference resolvers have relied pri-
marily on morpho-syntactic knowledge. However, the develop-
ment of large lexical knowledge bases since the late 1990s and
the significant advancements made in corpus-based lexical se-
mantics research in the past 15 years have enabled researchers
to design semantic features for coreference resolution. In this
section, we examine these two types of knowledge sources.

A. Morpho-syntactic Features

Morpho-syntactic features typically refer to several types
of features. String-matching features encode whether there
is an exact or partial match (e.g., head match, exact match
after removing determiners) between the strings of the t-
wo mentions under consideration. These features are useful
because many coreferent mentions have overlaps in their
strings (e.g., Bill Clinton and Clinton). Lexical features
are created by concatenating the strings/heads of the two
mentions. These features enable a learning algorithm to learn
which string/head combinations are indicative of coreference
relations. Grammatical features encode whether the two
mentions are compatible with respect to various grammatical
attributes such as gender and number. These features are useful
because grammatical incompatibility is a strong indicator of
non-coreference. Finally, syntactic features encode whether
two mentions can be coreferent based on information extracted
from syntactic parse trees. For instance, two mentions cannot
be coreferent if they violate the Binding Constraints.
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B. Semantic Features
Selectional preference is one of the earliest kinds of

semantic knowledge exploited for coreference resolution [40]–
[42]. Given a pronoun to be resolved, its governing verb, and
its grammatical role, a candidate antecedent that can play the
same role and be governed by the same verb is preferred.
These preferences can be learned from a large corpus or
from the Web, and have been used as features to improve
knowledge-poor resolvers with varying degrees of success.

Another commonly-used semantic feature for coreference
resolution encodes whether the two mentions involved have the
same semantic class, where the semantic class of a common
noun is determined using either WordNet [18], [43] or clusters
induced from the Google n-gram corpus [44].

Knowing that Barack Obama is a U. S. president would
be helpful for establishing the coreference relation between
two mentions Obama and the president in a document. To
this end, researchers have attempted to extract the knowledge
attributes of a proper name from lexical knowledge bases. For
instance, given a proper name, Ratinov and Roth [28] extract
from Wikipedia its Wiki category, gender, and nationality, and
Hajishirzi et al. [45] extract from Freebase a set of coarse-
grained attributes (e.g., person, location) and more than 500
fine-grained attributes (e.g., plant, attraction, nominee). The
major challenge in extracting attributes from these knowledge
bases is entity disambiguation [46]: a proper name could be
matched more than one Wikipedia page or more than one entry
in YAGO and Freebase. To address this problem, Ratinov and
Roth [28] employ a context-sensitive entity disambiguation
system, while Hajishirzi et al. [45] propose to jointly perform
coreference resolution and entity linking. Knowledge attributes
can also be extracted in an unsupervised manner using hand-
crafted lexico-syntactic patterns [47]. For instance, we can
search for the pattern X is a Y in a large, unannotated corpus.
The mention pairs (X,Y) that satisfy this pattern can tell us
that mention X has knowledge attribute Y.

Besides the IS-A relation, other semantic relations, includ-
ing those between common nouns, have also been used for
coreference resolution. For instance, Bengtson and Roth [48]
have employed as features the generic semantic relations (e.g.,
synonymy, hypernymy, antonymy) extracted from WordNet
for two common nouns. Hearst [47] has proposed other
lexico-syntactic patterns that capture different lexical semantic
relations between nouns. Yang and Su [49] employ patterns
learned from a coreference corpus that are indicative of a
coreference relation.

Some words may not have a semantic relation but can still
be coreferent owing to their semantic similarity. This obser-
vation has led Ponzetto and Strube [43] to encode features
based on various measures of WordNet similarity, which have
been shown to improve their baseline system.

PropBank-style semantic roles have also been used for
coreference resolution [43]. Their use is motivated by the se-
mantic parallelism heuristic: given an anaphor with semantic
role r, its antecedent is likely to have role r.

While using semantic roles improves Ponzetto and Strube’s
resolver [43], semantic parallelism is a fairly weak indicator
of coreference. For instance, if two verbs denote events that

are unrelated to each other, it is not clear why their arguments
should be coreferent even if they have the same semantic role.
Motivated by this observation, Rahman and Ng [46] attempt
to capture the notion of event relatedness based on whether
the two predicates appear in the same FrameNet semantic
frame, designing features that encode not only whether the two
mentions have the same role but also whether their governing
verbs are in the same frame.

Generally speaking, the results of employing semantic and
world knowledge to improve knowledge-poor coreference re-
solvers are mixed. The mixed results can be attributed at least
in part to differences in the strengths of the baseline resolvers
employed in the evaluation: the stronger the baseline is, the
harder it would be to improve its performance. Since different
researchers employed different baselines and evaluated their
resolvers on different feature sets, it is not easy to draw general
conclusions on the usefulness of different kinds of semantic
features. To facilitate comparison of the usefulness of different
kinds of semantic features, we believe that it is worthwhile to
re-evaluate them using the standard evaluation setup provided
by the CoNLL-2011 and 2012 shared tasks.

VI. CONCLUSION

We presented an overview of the models and features
developed for learning-based entity coreference resolution in
the past two decades, as well as the corpora and metrics used
in the evaluation of these computational models. Despite the
continued progress on this task, it is far from being solved:
the best CoNLL scores reported to date on the CoNLL-
2012 official evaluation data for English and Chinese are
65.29 and 63.66 respectively [39]. Recent results suggest that
the performance of coreference models that do not employ
sophisticated knowledge is plateauing [38]. Hence, one of the
fruitful avenues of future research will likely come from the
incorporation of sophisticated knowledge sources.
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with feature induction for unrestricted coreference resolution,” in Joint
Conference on EMNLP and CoNLL - Shared Task, 2012, pp. 41–48.

[33] J. Chu, Y and T. H. Liu, “On the shortest arborescence of a directed
graph,” Science Sinica, vol. 14, no. 1, pp. 1396–1400, 1965.

[34] J. Edmonds, “Optimum branchings,” Journal of Research of the National
Bureau of Standards, vol. 71B, pp. 233–240, 1967.

[35] G. Durrett and D. Klein, “Easy victories and uphill battles in corefer-
ence resolution,” in Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, 2013, pp. 1971–1982.

[36] S. Wiseman, A. M. Rush, S. Shieber, and J. Weston, “Learning
anaphoricity and antecedent ranking features for coreference resolution,”
in Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), 2015, pp.
1416–1426.

[37] A. Björkelund and J. Kuhn, “Learning structured perceptrons for
coreference resolution with latent antecedents and non-local features,”
in Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2014, pp. 47–57.

[38] S. Wiseman, A. M. Rush, and S. M. Shieber, “Learning global features
for coreference resolution,” in Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2016, pp. 994–1004.

[39] K. Clark and C. D. Manning, “Improving coreference resolution by
learning entity-level distributed representations,” in Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2016, pp. 643–653.

[40] I. Dagan and A. Itai, “Automatic processing of large corpora for
the resolution of anaphora references,” in Proceedings of the 13th
International Conference on Computational Linguistics, 1990, pp. 330–
332.

[41] A. Kehler, D. Appelt, L. Taylor, and A. Simma, “The (non)utility of
predicate-argument frequencies for pronoun interpretation,” in Human
Language Technology Conference and Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Main
Proceedings, 2004, pp. 289–296.

[42] X. Yang, J. Su, and C. L. Tan, “Improving pronoun resolution using
statistics-based semantic compatibility information,” in Proceedings of
the 43rd Annual Meeting of the Association for Computational Linguis-
tics, 2005, pp. 165–172.

[43] S. P. Ponzetto and M. Strube, “Exploiting semantic role labeling,
WordNet and Wikipedia for coreference resolution,” in Proceedings
of the Human Language Technology Conference and Conference of
the North American Chapter of the Association for Computational
Linguistics, 2006, pp. 192–199.

[44] M. Bansal and D. Klein, “Coreference semantics from web features,”
in Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2012, pp. 389–398.

[45] H. Hajishirzi, L. Zilles, D. S. Weld, and L. Zettlemoyer, “Joint coref-
erence resolution and named-entity linking with multi-pass sieves,” in
Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, 2013, pp. 289–299.

[46] A. Rahman and V. Ng, “Coreference resolution with world knowledge,”
in Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, 2011, pp.
814–824.

[47] M. Hearst, “Automatic acquisition of hyponyms from large text cor-
pora,” in Proceedings of the Fourteenth International Conference on
Computational Linguistics, 1992.

[48] E. Bengtson and D. Roth, “Understanding the values of features for
coreference resolution,” in Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing, 2008, pp. 294–
303.

[49] X. Yang and J. Su, “Coreference resolution using semantic relatedness
information from automatically discovered patterns,” in Proceedings
of the 45th Annual Meeting of the Association for Computational
Linguistics, 2007, pp. 528–535.

IEEE Intelligent Informatics Bulletin December 2016 Vol.17 No.1


