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AI for Traffic Analytics
Raghava Mutharaju, Freddy Lécué, Jeff Z. Pan, Jiewen Wu, Pascal Hitzler

Abstract—Information and communications technology (ICT)
is used extensively to better manage the city resources and
improve the quality of life of its citizens. ICT spans many
departments of the cities, from transportation, water, energy
to building management and social-care services. AI techniques
are getting more and more attraction from cities to represent
and organize information, maintain sustainable networks, predict
incidents, optimize distribution, diagnose faults, plan routes and
organize their infrastructure. Managing traffic efficiently, among
many other domains in cities, is one of the key issues in large
cities. In this article we describe the domains of applications
which could benefit from AI techniques, along with introduc-
ing the necessary background knowledge. Then we focus on
traffic applications, which make use of recent AI research in
knowledge representation, logic programming, machine learning
and reasoning. Specifically we go through the next version of
scalable AI driven traffic related application where (1) data from
a variety of sources is collected, (2) knowledge about traffic,
vehicles, citizens, events is represented and (ii) deductive and
inductive reasoning is combined for diagnosing and predicting
road traffic congestion. Based on these principles, a real-time,
publicly available AI system named STAR-CITY was developed.
We discuss the results of deploying STAR-CITY, and its related
AI technologies in cities such as Dublin, Bologna, Miami, Rio and
the lessons learned. We also discuss the future AI opportunities
including scalability issues for large cities.

Index Terms—Artificial intelligence, Knowledge representa-
tion, Smart cities, Traffic congestion

I. INTRODUCTION

MORE and more people are moving to the cities in search
of better livelihood. The resources and the infrastruc-

ture of the cities are unable to keep up with this population
growth rate. This leads to several problems such as shortage of
water and electricity, increase in pollution and severe traffic
congestion, which is one of the major transportation issues
in most industrial countries [1]. Traffic congestion leads to
massive wastage of time and resources such as fuel. In USA,
traffic congestion leads to 5.5 billion hours of delay and 2.9
billion gallons of wasted fuel costing around $121 billion
[2]. Apart from such wastage, traffic congestions also lead to
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road rage and accidents. Three possible ways to reduce traffic
congestion [3] are i) improving the road infrastructure, ii)
promoting the use of public transport and iii) diagnosing and
predicting traffic congestions, which allows city administrators
to proactively manage the traffic. Among the three options, the
third option is the most cost effective and convenient since it
does not involve any change to the existing infrastructure. In
this work, we use several AI techniques such as knowledge
representation and reasoning, planning and machine learning
to predict and diagnose traffic congestions.

There are several existing traffic analysis tools such as
US Traffic View1 [4], French Sytadin2 and Italian 5T3. They
support basic analytics, visualization and monitor traffic using
dedicated sensors. They cannot handle data coming from
heterogeneous sources and do not interpret traffic anomalies.
Other systems such as the traffic layer of Google Maps provide
real-time traffic conditions but do not take into account the
historical data and data from other sources such as weather and
city events. Thus the existing systems do not take advantage
of the context and the semantics of the data.

Data from several sources provide key insights into the
location, cause and intensity of the traffic congestion. User
generated content such as tweets, weather conditions, informa-
tion about city events (music concerts etc) can be used along
with the traffic data. Semantic Web technologies such as OWL
(Web Ontology Language) [5] and RDF (Resource Description
Framework) [6], which are also W3C recommendations, can
be used to represent knowledge and integrate data from
multiple data sources. These technologies provide structure
and meaning to the data as well as enable interlinking, sharing
and reuse of the data.

RDF is a framework to describe resources such as doc-
uments, people, physical objects, abstract concepts etc. Re-
sources are described in the form of triples, where a triple
consists of three parts: subject, predicate and object. For
example, we can represent road r1 is adjacent to road r2 in
the form of a triple as <r1> <isAdjacentTo> <r2>.

OWL is more expressive compared to RDF and is used to
build ontologies that represent knowledge about things, groups
of things and relation between them. It is used to formally
encode domain knowledge, i.e., knowledge about some part
of the world which is often referred to as the domain of
interest. In order to build an ontology, it is important to
come up with the vocabulary of the domain, i.e., a set of
terms and the relationships between them. These form the
axioms in an ontology. The knowledge in an ontology can be
categorized into terminological knowledge and assertions. The

1https://www.trafficview.org/
2http://www.sytadin.fr/
3http://www.5t.torino.it/5t/
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terminological knowledge or TBox defines the general notions
or the conceptualization of the domain whereas the assertional
knowledge or ABox defines the concrete notions or facts of
the domain. In a database setting, TBox corresponds to the
schema and ABox corresponds to the data [7].

Description logics [8], [9] provide the formal underpinnings
for OWL. They are fragments of first order logic, with most
of them being decidable. They have formal semantics, i.e.,
a precise specification of the constructs that make up various
description logics. This makes them unambiguous and suitable
for logical operations. Description logics provide three types
of entities: concepts, roles and individual names. Concepts
are sets of individuals, roles represent the binary relations
between the individuals and individual names represent single
individuals in the domain. In first order logic, these three
entities correspond to unary predicates, binary predicates and
constants. In OWL, concepts and roles are referred to as
classes and properties.

The traffic analytics system named STAR-CITY (Semantic
Traffic Analytics and Reasoning for CITY) [10] makes use of
RDF and description logics to represent the knowledge in the
traffic domain and integrate, reason over data from heteroge-
neous sources [11]. In the rest of the article, we describe the
diagnosis and prediction of traffic congestion using STAR-
CITY and the lessons learned from deploying STAR-CITY
in Dublin (Ireland), Bologna (Italy), Miami (USA) and Rio
(Brazil).

II. SEMANTIC REPRESENTATION AND ENRICHMENT OF
TRAFFIC DATA

Traffic on the road can be influenced by a variety of factors
such as weather conditions, road works and city events. Ac-
cordingly, data from different sources such as sensors, tweets,
weather information, city events information etc has to be
considered. This can be considered as Big Data since the data
has all the four important characteristics: volume, velocity,
variety and veracity. Figure 1 shows the main attributes of the
datasets we considered for traffic analytics.

The next step is to convert the all the heterogeneous data
shown in Figure 1 into a homogeneous semantic representa-
tion. This representation is useful for comparing and evaluat-
ing different contexts e.g., events (and their properties: venue,
category, size, types and their subtypes), weather information
(highly, moderate, low windy, rainy; good, moderate, bad
weather condition). More importantly, semantic representation
of data helps in (automatically) designing, learning, applying
rules at reasoning time for analysis, diagnosis and prediction
components. The static background knowledge and the se-
mantics of the data stream is encoded in an ontology which
is in OWL 2 EL profile4. EL++ is the description logic
underpinning for OWL 2 EL. The selection of the OWL 2
EL profile from among the three OWL 2 profiles has been
guided by (i) the expressivity which was required to model
semantics of data in our application domain (cf. Figure 1), (ii)
the scalability of the underlying basic reasoning mechanisms

4https://www.w3.org/TR/owl2-profiles/

Fig. 1. (Raw) Data Sources used for traffic analytics in Dublin, Bologna,
Miami and Rio

we needed in our stream context e.g., subsumption in OWL 2
EL is in PTIME [12].

All the data streams in Figure 1 are converted to OWL
2 EL ontology streams using IBM Infosphere Streams [13].
Conversion into streams allows i) easy synchronization and
transformation of streams into OWL 2 EL ontology, ii) flexible
and scalable composition of stream operations, iii) identifica-
tion of patterns and rules over different time windows, and iv)
possible extension to higher throughput sensors. Depending
on the data format, different conversion strategies are used -
XSLT for XML, TYPifier [14] for tweets and custom OWL 2
EL mapping for CSV. This is shown in Figure 2.
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III. DIAGNOSIS OF TRAFFIC CONGESTIONS

Diagnosis task consists of providing a possible explanation
for the congestion on a particular road. There can be several
reasons for causing or aggravating a traffic congestion. We
focus on traffic accidents, road works, weather conditions
and social events (e.g., music, political events). Diagnosis of
traffic congestion consists of two steps - historic diagnosis
computation and real-time diagnosis [15]. This is shown in
Figure 3.

All the historic diagnosis information is represented as a
deterministic finite state machine. Events, road works and
weather conditions are connected to historic traffic congestions
along with the probability of those factors indeed causing the
congestion. Road intersections and car park locations form the
states in the finite state machine. Roads are the transitions in
the finite state machine and each road is labeled by its historic
diagnosis information.

Fig. 3. Overview of the approach to diagnose traffic congestions

After constructing the finite state machine off-line, the next
step is to compare the new (current) road condition with
the historical condition in real-time and generate a diagnosis
report. In existing diagnosis approaches, unless it is an exact
match, it is not possible to obtain the diagnosis information. In
our approach, we define a matching function that matches the
new condition, Cn, which is a description logic concept, with
the historical condition, Ch. Note that a condition can be a city
event, road work or weather condition which is represented
using either existing vocabularies such as DBpedia5, SKOS6

or OWL 2 EL ontologies. The matching function gives out the
relation between Cn and Ch as output, which could be one of
the following.

1) Exact: Cn and Ch are equivalent concepts
2) PlugIn: Cn is a sub-concept of Ch

3) Subsume: Cn is a super-concept of Ch

4) Intersection: The intersection of Cn and Ch is satisfiable
The diagnosis report is constructed using concept abduction

between Cn and Ch [16]. The constructed description specifies
the under specification in Ch in order to completely satisfy Cn.
Computing a diagnosis report is a PTIME problem due to the
PTIME complexity of abduction and subsumption in OWL 2
EL.

A crucial step in the diagnosis and prediction of traffic con-
gestions is the classification of ontology streams. Classifying
an ontology involves the computation of all the possible sub-
concepts for each concept in the ontology. Apart from making

5http://wiki.dbpedia.org/services-resources/ontology
6https://www.w3.org/TR/skos-primer/

implicit sub-concept relationships explicit, classification is
also useful for the matching based computation in diagnosis
and prediction. Streaming data, which in turn is converted
into ontology streams, is considered for the diagnosis and
prediction tasks. This would lead to the accumulation of large
number of ontologies over a short period of time. Existing
reasoners, which are used to classify an ontology, do not
scale to large ontologies [17]. A distributed reasoner that can
scale with the ontology size is required. DistEL [18] is a
distributed and scalable reasoner for the OWL 2 EL profile.
An ontology in OWL 2 EL profile can be partitioned based on
the different axiom types it supports. Each classification rule
of OWL 2 EL (description logic EL++) [19] is applicable to an
axiom of one particular type. The partitioned ontology pieces
along with the correspond completion rules are distributed
across the nodes in the cluster. Each node is dedicated to
axioms of at most one particular type and runs the appropriate
completion rule on such axioms. This technique improves the
data locality and decreases the inter-node communication. A
detailed description of other distributed reasoning approaches
for OWL 2 EL are described in [20].

IV. FORECASTING TRAFFIC CONGESTIONS

Predicting or forecasting the anomalies such as traffic con-
gestion involves tracking and correlating the changes (evolu-
tion) in the data streams over time [21]. This involves three
challenges i) handling the variety and velocity of data (C1),
ii) reasoning on the evolution of multiple data streams (C2),
and iii) scalable and consistent prediction of anomalies (C3).

The data from different sources (Figure 1) is converted
to ontology streams (Figure 2) as discussed earlier. Let On

m

represent the journey time and Pn
m represent the weather

information stream from time m to n. On
m(i) is a snapshot

of stream On
m at time i ∈ [m,n]. Figure 4 shows the

three challenges in predicting journey time using weather
information stream. It also captures the weather records and
travel conditions on Dame Street at times i, j.
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The second challenge (C2) is to capture the changes and as-
sociate knowledge across the ontology streams. The detection
of change along a stream over time enables the computation of
knowledge auto-correlation. The semantic similarity between
ontology streams is represented by auto-correlation and asso-
ciation aims at deriving rules across streams. These two steps
are required to predict the severity of traffic congestions. Prior
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to performing the tasks of auto-correlation and knowledge
association, it is important to classify the ontology stream.
TBox has static knowledge and does not change over time.
TBox is generally small and can be classified using the
EL++ classification rules [19]. The ontology stream, which
is generated from the data stream (Figure 2) consists of ABox
axioms. These axioms are internalized into TBox axioms so
that the same classification rules from [19] can be applied on
them. If existing reasoners (such as CEL7, ELK8, Pellet9 etc)
are overwhelmed by the ontology streams, then as discussed
earlier, a distributed reasoner such as DistEL [18] can be used.

The auto-correlation between snapshots of an ontology
stream is established by comparing the changes in the ABox
axioms of the snapshots. The changes can be categorized
into three: new, obsolete and invariant. The type of change
can have either a positive or a negative influence on the
auto-correlation. Invariants have a positive influence on auto-
correlation, whereas, new and obsolete changes impact the
auto-correlation negatively. Inconsistencies among the snap-
shots also have a negative correlation. This approach is shown
in Figure 5a.
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Fig. 5. Auto-correlation among the snapshots of an ontology stream and
generation of association rules for prediction

The association rules between the snapshots of a stream
are encoded using SWRL10. For example, a rule that “the
traffic flow of road r1 is heavy if r1 is adjacent to a road r2
where an accident occurs and the humidity is optimum” can
be represented in SWRL as

HeavyTrafficFlow(s) ← Road(r1) ∧ Road(r2) ∧
isAdjacentTo(r1, r2) ∧ hasTravelTimeStatus(r1, s) ∧
hasWeatherPhenomenon(r1, w) ∧ OptimumHumidity(w)
∧ hasTrafficPhenomenon(r2, a) ∧ RoadTrafficAccident(a)

The generation of association rules is based on a de-
scription logic extension of Apriori [22] where subsumption
(sub-concept relation) is used to determine association rules.
Association is achieved between any ABox elements together
with their entailments (e.g., all congested roads, weather,
works, incidents, city events, delayed buses). Association is
possible only in the case where elements appear in at least
one snapshot of the stream. As the number of ABox elements

7https://lat.inf.tu-dresden.de/systems/cel/
8https://github.com/liveontologies/elk-reasoner
9https://github.com/stardog-union/pellet
10https://www.w3.org/Submission/SWRL/

in the stream increases, the number of rules that get gener-
ated grows exponentially. Rules are filtered by adapting the
definition of support (i.e., number of occurrences that support
the elements of the rule) and confidence (i.e., probability of
finding the consequent of the rule in the streams given the
antecedents of the rule) for ontology stream. In addition only
consistent associations are considered. This approach is shown
in Figure 5b. More details on auto-correlation and generation
of association rules, including the algorithms, are available in
[23].

Although filtering of rules based on support and confidence
addresses the scalability concern, it does not however ensure
prediction of facts that are consistent (challenge C3), i.e.,
facts that do not contradict future knowledge facts. This
can be solved by combining auto-correlation with associ-
ation rule generation. First step is to identify the context
(e.g., mild weather, road closure) where the prediction is
required, and then perform its auto-correlation with historical
contexts. Rules are generated and filtered based on their
support, confidence and consistency. A rule is considered as
consistent if the consequent of the rule is consistent with the
knowledge captured by the exogenous stream [24]. Rules are
contextualized and evaluated only against the auto-correlated
stream snapshots. This makes the selection of rules knowledge
evolution-aware and ensures that rules are applied to contexts
where knowledge does not change drastically. This approach
of combining auto-correlation with association rule generation
is shown in Figure 6.
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V. LESSONS LEARNED

All the features discussed so far, i.e., handling of heteroge-
neous data, diagnosis and prediction of traffic congestion, have
been implemented in a traffic analytics system named STAR-
CITY. It makes use of the W3C Semantic Web stack along
with other technologies such as i) description logic EL++

based distributed ontology classifier, ii) rule based pattern
association, iii) machine learning based entity search, and iv)
stream based correlation and inconsistency checking. STAR-
CITY was initially deployed in Dublin, Ireland but was later
expanded to other cities such as Bologna, Miami and Rio. The
challenges and lessons learned in deploying such a system are
discussed here.

Heterogeneous streams and semantic expressivity. The
format of different data streams (sensors) used in STAR-CITY
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generally remains the same. It is important to pick the right
vocabulary and the expressivity to model the data. DBpedia,
W3C and NASA ontologies were used to link, integrate and
interoperate with all the data sources. However, a custom
ontology was developed to model journey time data. Care has
to be taken so that terminologies in the various vocabularies
used are aligned. This is important in order to achieve on-the-
fly integration of all the data sources.

The semantic encoding of city events is in OWL 2 EL
profile. This is suitable for us because ontology classification
can be decided in polynomial time and hence is scalable. A
more expressive profile such as OWL 2 Full or DL could lead
to i) more causes getting triggered for road congestion, ii)
improving the precision of diagnosis, and iii) improving the
scalability and precision of prediction by triggering stronger
rules. The downside would be that ontology classification can
no longer be done in polynomial time. On the other hand,
it would be interesting to check if a profile less expressive
than EL++ can be used and still obtain more or less the same
precision in diagnosis and prediction.

Scalability of the semantic database. Jena TDB is used
to store the semantically enriched data in STAR-CITY. But it
could not handle simultaneous updates from multiple streams.
So some of the ontology streams had to be delayed in order to
accommodate this shortcoming. The B+Trees indexing struc-
ture of Jena TDB scales the best in our stream context where
large number of updates are performed, i.e., the transaction
model is much better handled by this data structure. However
there were some scalability issues to handle historical data
over more than approximately 110 days. If we do not place
any restrictions on the number of days to consider for historical
data, then there would be 3,800,000+ events in 458 days. Data
gets updated every 20 seconds in this case. In the case of buses,
this number is 1000 times larger. Jena TDB cannot handle
such large amount of data. Topics such as data, knowledge
summarization and stream synchronization needs to be looked
into so that the amount of data to be handled by Jena TDB
reduces.

Noisy sensor data. Sensors in the real-world exhibit noise.
They do not observe the world perfectly due to a number
of reasons such as malfunctioning, mis-calibration or network
issues. Such noisy data should be detected early so as to avoid
unnecessary computations and inaccurate diagnosis, prediction
results. In STAR-CITY, some custom filter operators are used
to check the validity of the data. These filter operators are
defined by analyzing the historical data. For all the data
from different sources, the minimum and maximum values
are computed. Any record in the data stream that strongly
deviates from this interval are removed. If a new data stream
is to be considered for traffic analytics, then its historical data
needs to be analyzed to determine the appropriate filters. Other
mechanisms to filter noisy data should also be looked into.

Temporal reasoning. W3C Time ontology was used to
represent the starting data/time and the duration of each
snapshot. The temporal similarity between the snapshots of
an ontology stream is strictly based on the time intervals. In
other words, only the city events and anomalies that match this
timer interval are considered. In order to capture more generic

temporal aspects such as anomalies during rush hours, bank
holidays, weekend, some refinements to the existing ontology
are required. Complex features such as temporal intervals
could have been used but this could affect the scalability of the
application over time. So only basic temporal features were
considered. However, more accurate and complext temporal
operators could be considered by taking into account the
research challenges discussed in [25].

VI. CONCLUSION

We presented a traffic analytics system named STAR-CITY
that can i) handle heterogeneous streaming data from multiple
sources, ii) diagnose anomalies such as traffic congestion,
and iii) forecast traffic congestions. Heterogeneous data is
converted into a homogeneous semantic representation using
Semantic Web technologies such as OWL and RDF. In order
diagnose traffic congestions, historical data along with other
relevant data such as weather information, road works, city
events are considered. Concept abduction is used to compare
the current event with the historical event and generate a
diagnosis report. Forecasting a traffic congestion involves
tracking the changes and associating knowledge in the form
of rules across the snapshots in an ontology stream. Filtering
of rules to avoid rule explosion and consistency in predicting
the facts are also discussed. Finally, the lessons learned and
the challenges involved in building a scalable traffic analytic
system are highlighted.

STAR-CITY supports city managers in understanding the
effects of city events, weather conditions and historical data on
traffic conditions in order to take corrective actions. It provides
valuable insights into real-time traffic conditions making it
easier to manage road traffic which in turn helps in efficient
urban planning. STAR-CITY has been successfully deployed
in some of the major cities such as Dublin (Ireland), Bologna
(Italy), Miami (USA) and Rio (Brazil).
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