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Abstract—Markov Logic Networks (MLNs) are expressive
models that can be used to specify complex and uncertain
background knowledge in the form of weighted first-order logic
formulas. However, inference in MLNs is highly challenging
since the underlying probabilistic model can be very large even
for simple MLN structures. Lifted inference has emerged as
dominant approach for probabilistic inference in MLNs, where
the idea is to exploit symmetries in the MLN for scalable
inference. In this paper, we provide an overview of MLNs, and
major advances in inference techniques for MLNs over the last
several years.

Index Terms—Markov Logic Networks, Statistical Relational
Learning, Probabilistic Graphical Models, Probabilistic Infer-
ence.

I. I NTRODUCTION

STATISTICAL Relational AI [1] unifies two corner-stones
of Artificial Intelligence, namely, first-order logic and

probabilities, to represent relational knowledge in the pres-
ence of uncertainty. Several notable SRL models have been
proposed over the last several years including Markov Logic
Networks (MLNs) [2], [3], Bayesian Logic (BLOG) [4], prob-
abilistic soft logic (PSL) [5] and ProbLog [6]. MLNs are ar-
guably one of the most popular models for SRL, and combine
first-order logic with undirected probabilistic graphicalmodels
also known as Markov networks [7]. Specifically, an MLN is
a set of first-order logic formulas with real-valued weights
attached to each formula. The first-order formulas encode
knowledge corresponding to an application domain, while the
weights represent uncertainty associated with that knowledge.
The larger the weight of a formula, greater is our belief in that
formula, and vice-versa. Thus, MLNs soften the semantics
of first-order logic (where formulas are either true/false).
More specifically, MLNs are essentially template models that
can encode different probability distributions based on the
instantiations of its first-order formulas. Given the constants in
a domain-of-interest, the probability distribution in an MLN
is represented in factored form as a Markov network. Note
that by combining the compactness of first-order logic and
Markov networks, MLNs are capable of representing large,
complex, uncertain relational knowledge in a succinct manner.
Therefore, they have been used in diverse areas including
NLP [8], computer vision [9], intelligent tutoring systems[10]
and health informatics [11].

However, the expressiveness of MLNs comes at the cost
of increased complexity of probabilistic inference, and conse-
quently learning, which typically uses inference as a sub-step.
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Specifically, with just a few compact formulas, MLNs are able
to represent extremely large Markov networks containing thou-
sands of variables and factors. For instance, consider a simple
MLN that models the transitive relationshipFriends x,
Friends , z Friends z, x with weight . Every

possible instantiation orgroundingof the MLN formula for
a given domain, represents a factor in the Markov network.
That is, suppose we consider 1000 people in our domain,
the Markov network underlying our example MLN has 1
billion factors and 1 million variables. Performing inference on
MLNs is infeasible using traditional inference algorithmsfor
graphical models, which we refer to aspropositionalmethods,
since they work on the Markov network representation of the
first-order MLN. Thus, the challenge is to perform inference
by taking advantage of thelifted representation in MLNs.

An interesting aspect about the MLN representation is
that the number of weights in the MLN is typically much
smaller than the number of factors in the underlying Markov
network. In other words, all instantiations of a formulashare
the same weight. This induces symmetries in the probability
distributions encoded by an MLN. Therefore, a significant
amount of research in MLNs has aimed towards exploit-
ing these symmetries to improve scalability. In particular,
starting with the pioneering work by Poole [12], the pre-
dominant method for inference is the idea oflifted inference,
which performs reasoning over groups of indistinguishable
variables in the model. For example, ifFriends Alice, Bob
and Friends Bob,Carl have the same distributions, then
inference results forFriends Alice, Bob can be re-used
for Friends Bob,Carl . The main challenge in developing
efficient lifted inference algorithms is to efficiently compute
groups of symmetric variables at a first-order level, without
explicitly grounding the MLN, which could potentially create
an extremely large Markov network.

The aim of this paper is to provide readers an overview
of MLNs in general, and in particular, to summarize major
advances in inference over the last few years. Fast and scalable
inference algorithms are critical to the success of not only
MLNs, but the general field of Statistical Relational AI.
With a growing interest in Statistical Relational AI due to
the expressiveness, and explainability of its models [13],we
believe that developments in this area should be of interestto
the intelligent systems community in general.

II. BACKGROUND

A. First-order Logic

The language of first-order logic (cf. [14]) consists of
quantifiers ( and ), logical variables, constants, predicates,
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and logical connectives ( , , , , and ). A predicate
is a relation that takes a specific number of arguments as
input and outputs eitherTRUE (synonymous with ) orFALSE

(synonymous with ). The arity of a predicate is the number
of its arguments. A first-order formula connects various predi-
cates through the logical connectives. A first-order knowledge
base (KB) is a set of first-order formulas. We denote logical
variables in a KB by lower case letters (e.g.,x, , z) and
constants, which model objects in the real-world domain, by
strings that begin with an uppercase letter (e.g.,A, Ana, Bob).

B. Markov Logic Networks (MLNs)

One of the problems with first-order logic is that it cannot
represent uncertainty, i.e., formulas are either true or false.
MLNs soften the constraints expressed by each formula, by
attaching a weight to it. Higher the weight, higher is our belief
of the formula being satisfied, all other things being equal.
In MLNs, we assume a restricted version of first-order logic
with Herbrand semantics. Specifically, we assume that each
argument of each predicate is typed and can only be assigned
to a finite set of constants. By extension, each logical variable
in each formula is also typed. Given a domain of constants, a
groundatom is obtained by substituting all the variables in a
predicate by constants. Similarly, a ground formula is obtained
by replacing all variables in the formula with constants. A
possible world, denoted byω, is a truth assignment to all
ground atoms in the MLN.

MLNs can also be seen as a first-order template for gener-
ating large Markov networks[15], [7], which is an undirected
probabilistic graphical model. To illustrate MLNs, we consider
the prototypical “friends-smokers” social network domain.
We can represent common-sense knowledge that “smoking
causes cancer” and “smokers tend to have similar smoking
habits” using the following weighted formulas: (i) x
Smokes x Cancer x ; and (ii) x, Smokes x
Friends x, Smokes where and are the
weights. Weights lie between and+ and reflect the
strength of the constraint. Positive (negative) weights represent
that the worlds satisfying the formula have higher (lower)
probability than worlds not satisfying the formula. MLNs
generalize first-order logic in the sense that weights that are
equal to infinity represent hard constraints.

Given a set of constants that represent objects in the domain
(e.g. people in the social-network), the Markov network has
one random variable for each grounding of each predicate
(one for each instantiation of each logical variable in the
predicate by a constant) and one feature for each possible
grounding of each first-order formula. The weight attached
to the feature is the weight attached to the corresponding
first-order formula. For instance, given two constantsAna
and Bob, the first first-order formula in the friends-smokers
MLN yields the following two ground formulas having the
same weight : (i)Smokes Ana Cancer Ana ; and
(ii) Smokes Bob Cancer Bob . . Similarly, the second
first-order formula with the same constants will yield four
ground formulas. Formally, given a set of weighted first-
order formulas f , and a set of constants, the proba-
bility of a world ω, which is a truth-assignment to all the

ground atoms, is given by the following log-linear expression:
ω = Z N ω where N ω is the number of

groundings of f that are true inω and Z is a normalization
constant, also called the partition function.

Important inference queries in MLNs are computing the
partition function, finding the marginal probability of an atom
given evidence (an assignment to a subset of variables) and
finding the most probable assignment to all atoms given
evidence (MAP inference). All these problems are computa-
tionally intractable. Therefore, typically approximate inference
algorithms are used to solve these problems in practical MLNs.
In a typical use case of MLNs, the application designer writes
first-order logic formulas that encode prior knowledge about
the domain, and then relies on domain independent techniques
implemented in software packages such as Alchemy [16] and
Tuffy [17] to solve two key tasks:probabilistic inference
– answering queries (making predictions) given the learned
MLN and observations (evidence), andweight learning –
learning the weights attached to the formulas from data.
Weight learning internally uses inference within each sub-step,
and therefore developing efficient inference methods is oneof
the key problems in MLNs.

III. E XACT L IFTED INFERENCE

Lifted inference in MLNs can be viewed as the probabilistic
equivalent of reasoning in first-order logic, i.e., theoremprov-
ing. Specifically, just as theorem proving does not convert first-
order formulas in a knowledge base to propositional formulas
but instead reasons directly on the first-order representation,
lifted inference aims to perform probabilistic reasoning with-
out creating the full Markov network from the ground for-
mulas. The concept ofdomain liftableMLNs was introduced
in [18], [19], which refers to MLN structures on which the
complexity of exact inference is polynomial in the number
of domain objects. Notable lifted inference algorithms that
peform domain-lifted exact inference, include lifted factor-
graphs [12], First-order Variable Elimination (FOVE) [20],
Weighted First-Order Model Counting (WFOMC) [21] and
Probabilistic theorem Proving (PTP) [22]. Next, we will briefly
review PTP which is one of the most popular exact lifted
inference methods for MLNs.

PTP lifts weighted model counting[23] to the first-order.
It turns out that the weighted model counting problem is
equivalent to computing the partition function of the MLN
(cf. [22], [23]). PTP computes the partition functions using
two lifting rules, namely, lifted decomposition and lifted
conditioning. Just like the well-known DPLL algorithm [24]
for SAT solving, PTP recursively applies the lifting rules on
the input MLN. Below, we give a informal summary of each
lifting rule, and refer the reader to [22], [25] for details.
Lifted Decomposition identifies identical and independent
components in the underlying Markov network by only look-
ing at the first-order structure. We illustrate this with a simple
example. Consider the MLN , Strong(x) Wins(x).
Given the domain,∆ = X , X , the Markov network
defined overStrong(X ) Wins(X ) is identical and inde-
pendent of the Markov network defined overStrong(X )

Wins(X ). Thus,Z = Z Z = Z .
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Lifted Conditioning conditions on a first-order predicate.
Conditioning removes the predicate from the MLN by creating
MLNs corresponding to each possible assignment to that
predicate. Clearly, if a predicateR hasd ground atoms, the
total number of possible assignments to the ground atoms ofR
is equal to . However, in some cases, it is possible to group
the set of assignments such that in any group, all the MLNs
that are generated by the assignments in a group are equivalent
to each other, i.e., they have the same partition function. For
example, consider the MLN Smokes x Friends x,

Asthma x . Here, conditioning onSmokes x implicitly
conditions on ∆ different assignments to the groundings
of Smokes x . However, it turns out that, in this case, we
can form ∆ + groups, where any assignment within a
group yields the same partition function after conditioning.
The grouping can be performed based on the number of atoms
among the∆ that are set to true in an assignment. We can
then choose one representative from each group, condition on
it, and multiply the partition function of the conditioned MLN
by group-size. Note that, in general, this rule can only be
applied to singleton atoms, namely, atoms whose arity is equal
to 1.

In practice, apart from the two lifting rules, PTP leverages
advanced SAT techniques such as unit propagation and caching
to greatly improve the performance of lifted inference. For
more details on these extensions, refer to [22].

IV. A PPROXIMATE L IFTED INFERENCE

Exact lifted inference is highly scalable when the MLN
structure has symmetries that can be exploited by algorithms
such as PTP. However, as shown in [18], [19], a very restrictive
set of MLNs exhibit such symmetries. Specifically, according
to current complexity results, MLNs are liftable only if each
formula has a maximum of two variables. Therefore, for
most practical MLNs, exact inference is unlikely to scale up.
Thus, several well-known propositional approximate inference
algorithms have been lifted to the first-order level. Next, we
will review a few notable ones.
Lifted Belief Propagation. Singla and Domingos [26] lifted
belief propagation[27] in MLNs to the first-order level. Specif-
ically, in loopy belief propagation, the MLN is encoded as a
factor-graph, where the atoms are the variables, and the ground
formulas are the factors. The sum-product algorithm computes
the marginals of all variables in the factor graphs by passing
messages between the nodes/variables and features/factors that
relate the nodes. The message from nodes to features is a
product of all incoming messages from other features that the
node is connected to, with the variable corresponding to the
summed-out from the product. Similarly, the message from
a feature to a node is a product of all the messages coming
into a feature from nodes connected to the feature. In Lifted
Belief Propagation, the main idea is to identify messages that
are identical, and send a single aggregate message instead
of individual messages. To do this, Singla and Domingos
proposed the creation of super-nodes and super-features, which
correspond to groups of nodes and features that emit common
messages. The grouping of nodes into super-nodes and features

into super-features is performed incrementally by observing
the messages in BP that are identical to each other.
Lifted Sampling-based Inference. In sampling-based infer-
ence methods we draw samples from the target distribution,
and compute inference queries as statistics on the drawn
samples. Note that in the case of MLNs, sampling worlds
directly from the MLN distribution is hard, since the par-
tition function is intractable to compute. In IS, we perform
approximate inference by sampling worlds from an easier-to-
sampleproposal distribution. However, to compensate for the
fact that we sampled from the approximate distribution, we
weigh each sample, and compute statistics over the weighted
samples. The quality of estimates from IS depends upon
how close the proposal distribution is to the true distribution.
Gogate et al. [28] proposed a lifted Importance Sampling
(LIS) algorithm, where the main idea is to exploit symmetries
to create a more-informed proposal distribution. Specifically,
they grouped together symmetric worlds, and sampled a single
world from each group, which consequently increases the
effective sample-size, and yields lower-variance estimates of
the computed inference queries. In order to create a proposal
distribution which is tractable to sample from, Gogate et al.
relied on lifting rules of PTP [22]. Specifically, in PTP, the
lifting rules are applicable only for specific MLN structures.
In LIS, the pre-conditions for applying the lifting rules are
relaxed, and thus, the lifting rules are applied approximately
to non-liftable MLN structures. Samples from the proposal dis-
tribution are generated by sampling from a symbolic execution
trace of PTP. Further, the proposal distribution is adaptively
improved based on prior samples such that the distribution
moves closer to the true MLN distribution.

An alternative approach to IS, is to construct a Markov
Chain whose stationary distribution is equivalent to the MLN’s
true distribution. We can then sample from this chain, and
answer inference queries based on statistics obtained from
the samples. A lifted MCMC method can be visualized as
one that works in alifted state-space. That is, we construct a
state-space of the sampler that does not explicitly enumerate
every possible state but instead groups these states based
on symmetries. For instance, a propositional sampler on a
MLN with n atoms works in a state-space states, while
a lifted state-space can have far fewer number of states. A
Markov chain defined on the lifted states can typically make
larger jumps as compared to Markov chains defined on a
propositional space, and in many cases larger jumps can avoid
being struck in regions of local optima. Niepert [29] proposed
a lifted MCMC method by grouping together states based
on symmetries detected from automorphism groups comput-
ed from the MLN’s graph structure. Venugopal et al. [30]
lifted the blocked Gibbs sampling algorithm [31], which is
an advanced variant of the Gibbs sampling [32] algorithm,
which is arguably one of the most popular MCMC methods.
Lifted Blocked Gibbs (LBG) partitions the atoms in the MLN
into domain-liftable blocks, i.e., exact lifted inferencemust
be tractable within each block. Further, the LBG sampler
maintains a lifted state-space within each block, where the
assignments to all ground atoms within a block are not stored,
but sufficient statistics related to these assignments are stored.
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This improves the convergence of the sampler, as well as the
estimates derived from the sampler.
Lifted MAP Inference . MAP inference is an optimization
problem that can be solved using popular randomized local-
search solvers such as MaxWalkSAT [33]. These techniques
are propositional since they work on the Markov network
underlying the MLN. Sarkhel et al. [34] proposed an approach
to lift such propositional MAP solvers by pre-processing the
MLN, and reducing the size of its underlying Markov network.
Specifically, they considered a specific subset of MLNs called
non-sharedMLNs, where no variables are shared across atoms
in a formula, and showed that the MAP solution in these MLNs
is independent of the number of domain objects. For example,
the MLN R x S is equivalent to R S, where, if
the assignment toR (orS) in the MAP solution is 1 (or 0), then
all ground atoms ofR x (or S x ) have an assignment equal
to 1 (or 0). Using this property, MAP inference on non-shared
MLNs can be reduced to propositional MAP inference, where
each first-order predicate is replaced by a single propositional
variable, since the MAP assignment to all groundings of the
predicate are symmetric to each other. Other approaches for
MAP inference have lifted Linear Programming solvers based
on symmetries [35].

V. EXPLOITING APPROXIMATE SYMMETRIES

One of the key problems with lifted inference methods that
exploit exact symmetries is that they are ineffective when the
structure of the MLN is complex (e.g. transitive formula) or
evidence is presented to the MLN, since evidence typically
breaks symmetries. For example, consider the toy MLN
given in Figure 1(a). When no evidence is present, all ground
atoms ofWins x, have the same marginal probability (exact
symmetry). Given evidence (see Figure 1(b)), the marginal
probabilities are no longer the same as shown in Figure
1(c) and there are no exact symmetries. In such cases, lifted
inference algorithms will ground the MLN, and lifted inference
is almost the same as propositional inference. More generally,
Broeck and Darwiche [36] showed theoretical results that,
in the presence of evidence on binary or higher-arity atoms,
MLNs are no longer domain-liftable. Similarly, Kersting et
al. [37] showed that as the amount ofsymmetry-breaking
evidence increases, the benefits of lifted inference diminishes.
Unfortunately, most real-world applications require inference
algorithms that can reason in the presence of evidence, and
in such cases lifted inference is more or less equivalent to
propositional inference. This problem can be averted using
approximations which group together variables that are similar,
but not identical. For example, from Figure 1(c), we can see
that the marginal probabilities of the first three atoms and
the last two atoms are roughly the same and they can be
treated as indistinguishable for all practical purposes. Below,
we highlight some specific approaches that are designed to
scale up inference by exploiting approximate symmetries when
exact symmetries are absent.
Over-Symmetric Approximation . Broeck and Darwiche [36]
proposed the idea ofsmoothingthe evidence by introducing
more symmetries in the model. In this way, lifted infer-
ence methods will have a better chance of finding these

symmetries. For example, if we consider the evidences on
a predicateLinked, as Linked P , P , Linked P ,P ,
Linked P , P , Linked P ,P , the evidence onP andP
is not symmetrical. however, by removingLinked P ,P
and addingLinked P ,P , the evidence becomes more sym-
metrical. Broeck and Darwiche modeled this as a factorization
problem in a boolean matrix. Specifically, binary evidence
is represented as a boolean matrix, and the idea is to come
up with a reduced-rank approximation of this matrix, which
in-turn yields more symmetric evidence that is better suited
for lifted inference. However, changing the evidence would
change the MLN distribution, and therefore, inference results
computed from this approximate distribution will not have
strong guarantees associated with it. To obtain such guarantees,
Niepert and Broeck [38] used the over-symmetric approxima-
tion to as a proposal distribution for MCMC algorithms instead
of computing inference results directly from the approximate
distribution.
Evidence-based Clustering. The key idea here is to pre-
process the MLN by reducing the number of objects, replacing
several roughly symmetric objects by a single (meta) object.
We then run lifted inference using these new, much smaller
set of objects. A key challenge is how to find objects that are
similar to each other and thus partitioning the set of objects
into symmetric subsets. To solve this problem, we defined a
distance (similarity) function that takes two objects as input
and outputs a number that describes how symmetric or similar
the two objects are (smaller the number, greater the chance
that the two objects are similar). The problem is now reduced
to a standard clustering problem, and algorithms such asK-
means can be used to solve it. Venugopal and Gogate [39]
proposed a distance function which is based on common
sense knowledge that objects having similar neighborhood
constraints (Markov blanket) tend to be symmetric in the
sense that the marginal probabilities of atoms containing those
objects will be roughly the same. Formally, the distance
function developed by Venugopal and Gogate is given by:
d X , X = U U whereX andX are constants (objects)
that belong to the same domain equivalence class (see section
2) andU = c , . . . , c and U = c , . . . , c are m-
dimensional vectors wherem is the number of formulas and
c is the number of groundings of the formulaf that evaluate
to true in the MLN obtained from the original MLN
by grounding all logical variables having the corresponding
object type withX and instantiating evidence. One can think
of U as a feature vector describing the neighborhood of the
object X in the MLN given evidence. Since computing the
number of groundings is a #P-hard problem, the approach by
Venugopal and Gogate proposed to approximate the counts
by decomposing large formulas into smaller ones. However,
one of the major problems with using clustering methods
such asK-Means is that the optimal number of clusters is
hard to compute. For instance, for some domains with greater
symmetry among objects, a small set of meta-objects may
suffice, while for other domains, we may require more meta-
objects. Venugopal et al. [40] extended the aforementioned
approach using a non-parametric clustering method called DP-
Means [41], where they computed the optimal number of
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Wins(A,A) 0.56

Wins(A,B) 0.56

Wins(A,C) 0.56

Wins(B,A) 0.56

Wins(B,B) 0.56

Wins(B,C) 0.56

Wins(C,A) 0.56

Wins(C,B) 0.56

Wins(C,C) 0.56

(a) Original Marginals

Strong(C)

Wins(A,C)

Wins(B,B)

Wins(B,C)

Wins(C,A)

(b) Evidence

Wins(A,A) 0.6

Wins(A,B) 0.6

Wins(B,A) 0.63

Wins(C,B) 0.85

Wins(C,C) 0.85

(c) New Marginals

Fig. 1. Effect of evidence on an MLN with one formula, Strong( ) Wins( , ). The marginal probabilities which were equal in (a) become unequal
in (c) due to evidence (b).

clusters for a given bound on the error in samples generated
from the approximated MLN.

Apart from the above approaches, other methods have also
been proposed for exploiting approximate symmetries in spe-
cific inference tasks. Specifically, Sarkhel et al. [42] proposed
a refinement approach for MAP inference by adding equal-
ity constraints to the MLN when objects are approximately
symmetric to each other. For the marginal inference problem,
Singla et al. [43] considered approximately similar messages
in belief propagation as equivalent messages, and constructed
a lifted belief network that is much smaller than the lifted
network constructed from exactly symmetric messages.

VI. EXPLOITING MLN STRUCTURE

Since MLNs are deined as logical formulas, propositional
inference algorithms can use approaches that exploit MLN
structure to avoid constructing the ground Markov network
during inference. Along these lines, Shavlik and Natara-
jan [44] proposed an approach calledFROG (Fast Reduction Of
Grounded networks). The idea was to pre-process the MLN,
and reduce the size of the ground network by efficiently com-
puting formulas that are satisfied due to the logical structure.
For example, inR x, S , z T z, x , if we know that
majority of the groundings ofR x, are false, then majority
of the formula groundings are true irrespective of the states of
the groundings ofS , z andT , z . FROG maintains a rep-
resentation of these non-satisfied formula groundings, andjust
stores statistics on the satisfied groundings, which is sufficient
for performing inference. Similarly, Poon and Domingos [45]
developed an approach to performlazy groundingin MLNs.
Here, only a subset of variables and ground formulas are
kept in memory, and as inference proceeds, grounding is
performed as-needed. The main idea behind this approach is
that, many propositional inference algorithms work on one
variable of the MLN at a time, and updates to the variable
depends upon a small subset of other variables and formulas.
More recently, Venugopal et al. [46] proposed an approach
to scale up local-search algorithms such as MaxWalkSAT and
sampling-based inference algorithms such as Gibbs sampling
using efficient counting algorithms. Specifically, a counting
problem that MaxWalkSAT or Gibbs Sampling needs to solve

is, counting the satisfied groundings of a first-order formula f ,
given a worldω. This problem is known to be computationally
hard [3], and inference algorithms need to solve this problem
not just once but several times over thousands of iterations.
Venugopal et al. encoded the counting problem as a problem
of computing the partition function of a graphical model.
Specifically, given thatf has k variables, they encoded a
graphical model withk nodes, and derived the factors in the
graphical model fromω. Importantly, if thetree-widthof the
encoded graphical model is small, then the counting can be
performed exactly using methods such as junction-trees [47].
For larger treewidth models, off-the-shelf algorithms such as
generalized belief propagation [27] to approximate the counts
in a scalable manner.

VII. JOINT INFERENCEAPPLICATIONS

MLNs have been used extensively to model joint inference
tasks in complex problems. As compared to Integer Linear
Prgramming (ILP) formulations which were previously used
to model joint inference [48], the first-order structure of MLNs
helps us model joint dependencies more compactly. Singla
and Domingos [49] developed one of the earliest MLN-based
joint inference models for the entity resolution task on the
cora and bibserv citation datasets. Poon and Domingos [8]
developed an MLN model for information extraction utiliz-
ing entity resolution within the model, to jointly segment
citation fields in the cora and bibserv datasets. Poon and
Domingos [50] also developed an unsupervised model for
joint coreference resolution, where they used a predicate to
specify clustering of mentions that correspond to a common
entity. Poon and Vanderwende [51] developed a joint model
for Biomedical event extraction on the Genia dataset, where
they detected triggers and arguments jointly. Venugopal et
al. [52] further improved the performance of MLNs on the
same event extraction task by leveraging linguistic features.
Specifically, encoding such features directly as MLN formulas
makes learning and inference infeasible due to their high-
dimensionality, which results in a large number of ground
formulas. To add such features to the MLN, Venugopal et al.
used the output of SVMs learned from the high-dimensional
features to generate priors for the MLN distribution. Lu et
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al. [53] designed an MLN for event coreference resolution that
jointly performs four tasks in the pipeline: trigger identification
and subtyping, argument identification and role determination,
entity coreference resolution and event coreference resolution.
Similar to Venugopal et al.’s strategy, Lu et al. used an SVM
to incorporate high-dimensional features into their MLN.

VIII. D ISCUSSION ANDCONCLUSION

Though plenty of progress has been made in MLNs over the
last several years, there is quite a lot of work that needs to be
done to make MLNs a “black-box” for application designers.
The blow-up in the size of the probabilistic model, with
increased data-size makes inference and learning very hard,
and therefore application designers find it hard to use MLNs
using existing open-source systems MLNs as-is. Particularly,
if MLNs are to work with big-data problems, inference
algorithms need to become far more scalable than current
state-of-the-art. Further, explaining the results of inference is
an area that requires active future research in MLNs. Due to
their basis in first-order logic, MLNs seem to be a promising
candidate to develop interpretable Machine learning models.
Integrating MLNs with other models such as deep-models in
order to facilitate relational deep learning is also an areawhere
future research seems to be headed.

In this paper, we provided a brief overview of MLNs and
major advances in MLN inference methods. Particularly, the
idea of lifted inference has received a lot of interest from
the research community, where symmetries (both exact and
approximate) in the MLN distribution are exploited to perform
scalable inference. As MLNs continue to be applied in varied
domains, advances in this area should be of interest to the
field of Statistical Relational AI, and the Intelligent Systems
community in general.
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