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Current State and Future Trends

Liangyue Li and Hanghang Tong

Abstract—Teams are increasingly indispensable to achieve-
ments in any organization. Despite the organizations substantial
dependency on teams, fundamental knowledge about the conduct
of team-enabled operations is lacking, especially at the social, cog-
nitive and information level in relation to team performance and
network dynamics. Generally speaking, the team performance
can be viewed as the composite of its users, the tasks that the
team performs and the networks that the team is embedded
in or operates on. The goal of this article is to (1) provide
a comprehensive review of the recent advances in optimizing
teams performance in the context of networks; and (2) identify
the open challenges and future trends. We believe this is an
emerging and high-impact topic in computational social science,
which will attract both researchers and practitioners in the
data mining as well as social science research communities.
Our emphasis will be on (1) the recent emerging techniques on
addressing team performance optimization problem; and (2) the
open challenges/future trends, with a careful balance between the
theories, algorithms and applications.

Index Terms—Network science of teams, team performance
characterization, performance prediction, team optimization.

I. INTRODUCTION

IN defining the essence of professional teamwork, Hackman
and Katz [1] stated that teams function as ‘purposive social

systems’, defined as people who are readily identifiable to each
other by role and position and who work interdependently
to accomplish one or more collective objectives. Teams are
increasingly indispensable to achievements in any organiza-
tion. This is perhaps most evident in multinational organi-
zations where communication technology has transformed the
geographically dispersed teams and networks. Business opera-
tions in the large organizations now involve large, interactive,
and layered networks of teams and personnel communicat-
ing across hierarchies and countries during the execution of
complex and multifaceted international businesses. Despite the
organizations’ substantial dependency on teams, fundamental
knowledge about the conduct of team-enabled operations is
lacking, especially at the social, cognitive and information
level in relation to team performance and network dynamics.
What do high-performing engineering/design/sale teams share
in common with respect to their communication patterns?
How to predict a team’s performance before it starts to work
on the assigned project? How to foster productive behavioral
changes of team members and leaders in order to optimize
performance?
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Generally speaking, the team performance can be viewed
as the composite of the following three aspects, including (1)
its users, (2) tasks that the team performs and (3) the networks
that the team is embedded in or operates on. In this article, we
will provide a comprehensive review of the recent advances in
characterizing, predicting and optimizing teams’ performance
in the context of composite networks (i.e., social-cognitive-
information networks).

Research in sociology and psychology has long been trying
to characterize the high-performing teams in organizations.
The basics of team effectiveness were identified by J. Richard
Hackman, who uncovered a groundbreaking insight: what
matter most to collaboration are certain enabling conditions.
Recent studies find that three of Hackman’s conditions –
a compelling direction, a strong structure, and a supportive
context – continue to be particularly critical to team suc-
cess [2]. We would comprehensively survey related literatures
in sociology, psychology and computer science.

Understanding the dynamic mechanisms that drive the suc-
cess of high-performing teams can provide the key insights
into building the best teams and hence lifting the productivity
and profitability of the organizations. For this purpose, we
introduce some of the recent work on developing novel pre-
dictive models to forecast the long-term performance of teams
(point prediction) as well as the pathway to impact (trajectory
prediction). It is also worthwhile to quantitatively examine
the relationship between the team level and individual level
performances to build a joint predictive model.

From the practical perspective, it is important to form a
good team in the context of networks for a given tasks. For an
existing team, it is often desirable to optimize its performance
through expanding the team by bringing a new team member
with certain expertise, finding a new candidate to replace
a current under-performing team member or downsizing the
team for the purpose of cost reduction. We would introduce
recent advances in team performance optimization.

II. TEAM PERFORMANCE CHARACTERIZATION

A. Collective Intelligence

The notion of individual intelligence was first proposed
by Charles Spearman when he noticed that school kids who
did well in one school subject tend to do well in many
other school subjects [3]. The observations that the average
correlation among individual’s performance on a variety of
cognitive tasks is positive and the first factor extracted using
a factor analysis accounts for about 30-50% of the variance
indicate the existence of general intelligence. The first factor is
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usually referred to as general intelligence. We can give people
a relatively limited set of items and the scores of these items
can predict how they perform across a variety of domains and
over a long period of time. Such intelligence test can predict
not only how kids do in school in multiple subjects, but also
the probability that they would be successful in their future
career. This is perhaps the most empirically replicated facts in
most of the psychology.

A group of researchers at CMU set out to test whether a sim-
ilar notion of collective intelligence exists in a team of people,
i.e., whether a single factor exists from the team’s performance
on a variety of tasks [4]. They enlisted 40 and 152 teams of
size two to five for their two studies. They assigned a diverse
set of group tasks to these teams. The tasks can be categorized
into four types, namely, ‘generate’, ‘choose’, ‘negotiate’, and
‘execute’. The results support their initial hypothesis that the
average correlation among the teams’ scores on the diverse
set of tasks is positive and the factor analysis reveals that one
single factor can account for more than 43% of the variance.
Additionally, the collective intelligence score calculated using
the first factor can strongly predict the team’s performance
on a future criterion tasks (e.g., video game and architectural
design). Surprisingly, the average team member intelligence
and the maximum team member intelligence are not that
predictive of the future performance, which tells us that simply
assigning a team of smart people does not promise a smart
team. But what are the ingredients that are important to an
intelligent team? Surprisingly, the team processes, e.g., group
cohesion, motivation, and satisfacation, traditionally regarded
as important to team performance, are not predictive of col-
lective intelligence. The collective intelligence is found to be
positively correlated with the average social perceptiveness of
the team members and negatively correlated with the variance
in the number of speaking turns by team embers.

B. Virtual Teams in Online Games

The above research about collective intelligence (CI) is
mainly on traditional teams where team members have face to
face interactions. It would be interesting to examine whether
the collective intelligence also exists in virtual teams. Virtual
teams are diverse, dispersed, digital and dynamic, e.g. the
Multiplayer Online Battle Arena (MOBA) teams. Considering
that such teams perform tasks at a fast pace without explicit
face-to-face or verbal communitication, other means of co-
ordinations might player a more critical role here, e.g., tacit
coordiation, or coordinations that happen without explicit ver-
bal communication [5]. Studying how collective intelligence
works in such MOBA teams could also inform the operations
of other virtual teams commonly seen in business world,
where teams are dipsersed across geographical boundaries and
making decisions at a fast pace.

One recent study [5] examines collective intelligence in
League of Legends (League) teams, a popular game with
worldwide monthly active user base of 67 million. In League,
a match is between two teams of five members and teams can
be formed either through the game’s matchmaking algorithms
or by recruiting other players in the game community. One

team’s goal is to destroy the opponent team’s base. The authors
hypothesize that (1) CI will predict team performance in
League, (2) social perceptiveness and proportion of woman
will be positively associated with CI in League, and (3)
CI will not be associated with equality of contribution to
conversation or decision making in League teams. In order to
know the CI, game performance, and team characteristics, the
authors collect data from three sources: (1) all team members
completed a questionnaire on their own about information on
their demographics, psychological variables, cognition, affect,
etc; (2) the teams took the Test of Collective Intelligence
(TCI), an online test battery, as a group to measure the
collective intelligence of each team; and (3) the play statistics
including the team performances are provided by Riot Games.
There were 248 teams that completed all components of the
study and 85% of the teams are all males. The authors find
that CI also exists in League teams from factor analysis and it
is positively correlated with the performance measure of the
teams controlling for individual and team play time. Besides,
CI is positively correlated with the number of woman in the
team and is positively correlated with social perceptiveness,
but the proportion of woman and social perceptiveness are not
correlated. What’s interesting is that the equality of communi-
cation measured by standard deviation of chat lines and chat
word count is not significantly correlated with CI. In addition,
CI is negatively correlated with some group process, e.g.,
perceived equality in decision making, frequency of game-
specific communication. These suggest that highly dispersed
and dynamic virtual teams tend to adopt a tacit coordination
method.

C. Networks in Sports Teams

Recently, a number of works start to examine the network
structure in sports teams in relation to their performances [6],
[7]. Using Euro Cup 2008 tournament data, researchers con-
struct a directed network of “ball flow” among players in the
team [6], where nodes represent players and edge weights
indicate the number of successful passes between two players.
They use the betweenness centrality of the player with regard
to the opponent’s goal as the performance measure of a
player and the team level performance is defined as the
average performance of the top-k players. They find that the
difference between two teams’ defined performance measure
is indicative of their winning probability. In a similar study,
researchers use English Premier League soccer team data to
find that increased network density among team members lead
to increased team performance and increased centralization of
team play decreases the performance [7].

D. Networks in GitHub Teams

Social coding platforms such as GitHub offer a unique
experience to developers as they can subscribe to activities
of other developers. Using GitHub data, researchers construct
two types of networks [8]: a project-project network, where
nodes represent projects and two nodes are connected if they
share at least one common developer; and developer-developer
network, were nodes represent developers and two nodes are
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connected if they have collaborated in the same project. They
find that in the project-project network, the diameter of the
largest connected component is 9 with the average shortet
path 3.7, which is more interconnected than human networks;
and in the developer-developer network, the average shortest
path is 2.47. Compared with the average shortest path of
Facebook 4.7, we see social coding enables substantially more
collaborations among developers.

III. TEAM PERFORMANCE PREDICTION

A. Long-term Performance Prediction

For the discussion in this section, we mainly use research
teams since their performance can be measured by the impact
of their team products (e.g., research papers, patents). Un-
derstanding the dynamic mechanisms that drive those high-
impact scientific work is a long-debated research topic and
has many important implications, ranging from personal career
development and recruitment search, to the jurisdiction of
research resources. Scholars, especially junior scholars, who
could master the key to producing high-impact work would
attract more attentions as well as research resources; and thus
put themselves in a better position in their career develop-
ments. High-impact work remains as one of the most important
criteria for various organization (e.g. companies, universities
and governments) to identify the best talents, especially at their
early stages. It is highly desirable for researchers to judiciously
search the right literature that can best benefit their research.

Recent advances in characterizing and modeling scientific
success have made it possible to forecast the long-term impact
of scientific work. Wuchty et al. [9] observe that papers with
multiple authors receive more citations than solo-authored
ones. Uzzi et al. [10] find that the highest-impact science work
is primarily grounded in atypical combinations of prior ideas
while embedding them in conventional knowledge frames.
Recently, Wang et al. [11] develop a mechanistic model for the
citation dynamics of individual papers. In particular, they iden-
tify three fundamental drives underlying the citation histories
of individual papers, namely, preferential attachment, temporal
citation trend, and fitness. They combine these three factors
into a mechanistic model, which fits well on the Physical
Review corpus and is able to predict future citations with
good accuracy. In data mining community, efforts have also
been made to predict the long-term success. Carlos et al. [12]
estimate the number of citations of a paper based on the
information of past articles written by the same author(s). Yan
et al. [13] design effective content (e.g., topic diversity) and
contextual (e.g., author’s h-index, venue’s centrality) features
for the prediction of future citation counts.

To collectively address a number of key algorithmic chal-
lenges, namely, scholarly feature design (C1), non-linearity
(C2), domain heterogeneity (C3), and dynamics (C4), in rela-
tion to predicting long-term scientific impact, a joint predictive
model iBall is proposed [14]. First (for C1), they find that the
citation history of a scholarly entity (e.g., paper, researcher,
venue) in the first three years (e.g., since its publication
date) is a strong indicator of its long-term impact (e.g., the
accumulated citation count in ten years); and adding additional
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Fig. 1. An illustrative example of the joint predictive model iBall [14]. Papers
from the same domain (e.g., AI, Databases, Data Mining and Bio) share
similar patterns in terms of attracting citations over time. Certain domains
(e.g., AI and Data Mining) are more related with each other than other
domains (e.g., AI and Bio). The authors want to jointly learn four predictive
models (one for each domain), with the goal of encouraging the predictive
models from more related domains (e.g., AI and Data Mining) to be ‘similar’
with each other.

contextual or content features brings little marginal benefits
in terms of prediction performance. This not only largely
simplifies the feature design, but also enables them to forecast
the long-term scientific impact at its early stage. Second (for
C2), their joint predictive model is flexible, being able to char-
acterize both the linear and non-linear relationship between the
features and the impact score. Third (for C3), they propose
to jointly learn a predictive model to differentiate distinctive
domains, while taking into consideration the commonalities
among these similar domains (see an illustration in Figure 1).
Fourth (for C4), they further propose a fast on-line update
algorithm to adapt our joint predictive model efficiently over
time to accommodate newly arrived training examples (e.g.,
newly published papers).

B. Performance Trajectory Forecasting

From the prediction perspective, more often than not, it
is of key importance to forecast the pathway to impact for
scholarly entities (e.g., how many citations a research paper
will attract in each of several consecutive years in the future).
The impact pathway often provides a good indicator of the
shift of the research frontier. For instance, the rapid citation
count increase of the deep learning papers reveals an emerging
surge of this topic. The impact pathway can also help trigger
an early intervention should the impact trajectory step down
in the near future.

The state of the art has mainly focused on modeling the
long-term scientific impact for the early prediction, as we have
discussed in the previous subsection. They are not directly
applicable to forecasting the impact pathway, e.g., citation
counts in each of the next 10 years. One baseline solution
is to treat the impacts across different years independently
and to train a separate model for each of the impacts. This
treatment might ignore the inherent relationship among dif-
ferent impacts across different years, and thus might lead to
sub-optimal performance. Having this in mind, a better way
could be to apply the existing multi-label/multi-task learning
methods to exploit the relation among impacts across different
years. Nonetheless, these general-purpose multi-label/multi-
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task learning approaches might overlook some unique char-
acteristics of the impact pathway prediction.

A new predictive model (iPath) is proposed to simultane-
ously fulfill two design objectives with the unique properties of
impact pathway prediction [15]. First, prediction consistency.
Intuitively, the scholarly impacts at certain years might be
correlated with each other, which, if vetted carefully, could
boost the prediction performance (i.e., multi-label or multi-task
learning). Here, one difficulty for impact pathway prediction
is that such a relation structure is often not accurately known
a priori. The iPath model is capable of simultaneously infer-
ring the impact relation structure from the training data and
leveraging such (inferred) relation to improve the prediction
performance. Second, parameter smoothness. For a given
feature of the predictive model, one do not expect its effect
on the impacts of adjacent years would change dramatically.
The iPath model is able to capture such temporal smoothness.

C. Team Performance vs. Individual Performance

The great Greek philosopher Aristotle articulated more than
2,000 years ago that “the whole is greater than the sum of its
parts”. This is probably most evident in teams, which, through
appropriate synergy, promise a collective outcome (i.e., team
performance) that is superior than the simple addition of what
each individual team member could achieve (i.e., individual
productivity). For example, in professional sports (e.g., NBA),
the peak performance of a grass-root team is often attributed
to the harmonic teamwork between the team players rather
than the individual player’s capability. Beyond teams, the
part-whole relationship also routinely finds itself in other
disciplines, ranging from crowdsourcing (e.g., Community-
based Question Answering (CQA) sites [16]), to reliability
assessment of a networked system of components [17].

From the algorithmic perspective, an interesting problem
is to predict the outcome of the whole and/or parts [18]. In
organizational teams, it is critical to appraise the individual
performance, its contribution to the team outcome as well as
the team’s overall performance [19]. Despite much progress
has been made, the existing work either develop separate
models for predicting the outcome of whole and parts without
explicitly utilizing the part-whole relationship [14], [15], or
implicitly assume the outcome of the whole is a linear sum of
the outcome of the parts [16], which might oversimplify the
complicated part-whole relationships (e.g., non-linearity). The
key to address these limitations largely lies in the answers
to the following questions, i.e., to what extent does the
outcome of parts (e.g., individual productivity) and that of the
whole (e.g., team performance) correlated, beyond the existing
linear, independency assumption? How can we leverage such
potentially non-linear and interdependent ‘coupling’ effect
to mutually improve the prediction of the outcome of the
whole and parts collectively? The challenges come as two-
folds. First (Modeling Challenge), the relationship between
the parts outcome and whole outcome might be complicated,
beyond the simple addition or linear combination. Moreover,
the composing parts of the whole might not be independent
with each other. In a networked system, the composing parts

are connected with each other via an underlying network. Such
part-part interdependency could have a profound impact on
both the part outcome correlation as well as each part’s contri-
bution to the whole outcome. Second (Algorithmic Challenge),
the complicated part-whole relationship (i.e., non-linearity and
interdependency) also poses an algorithmic challenge, as it
will inevitably increase the complexity of the corresponding
optimization problem.

To address these challenges, a joint predictive model named
PAROLE is proposed to simultaneously and mutually predict
the part and whole outcomes [20]. First, model generality,
the proposed model is flexible in admitting a variety of
linear as well as non-linear relationships between the parts
and whole outcomes, including maximum aggregation, linear
aggregation, sparse aggregation, ordered sparse aggregation
and robust aggregation. Moreover, it is able to characterize
part-part interdependency via a graph-based regularization,
which encourages the tightly connected parts to share similar
outcomes as well as have similar effect on the whole outcome.
Second, algorithm efficacy, the authors propose an effective
and efficient block coordinate descent optimization algorithm,
which converges to the coordinate-wise optimum with a linear
complexity.

IV. TEAM PERFORMANCE OPTIMIZATION

A. Team Formation

Team formation studies the problem of assembling a team
of people to work on a project. The first work that studies
team formation in the context of social networks finds a team
of experts who possess the desired skills and have strong
team cohesion to ensure the team success [21]. In particular,
they define two communication cost based on the diameter as
well as the minimum spanning tree of the induced team sub-
graph. Since the corresponding optimization problems are NP-
complete, they devise approximation algorithms by exploiting
the relationship to Multiple-Choice Cover and Group Steiner
Tree problems. As follow-up work, Anagnostopoulos et al [22]
study forming teams to accommodate a sequence of tasks
arriving in an online fashion. Rangapuram et al [23] allow
incorporating many realistic requirements (e.g., inclusion of
a designated team leader) into team formation based on
a generalization of the densest subgraph problem. Beyond
that, minimizing the tensions among the team members is
considered [24]. With the presence of the underlying social
network, the set cover problem is complicated by the goal
of lowering the communication cost at the same time. Cao et
al [25] develop an interactive group mining system that allows
users to efficiently explore the network data and from which
to progressively select and replace candidate members to form
a team. Bogdanov et al [26] study how to extract a diversified
group pulled from strong cliques given a network; this ensures
that the group is both comprehensive and representative of the
whole network. Cummings and Kiesler [27] find that prior
working experience is the best predictor of collaborative tie
strength. To provide insights into designs of online commu-
nities and organizations, the systematic differences in appro-
priating social softwares among different online enterprise
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communities is analyzed in [28]. The patterns of informal
networks and communication in distributed global software
teams using social network analysis is also investigated in [29].
Specific communication structures are proven critical to new
product development delivery performance and quality [30].
To assess the skills of players and teams in online multi-
player games and team-based sports, “team chemistry” is also
accounted for in [31], [32].

B. Team Member Replacement

The churn of team members is a common problem across
many application domains. For example, an employee in a
software or sales team might decide to leave the organization
and/or be assigned to a new tasks. The loss of the key
member (i.e., the irreplaceable) might bring the catastrophic
consequence to the team performance. How can we find
the best alternate (e.g., from the other members within the
organization), when a team member becomes unavailable?
Despite the frequency with which people leave a team before
a project/task is complete and the resulting disruption [33],
replacements are often found opportunistically and are not
necessarily optimal.

It is conjectured that there will be less disruption when
the team member who leaves is replaced with someone with
similar relationships with the other team members. This con-
jecture is inspired by some recent research which shows that
team members prefer to work with people they have worked
with before [34] and that distributed teams perform better
when members know each other [27]. Furthermore, research
has shown that specific communication patterns amongst team
members are critical for performance [30]. Thus, in addition to
factors such as skill level, maintaining the same or better level
of familiarity and communication amongst team members
before and after someone leaves should reduce the impact of
the departure. In other words, for team member replacement,
the similarity between individuals should be measured in the
context of the team itself. More specifically, a good team mem-
ber replacement should meet the following two requirements.
First (skill matching), the new member should bring a similar
skill set as the current team member to be replaced. Second
(structure matching), the new member should have a similar
network structure as the current team member in connecting
the rest of the team members.

Armed with this conjecture, Team Member Replacement
problem is formally defined by the notation of graph similar-
ity/kernel [35], [36]. By modeling the team as a labeled graph,
the graph kernel provides a natural way to capture both the
skill and structure match as well as the interaction of both.
However, for a network with n individuals, a straightforward
method would require O(n) graph kernel computations for
one team member replacement, which is computationally
intractable. For example, for the DBLP dataset with almost
1M users (i.e., n ≈ 1, 000, 000), the authors find that it would
take 6,388s to find one replacement for a team of size 10. To
address the computational challenges, they propose a family of
fast algorithms by carefully designing the pruning strategies
and exploring the smoothness between the existing and the

new teams. From their extensive experimental evaluations,
they find that (1) by encoding both the skill and structural
matching, it leads to a much better replacement result. Com-
pared with the best alternative choices, they achieve 27% and
24% net increase in average recall and precision, respectively;
(2) the fast algorithms are orders of magnitude faster and scale
sub-linearly. For example, their pruning strategy alone leads
up to 1,709× speed-up, without sacrificing any accuracy.

C. Team Enhancement

Different from Team Member Replacement, Team Refine-
ment considers refining a team by replacing one member
with another with the desired skill sets and communication
connections. In the above two problems, the team size remains
the same. In Team Expansion, we want to expand the team by
adding a member with certain skill sets and communication
structure. For instance, a software project team wants to
develop a new feature of natural language search and a new
member with Natural Language Processing (NLP) skill will
be recruited. On the contrary, in Team Shrinkage, the size of
a team needs to be reduced in response to new challenge such
as a shortage of the available resource (e.g., a budget cut). In
all cases, the resulting disruption [33] should be minimized.

By careful inspection, Li et al. [36] identify the problem
similarity between Team Refinement, Team Expansion and
Team Replacement and propose these problems can be for-
mulated in a way to share common technical solutions. In
Team Refinement, one team member is edited to a desired
skill and network structure configuration. Since such edited
member might not exist in the rest of the network, they call it
a ‘virtual member’. By replacing this ‘virtual member’ as in
Team Replacement, they can solve Team Refinement. Similarly,
in Team Expansion, the desired new member might also be
a ‘virtual member’. After adding this ‘virtual member’ to the
current team and then replacing the ‘virtual member’, they can
solve Team Expansion. They propose to reduce the disruption
induced by the team alteration by maintaining the team-level
similarity (between the original and the new teams), which
includes skill similarity as well as structural similarity.

D. Interactive Visualization System

A system called TeamOPT (http://team-net-work.org/) is
developed to assist users in optimizing the team performance
interactively to support the changes to a team [37] (See Fig. 2
for an example). TeamOPT takes as input a large network of
individuals (e.g., co-author network of researchers) and is able
to assist users in assembling a team with specific requirements
and optimizing the team in response to the changes made
to the team. To the best of our knowledge, this is the first
system specializing in forming and optimizing teams with
the following key features. First (effectiveness), they carefully
identify the design objectives and develop effective algorithms
with the key technique of graph kernels. Compared with other
competitors, their algorithm can achieve the highest precision
and recall in finding the best team member candidate. Second
(interaction), they design fast solutions to their algorithms,
enabling an interactive user experience with users’ feedback
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Fig. 2. A snapshot of the TeamOPT interactive visualization system.

in the loop. Third (deployment), they build the system with
HTML5, Javascript, D3.js (front-end) and Python CGI (back-
end).

V. FUTURE DIRECTIONS

As an emerging field, the network science of teams is still in
its early stage and remains an active area of exploration. Future
directions include modeling the hierarchical structure within
organizations by extending the PAROLE model and modeling
the heterogeneous goals among the team members. In the team
optimization work, one implicit assumption is that the original
team is performing well and maintaining the similarity with
the original team can promise a similar high performance. We
want to point out that when the assumption does not hold,
one can leverage the actual or predicted future performance
as feedback to guide the team optimization process, using
advanced reinforcement learning techniques. Since team oper-
ations often involve important staffing decisions, it is critical
to have team performance prediction and optimization to be
explainable to the end users [38], [39].
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