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Abstract—As one of the most used clustering algorithms, K-

means clustering algorithm has been applied in variety areas. Its 

clustering result depends on the predefined cluster number, the 

initialization, and the similarity measure. Previous research 

focused on solving parts of these issues but has not focused on 

solving them in a unified framework. However, fixing one of these 

issues does not guarantee the best performance. To improve K-

means clustering algorithm, we propose the K-Initialization-

Similarity (KIS) clustering algorithm to solve the issues of the K-

means clustering algorithm in a unified way. Specifically, we 

propose to learn the similarity matrix based on the data 

distribution, to automatically output the cluster number using a 

robust loss function, and to fix the initialization by using sum-of-

norms which outputs the new representation of the original 

samples. The proposed algorithms outperformed the state-of-the-

art clustering algorithms on real data sets. Moreover, we 

theoretically prove the convergences of the proposed optimization 

methods for the proposed objective function. 

Index Terms—Clustering, K-means, Spectral clustering, 

Machine learning, Initialization, Similarity measure. 

I. INTRODUCTION

-means clustering algorithm is considered one of the most

used clustering algorithms. It has been successfully

applied to broad areas such as artificial intelligence, machine 

learning, data mining, etc.  

K-means clustering algorithm partitions the dataset into K

distinct clusters in the following steps: First, it initializes cluster 

centers via randomly selecting K data points as the K cluster 

centers. Second, it assigns each data point to its nearest cluster 

center according to a similarity measure, e.g., Euclidean 

distance. Third, it revises the K cluster centers using the mean 

of assigned data points in each cluster. K-means clustering 

algorithm keeps repeating the last two steps until the algorithm 

achieves convergence [1, 2].  

As one of the most famous and widely used clustering 

algorithm, K-means clustering algorithm still has its limitations. 

It is difficult to determine the cluster number K without prior 

knowledge. Different initializations may obtain completely 

different clustering results. K-means clustering results depend 

on the similarity measure such as Euclidean distance measure 

which does not account for the factors such as cluster sizes, 

dependent features or density [3, 4]. Thus K-means clustering 

algorithm is not good for indistinct or not well-separated data 

sets [5, 6]. Existing methods only solved some of these 

problems. All these issues of K-means clustering algorithm are 

important to be addressed to improve the performance of K-

means clustering algorithm. Many literatures have solved some 

parts of these issues of K-means clustering algorithm [7-9]. For 

example, Duan et al. developed an algorithm to calculate the 

density to select the initial cluster centers [10]. Lakshmi et al. 

proposed to use nearest neighbors and feature means to decide 

the initial cluster centers [8]. Other works also addressed the 

issues of K-means clustering algorithm [11-14]. 

However, previous clustering algorithms only fixed parts of 

the issues of the K-means clustering algorithm. When a 

clustering algorithm addresses those problems separately, it is 

easily to be trapped into the sub-optimal results, which means 

it is hard to obtain a global optimal solution, for example, even 

if a best initial value is found or the best similarity matrix is 

found, but the final optimal results may not be obtained. 

Because the results of the individual steps are not obtained 

according to the requirements of the next steps. It would be 

significant if we could fix the issues of the initialization, cluster 

number determination and similarity measure problems of K-

means clustering algorithm in a unified framework to achieve 

global optimal results.  

Our proposed new K Initialization Similarity (KIS) 

algorithm is aimed to develop an improved K-means clustering 

algorithm while solving the issues of the cluster number 

determination, the initialization, the similarity measure in a 

unified way. Specifically, the cluster number is automatically 

generated by using a robust loss function, the initialization of 

the clustering using sum-of-norms (SON) regularization, the 

similarity matrix based on the data distribution. Furthermore, 

we employ the alternative strategy to solve the proposed 

objective function. The experimental results on real-world 

benchmark data sets also demonstrates that our KIS clustering 

algorithm outperforms the related clustering methods in terms 

of accuracy (Acc), the assessment evaluation metric for 

clustering algorithm [1]. 

We briefly summarize the contributions of our proposed KIS 

algorithm as follows: 

• A unified way addresses the cluster number determination,

initialization, and similarity measure issues around

clustering.

• The cluster number is automatically generated using a

robust loss function.

• The initialization is fixed by using the sum-of-norms

regularization

• The similarity measure is generated based on the data

distribution

• The proposed clustering algorithm outperforms

comparison clustering algorithms. It implies that

simultaneously addressing the three issues (cluster number

determination, initialization, and similarity measure) is

feasible and robust.

This section has laid the background of our research inquiry. 

The remainder of this paper is organized as follows. Section 2 

discusses the existing relevant clustering algorithm. Section 3 

introduces our KIS algorithm. Section4 discusses the 

experiments we conducted and present the results of our 
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experiments. The conclusions and future research direction are 

presented in Section 5. 

 

II. RELATED WORK 

Clustering can be generally categorized into the prototype-

based and the non-prototype-based approaches, based on 

whether the clustering algorithm is center-based or not. 

 

A. Prototype-based clustering Algorithms 

The prototype of the corresponding cluster is the center of the 

data points in each cluster. The prototype-based clustering 

algorithms assign data points to their closest prototypes, such 

that data points in the group are closer to the prototype of the 

cluster than to the prototype of any other group. K-means 

clustering algorithm is one of the most famous representatives 

of this kind of clustering approaches [15, 16]. It keeps 

recalculating the prototypes followed by assigning each data 

point to a cluster represented by a prototype until the algorithm 

achieves convergence [1]. There are numbers of other 

algorithms based on prototype clustering algorithms, e.g. K-

medoids, COTCLUS, and Tabu search. K-medoids chooses the 

data points located near their prototypes to represent the 

clusters. The rest of remaining data points are clustered with the 

representative prototype to which they are the most similar 

based on the minimal sum of the dissimilarities between data 

points and their corresponding cluster prototypes [17]. Instead 

of using only one center for each class, COTCLUS, an 

improved prototype-based clustering algorithm, uses suitable 

prototypes from another cluster. It finds two prototypes from 

one cluster and replace them by two prototypes from the other 

cluster in such a way that maximum decreases the mean square 

error of the first clustering. It constructs a clustering from two 

suboptimal clustering results based on the belief that each 

suboptimal clustering has benefits regarding to containing some 

of the correct clusters [18]. After modifying centroids, it applies 

K-means clustering algorithm for final fine-tuning [18]. A Tabu 

based clustering algorithm employs the prototype driven 

approach of the K-means clustering algorithm with the 

guidance of Tabu search, which is a local or neighborhood 

search algorithm that accepts the worsening searches of no 

improving search is available and discourages the search from 

going back to previously visited search [19]. The K-medoids, 

COTCLUS, and Tabu search example like other K-means 

clustering algorithm need to specify the cluster number K 

before the execution of the algorithms.   

 

B. Non-Prototype-based clustering algorithms 

Instead of conducting clustering based on the cluster centers 

by the prototype approaches, some non-prototype-based 

clustering algorithms use links or graph. Robust clustering 

using links (ROCK) [20]. ROCK clustering algorithm draws a 

number of data points randomly from the original data set as 

inputs along with the desired cluster number K. Instead of using 

distances to conduct clustering, ROCK uses the number of links 

which is defined as the number of common neighbors as the 

similarity measure [20]. But ROCK ignores the possible 

differences in the similarity measure of different clusters inside 

the same data set. Graph is also used for representing the high-

order relationship among data points [21]. A graph is a set of 

nodes with connected edges which have weights associated 

with them [22]. Spectral clustering algorithm is an example of 

clustering algorithms using graph. It creates a similarity matrix 

first and then defines a feature vector. Then it runs the K-means 

clustering algorithm to conduct clustering [23]. It creates the 

spectral representation and conducts the final clustering in 

separate stages, and it requires the cluster number beforehand 

because it uses of the K-means clustering algorithm. Low-rank 

representation (LRR) identifies the subspace structures from 

data points and then finds the lowest rank representation among 

data points to represent the original data points [24]. A low-rank 

kernel learning graph-based clustering (LKLGC) algorithm is 

based on a multiple kernel learning with assumption that the 

consensus kernel matrix is a low-rank matrix and lies in the 

neighbourhood of the combined kernel matrix [25]. The 

spectral clustering algorithm is applied to get the final 

clustering results for LKLGC algorithm, hence it is a multi-

stage clustering and the cluster number needs to be predefined 

[25].  A low-rank kernel learning for Graph-based Clustering 

(LKG) iteratively constructs graph and kernel learning which 

exploits the similarity of the kernel matrix and an optimal 

kernel from the neighboring candidate kernels [11]. It requires 

the cluster number beforehand. A hybrid representative 

selection based ultra-scalable spectral clustering (U-SPEC) 

constructs a sparse affinity sub-matrix by using a hybrid 

representative selection strategy and a K-nearest 

representatives approximation method, and then interprets the 

sparse sub-matrix as a bipartite graph, which is partitioned 

using transfer cut to obtain the clustering result [12]. It is a 

multi-stage clustering and cluster number is prerequisite. 

Current prototype-based and non-prototype-based clustering 

algorithms do not simultaneously solve the initialization, 

similarity measure or cluster number issues of non-graph-based 

clustering algorithms.  

III. K-INITIALIZATION-SIMILARITY CLUSTERING 

Given a data matrix 𝐗 = {𝐱1,𝐱2, … , 𝐱𝑛} ∈ ℝ𝑛×𝑑 , where n and 

d, respectively, are the number of samples and features, we 

denote boldface uppercase letters, boldface lowercase letters, 

TABLE I 

DESCRIPTION OF SYMBOLS USED IN THIS PAPER 

Symbol Description 

𝐗 Data matrix 

𝐱 A vector of 𝐗 

𝐱𝑖 The 𝑖-th row of 𝐗 

𝑥𝑖,𝑗 The element in the 𝑖-th row and 𝑗-th column of 𝐗 

‖𝐱‖2
  L2-norm of 𝐱  

‖𝐗‖𝐹
  The Frobenius norm or the Euclidean norm of 𝐗 

𝐗𝑇  The transpose of 𝐗 

𝐾 Cluster number 
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and italic letters as  matrices, vectors and scalars, respectively, 

and also summarize the symbols used in this paper in Table I. 

 

A. Motivation 

To find out how other algorithms improve K-means 

clustering algorithm, we investigate Spectral clustering 

algorithm, Robust Clustering using links, Low-rank kernel 

learning for graph-based clustering (LKG), and Ultra-scalable 

spectral clustering (U-SPEC) beside K-means clustering 

algorithm in detail. 

K-means algorithm aims at minimizing the total intra-cluster 

variance represented by an objective function known as the 

squared error function shown in Eq. (1): 

 𝐸 =  ∑  𝐾
𝑗=1 ∑ ‖𝑖𝑙

 − 𝑤𝑗‖
2 

𝑖∈𝐶𝑗
 (1) 

where K is number of clusters, 𝑗 ∈ {1, … , 𝐾}, n is number of 

data points, 𝑙 ∈ {1, … , 𝑛}, (𝑤1, … , 𝑤𝐾) is the K prototypes. 𝐶𝑗 is 

the jth cluster. K-means clustering algorithm operates in the 

following steps: First, it initializes k prototypes (𝑤1, … , 𝑤𝐾) via 

randomly selecting K data points from 𝑙 ∈ {1, … , 𝑛}. Second, it 

assigns each 𝑖𝑙
  to the cluster 𝐶𝑗 with 𝑤𝑗 , each 𝐶𝑗 is associated 

with 𝑤𝑗. Third, it updates the prototype 𝑤𝑗 for each cluster 𝐶𝑗  

using the mean. K-means clustering algorithm keeps repeating 

the last two steps until the E doesn’t change or change 

insignificantly [12].  

Instead of using original data points, Spectral clustering 

algorithm conducts K-means clustering on spectral 

representation. To do this, Spectral clustering algorithm first 

creates a similarity matrix, and then constructs a diagonal 

degree matrix using the sum of all the weights on each row of 

the similarity matrix and a feature vector by computing the first 

K eigenvectors of its Laplacian matrix, which is the degree 

matrix subtracting the similarity matrix. Finally, it runs K-

means clustering on these features to separate objects into K 

clusters [23]. Spectral clustering algorithm is a multi-step 

algorithm and it requires the cluster number to be predefined.  

Robust clustering using links (ROCK) obtains a number of 

random data points from the original data, then uses the link 

agglomerative approach with a goodness measure, which 

determines which pair of points is merged at each step as shown 

in Eq. (2). Finally, the remaining data points are assigned to 

these clusters [20].  

𝑔(𝐾𝑖 , 𝐾𝑗  ) =
link(𝐾𝑖,𝐾𝑗)

(𝑛𝑖+𝑛𝑗)
1+2𝑓(𝜃)−𝑛𝑖

1+2𝑓(𝜃)−𝑛𝑗
1+2𝑓(𝜃) (2) 

where link(𝐾𝑖 , 𝐾𝑗)  is the number of links between the two 

clusters. 𝑛𝑖 and 𝑛𝑗 are the number of points in each cluster. The 

function f satisfies the property that each item in 𝐾𝑖 ,  has 

approximatelt 𝑛𝑖
𝑓(𝜃)  neighbors in the cluster. The reasoning 

behind using link is that the data points belonging to the same 

cluster most likely have a large number of common neighbours, 

thus more links. Hence the larger the number of links between 

data points, the greater likelihood they belong to the same 

cluster. But ROCK ignores the possible differences the 

similarity of different data points and it require the cluster 

number beforehand as well.  

Low-rank kernel learning for graph-based clustering (LKG) 

constructs graph and learns consensus kernel in a unified 

framework. Its low-rank kernel matrix is learnt by exploiting 

the similarity of the kernel matrix and seeking an optimal kernel 

from the neighboring of candidate kernels. The graph and 

kernel are iteratively enhanced by each other. LKG runs the 

spectral clustering algorithm to achieve the final clustering 

results. 

min𝑍,𝐾,𝐠  
1

2
𝑇𝑟‖𝐾 − 2𝐾𝑍 + 𝑍𝑇𝐾𝑍‖𝐹

2
 
 + 𝛼𝜌(𝑍) + 𝛽‖𝐾‖∗

 +

𝛾‖𝐾 − ∑ g𝑖𝐻𝑖 
𝑖 ‖

𝐹

2
, 𝑠. 𝑡. 𝑍 ≥ 0, 𝐾 ≥ 0, g𝑖 ≥ 0, ∑ g𝑖

𝑟 
𝑖 = 1  (3) 

where Z is self-expression coefficient, K is nonnegative kernel 

matrix, H is kernel matrix, the weight of kernel 𝐻𝑖 is g𝑖 , the 

constraints for g are from standard Multiple kernel learning 

method. The corresponding g𝑖will be assigned a small value if 

a kernel is not appropriate. ‖𝐾‖∗
  is the structure of the kernel 

matrix, where K will respect the correlations among data points 

with the cluster structure. The last term in Eq. (3) seeks an 

optimal kernel K in the neighborhood of ∑ g𝑖𝐻𝑖 
𝑖 . Z and K 

repeatedly learnt in a unified model. LKG reinforces the 

underlying connections between the optimal kernel learning 

and graph learning. 

To improve the randomness and efficiency of K-means 

cluster algorithm, a hybrid representative selection based ultra-

scalable spectral clustering (U-SPEC) was designed. It 

interprets the sparse sub-matrix as a bipartite graph, which is 

partitioned using transfer cut to obtain the clustering result. U-

SPEC algorithm conducts in three phases. In the first phase, a 

hybrid representative selection strategy is applied by randomly 

selecting candidates and obtaining representatives from 

candidates via K-means. In the second phase, a coarse-to-fine 

method is used to approximate the K-nearest representatives for 

each data points, and to construct a sparse affinity sub-matrix 

between the data points and the representatives. The sparse 

affinity sub-matrix is represented by the Eq. (4). In the third 

phase, the sub-matrix is interpreted as a bipartite graph, which 

is partitioned to the final clusters. 

 

𝐵 = {𝑏𝑖,𝑗}
𝑁𝑥𝑝

, 𝑏𝑖,𝑗 = {
exp (−

‖𝑥𝑖−𝑟𝑗‖
2

2𝜎2
) , if 𝑟𝑗 ∈ 𝑁𝐾(𝑥𝑖) 

0, otherwise

 (4) 

where 𝑁𝐾(𝑥𝑖) represents the set of K-nearest representatives of 

𝑥𝑖 and is the average Euclidean distance between the data points 

and their K-nearest representatives.  

Previous clustering algorithms only fixed part of the issues 

of the K-means clustering algorithm. It would be significant for 

our KIS clustering algorithm fixing the issues of the 

initialization, cluster number determination and similarity 

measure problems of K-means clustering algorithm in a unified 

framework to achieve global optimal results. 

  

B. K-Initialization-Similarity Clustering Algorithm 

This paper proposes a new clustering algorithm (i.e., K-

Initialization-Similarity (KIS)) to simultaneously solve the 

cluster number determination, the initialization issue, and the 

similarity measure issue of K-means clustering algorithm in a 

unified framework. Specifically, KIS clustering algorithm 
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generates the new representation of original data points, applies 

sum-of-square error estimation to minimize the difference 

between the original data and its new representative, learns the 

similarity matrix based on the data distribution, and generated 

the cluster number K by using the robust loss function. To 

achieve our goal, we form the objective function of the KIS 

clustering algorithm as follows: 

min𝐒,𝐔  
1

2
‖𝐗 − 𝐔‖𝐹

2
 
 +

𝛼

2
∑ 𝑠𝑖,𝑗𝜌(‖𝐮𝑖 − 𝐮𝑗‖

2

 𝑛
𝑖,𝑗=1 ) + 𝛽‖𝐒‖2

2,

𝑠. 𝑡. , ∀𝑖, 𝑠𝑖,𝑗 ≥ 0, 𝐬𝑖
𝑇𝐞 = 1 (5) 

where 𝐗 ∈ ℝ𝑛×𝑑  is the data matrix, 𝐔 ∈ ℝ𝑛×𝑑  is the new 

representation of  𝐗, and 𝐒 ∈ ℝ𝑛×𝑛 is the similarity matrix to 

measure the similarity among data points, and   𝜌 (‖𝐮𝑖 − 𝐮𝑗‖
2

 
) 

is a robust loss function, used for automatically generating 

clusters. The smaller the value of ‖𝐮𝑖 − 𝐮𝑗‖
2

 
 is, the closer the 

distance is, and the higher the similarity 𝐬𝑖 and 𝐬𝑗is. With the 

update of other parameters in Eq. (5), the distance ‖𝐮𝑖 −

𝐮𝑗‖
2

 
 for some 𝑖 and 𝑗, will be very close, or even 𝐮𝑖 = 𝐮𝑗. The 

clusters will be determined. 𝒆 = [𝟏, … , 𝟏]𝑇.  

Eq. (5) fixes the initialization of clustering, automatically 

learns the new representation 𝐔 and the similarity matrix 𝐒, and 

generates the cluster number. The similarity matrix 𝐒 learning 

is based on the data distribution, i.e., iteratively updated by the 

updated 𝐔. This produces an intelligent new representation of 

the original data matrix. 

Moreover, Eq. (5) will keep the distance of indicator vectors 

similar if the data belongs to the same cluster, possibly making 

them equal. The distance of indicator vectors is as separated as 

possible if data belongs to the different clusters.   

Several robust loss functions have been proposed to avoid the 

influence of noise and outliers in robust statistics [26]. Here we 

employ the Geman-McClure function [27]: 

Ρ (‖𝐮𝑝 − 𝐮𝑞‖
2

 
) =

𝜇‖𝐮𝑝−𝐮𝑞‖
2

2

𝜇+‖𝐮𝑝−𝐮𝑞‖
2

2 (6) 

The literature of half-quadratic minimization and robust 

statistics explains the reason for selecting Geman–McClure loss 

function instead of other loss functions [28]. Eq. (6) measures 

how well a model predicts the expected outcome. The smaller 

the value of ‖𝐮𝑝 − 𝐮𝑞‖
2

2
 is, the closer the distance is, and the 

higher the similarity s𝑝  and s𝑞 is. With the update of other 

parameters in Eq. (6), the distance ‖𝐮𝑝 − 𝐮𝑞‖
2

2
 for some 𝑝 and 

𝑞, will be very close, or even 𝐮𝑝 = 𝐮𝑞 . The clusters will be 

determined.  

The optimization of the robust loss function is challenging. 

To address this, it is normal practice to introduce an auxiliary 

variable 𝑓𝑖,𝑗  and a penalty item  𝜑(𝑓𝑖,𝑗) , and thus Eq. (5) is 

rewritten to:  

 min𝐒,𝐔,𝐅

1

2
∑ ‖𝐱𝑖 − 𝐮𝑖‖2

2
𝑛

𝑖=1
+

α

2
∑ 𝑠𝑖,𝑗(𝑓𝑖,𝑗‖𝐮𝑖 − 𝐮𝑗‖

2

2𝑛

𝑖,𝑗=1
  

  

+φ(𝑓𝑖,𝑗)) + 𝛽 ∑ ‖𝐬𝑖‖2
2𝑛

𝑖=1   𝑠. 𝑡. , ∀𝑖, 𝑠𝑖,𝑗 ≥ 0, 𝒔𝑖
𝑇𝒆 = 1  (7) 

where 𝜑(𝑓𝑖,𝑗) = 𝜇(√𝑓𝑖,𝑗 − 1)
2

, 𝑖, 𝑗 = 1 … 𝑛 

This objective function is still challenging to solve. An 

iterative optimization process is adopted to tackle this 

challenge. In the next section, we will show how iterative 

optimization is utilized to solving the problem.  

 

C. Optimization 

Eq. (7) is not jointly convex on 𝐅, 𝐔, and 𝐒, but is convex on 

each variable while fixing the rest. To solving the Eq. (7), the 

alternating optimization strategy is applied. We optimize each 

variable while fixing the rest until the algorithm converges. The 

pseudo-code of KIS clustering algorithm is given in Algorithm 

1. 

    

1) Update 𝑭 while fixing 𝑺 and 𝑼  

While 𝐒  and 𝐔  are fixed, the objective function can be 

rewritten in a simplified matrix form to optimize 𝐅: 

Min𝐅
𝛼

2
∑ 𝑠𝑖,𝑗(𝑓𝑖,𝑗‖𝐮𝑖 − 𝐮𝑗‖

2

2𝑛
𝑖,𝑗=1 + 𝜇(√𝑓𝑖,𝑗 − 1)

2
) (8) 

Since the optimization of 𝑓𝑖,𝑗  is independent of the 

optimization of other 𝑓𝑝,𝑞 , 𝑖 ≠ 𝑝, 𝑗 ≠ 𝑞 , the 𝑓𝑖,𝑗   is optimized 

first as shown in following Eq. (9) 

Min𝑓𝑖,𝑗
 

𝛼

2
(𝑠𝑖,𝑗𝑓𝑖,𝑗‖𝐮𝑖 − 𝐮𝑗‖

2

2
+ 𝑠𝑖,𝑗(𝜇(𝑓𝑖,𝑗 − 2√𝑓𝑖,𝑗 + 1)

 
) (9) 

By conducting a derivative on Eq. (9) with respect to 𝑓𝑖,𝑗, we 

get Eq. (10). 
𝛼

2
(𝑠𝑖,𝑗‖𝐮𝑖 − 𝐮𝑗‖

2

2
+ 𝑠𝑖,𝑗𝜇−𝑠𝑖,𝑗𝜇𝑓𝑖,𝑗

−
1
2

 

) = 0  (10) 

⇒
𝛼

2
  𝑠𝑖,𝑗‖𝐮𝑖 − 𝐮𝑗‖

2

2
+

𝛼

2
 𝑠𝑖,𝑗𝜇−

𝛼

2
𝑠𝑖,𝑗𝜇𝑓𝑖,𝑗

−
1

2

 

= 0  (11) 

  ⇒  𝑓𝑖,𝑗
   = (

   𝜇

𝜇+‖𝐮𝑖−𝐮𝑗‖
2

2)

2

 (12) 

 

2) Update 𝑺 while fixing 𝑼 and 𝑭 

While fixing 𝐔 and 𝐅, the objective function Eq. (7) with 

respect to 𝐒 is: 

Min𝐒
𝛼

2
∑ (𝑠𝑖,𝑗𝑓𝑖,𝑗‖𝐮𝑖 − 𝐮𝑗‖

2

2𝑛
𝑖,𝑗=1 + 𝑠𝑖,𝑗(𝜇(√𝑓𝑖,𝑗 − 1)

2
)) +

𝛽 ∑ ‖𝐬𝑖‖2
2𝑛

𝑖=1 , 𝑠. 𝑡. , ∀𝑖, 𝑠𝑖,𝑗 ≥ 0, s𝑖
𝑇e = I (13) 

Since the optimization of 𝐬I is independent of the 

optimization of other 𝐬𝑗 , 𝑖 ≠ j, 𝑖, 𝑗 = 1, … , n, the 𝐬𝑖  is optimized 

first as shown in following: 

 Min𝐬𝑖 
   

𝛼

2
∑ 𝑠𝑖,𝑗(𝑓𝑖,𝑗‖𝐮𝑖 − 𝐮𝑗‖

2

2𝑛
𝑗=1 + 𝜇(√𝑓𝑖,𝑗 − 1)

2
) + 𝛽‖𝐬𝑖‖2

2 , 

𝑠. 𝑡. , ∀𝑖, 𝑠𝑖,𝑗 ≥ 0, s𝑖
𝑇e = 1 (14) 

Let 𝑏𝑖,𝑗 = 𝑓𝑖,𝑗‖𝐮𝑖 − 𝐮𝑗‖
2

2
 and  𝑐𝑖,𝑗 = 𝜇(√𝑓𝑖,𝑗 − 1)

2
, Eq. (14) 

is equivalent to: 

Min𝐬𝑖
   

𝛼

2
∑ 𝑠𝑖,𝑗𝑏𝑖,𝑗

𝑛
𝑗=1 +

𝛼

2
∑ 𝑠𝑖,𝑗𝑐𝑖,𝑗

𝑛
𝑗=1 + 𝛽‖𝐬𝑖‖2

2, 𝑠. 𝑡. , ∀𝑖, 𝑠𝑖,𝑗 ≥

0, 𝒔𝑖
𝑇𝑒 = 1  (15) 

⇒ min𝐬𝑖
  

𝛼

2
𝐬𝑖

𝑇𝐛𝑖 +
𝛼

2
𝐬𝑖

𝑇𝐜𝑖 + 𝛽‖𝐬𝑖‖2
2,    𝑠. 𝑡. , ∀𝑖, 𝑠𝑖,𝑗 ≥ 0, 𝐬𝑖

𝑇𝑒 =

1 (16) 

 ⇒ min𝐬𝑖
 𝐬𝑖

𝑇𝐬𝑖
 + 2𝐬𝑖

 𝛼

4𝛽
𝐬𝑖

𝑇(𝐛𝑖 + 𝐜𝑖) +
𝛼

4𝛽
𝐬𝑖

𝑇(𝐛𝑖 + 𝐜𝑖)𝑇(𝐛𝑖 +

𝐜𝑖) −  
𝛼

4𝛽
s𝑖

𝑇(𝐛𝑖 + 𝐜𝑖)𝑇(𝐛𝑖 + 𝐜𝑖), 𝑠. 𝑡. , ∀𝑖, 𝑠𝑖,𝑗 ≥ 0, 𝐬𝑖
𝑇𝑒 = 1 (17) 

⇒ min𝐬𝑖
 ‖𝐬𝑖 +

𝛼

4𝛽
(𝐛𝑖 + 𝐜𝑖)‖

2

2
, 𝑠. 𝑡. , ∀𝑖, 𝑠𝑖,𝑗 ≥ 0, 𝐬𝑖

𝑇e = 1 (18) 

According to Karush-Kuhn-Tucker (KKT) [29], the optimal 

solution 𝐬𝑖 should be 
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S𝑖,𝑗 = max { −
𝛼

4𝛽
(b𝑖,𝑗 + c𝑖,𝑗)} + 𝜃, 0}, 𝑗 = 1, … , 𝑛 (19) 

where 𝜃 =
1

𝜌
∑ (

𝛼

4𝛽
(b𝑖,𝑗 + c𝑖,𝑗) + 1)

𝜌
𝑗=1 , and 𝜔  is the 

descending order of 
𝛼

4𝛽
(b𝑖,𝑗 + c𝑖,𝑗) . and 𝜌 =

{𝝎𝑗 −
1

𝑗
(∑ 𝝎𝑟

𝑗
𝑟=1 − 1), 0}𝑗

𝑚𝑎𝑥 . 

 

3)  Update 𝑼 while fixing 𝑺 and 𝑭  

While 𝐒  and 𝐅  are fixed, the objective function can be 

rewritten in a simplified form to optimize 𝐔: 

Min𝐔  
1

2
∑ ‖𝐱𝑖 − 𝐮𝑖‖2

2𝑛
𝑖,𝑗=1 +

𝛼

2
∑ 𝑠𝑖,𝑗𝑓𝑖,𝑗‖𝐮𝑖 − 𝐮𝑗‖

2

2𝑛
𝑖,𝑗=1  (20) 

Let ℎ𝑖,𝑗 = 𝑠𝑖,𝑗𝑓𝑖,𝑗. Eq. (3.23) is equivalent to: 

Min𝐔  
1

2
‖𝐗 − 𝐔‖𝐹

2   +
𝛼

2
∑  𝑛

𝑖,𝑗=1 ℎ𝑖,𝑗‖𝐮𝑖 − 𝐮𝑗‖
2

2
 (21) 

⇒ min𝐔  
1

2
𝑡𝑟(𝐗𝑇𝐗 − 2𝐔𝑇𝐗 + 𝐔𝑇𝐔 ) 

 

 
 +

𝛼

2
𝑡𝑟(𝐔𝑇𝐋𝐔) (22) 

After conducting a derivative on Eq. (22) with respect to U, 

we get Eq. (23).   

⇒
1

2
(−2𝐗 + 2𝐔 ) 

 
  +

𝛼

2
(𝐋𝐔 + 𝐋𝑇𝐔) = 0 (23) 

⇒ 𝐔 = (I + 𝛼𝐋)−1𝐗  (24) 

 

D. Convergence Analysis 

In this section, we prove the convergence of the proposed 

KIS clustering algorithm in order to prove the proposed 

algorithm can reach an optimal solution, so we apply Theorem 

1. 

Theorem 1. KIS clustering algorithm decreases the objective 

function value of Eq. (7) until it converges. 

Proof.  

By denoting 𝐅(𝑡)  , 𝐒(𝑡) , and 𝐔(𝑡) , the results of the t-th 

iteration of 𝐅  , 𝐒 , and 𝐔  respectively, we further denote the 

objective function value of Eq. (7) in the t-th iteration as 

ℒ(𝐅(𝑡), 𝐒(𝑡) , 𝐔(𝑡)). 

According to Eq. (12), 𝐅   has a closed-form solution, thus we 

have the following inequality: 

ℒ(𝐅(𝑡), 𝐒(𝑡) , 𝐔(𝑡)) ≥ ℒ(𝐅(𝑡+1), 𝐒(𝑡), 𝐔(𝑡)) (25) 

According to Eq. (19), 𝐒   has a closed-form solution, thus we 

have the following inequality: 

ℒ(𝐅(𝑡+1), 𝐒(𝑡), 𝐔(𝑡)) ≥ ℒ(𝐅(𝑡+1), 𝐒(𝑡+1), 𝐔(𝑡)) (26) 

According to Eq. (24), 𝐔  has a closed-form solution, thus we 

have the following inequality: 

ℒ(𝐅(𝑡+1), 𝐒(𝑡+1), 𝐔(𝑡)) ≥ ℒ(𝐅(𝑡+1), 𝐒(𝑡+1), 𝐔(𝑡+1)) (27) 

Finally, based on above three inequalities, we get 

ℒ(𝐅(𝑡), 𝐒(𝑡), 𝐔(𝑡)) ≥ ℒ(𝐅(𝑡+1), 𝐒(𝑡+1), 𝐔(𝑡+1)) (28) 

Equation. (28) indicates that the objective function value in 

Eq. (7) decreases after each iteration of Algorithm 1. This 

concludes the proof of Theorem 1. 

 

IV. EXPERIMENTS 

In this section, we evaluated the performance of the proposed 

K-Initialization-Similarity (KIS) algorithm, by comparing it 

with two benchmark algorithms on ten real UCI data sets, in 

terms of evaluation metric Accuracy.   

 

A. Data Sets 

We used ten UCI data sets in the experiments [30] including 

the standard data sets for email spam. wine quality, website 

fishing, and chess game data sets, etc. The details are 

summarized in Table II. 

B. Comparison Algorithms 

The five comparison algorithms are summarized below: 

• K-means clustering algorithm randomly initializes the 

cluster center, then (re)assigns data points to their nearest 

cluster center and recalculates cluster centers iteratively 

until converge. 

• Spectral clustering algorithm constructs the similarity 

matrix, and then defines the feature vectors. Finally, it runs 

K-means clustering algorithm. 

• ROCK clustering algorithm randomly selects a number of 

data points from the original data and uses the number of 

links as the similarity measure. 

• LKG constructs graph and low-rank kernel matrix by 

exploiting the similarity of the kernel matrix and an 

optimal kernel from the neighboring candidate kernels. The 

graph and kernel are iteratively enhanced by each other.  

• U-SPEC constructs a sparse affinity sub-matrix by using a 

hybrid representative selection strategy and a K-nearest 

representatives approximation method. 

 

C. Evaluation Measure 

To assess the performance of the proposed algorithms with 

related algorithms, we adopted accuracy (ACC) which is a 

popular evaluation metric for clustering algorithms. ACC 

measures the percentage of samples correctly clustered [31]. 

TABLE II 

DESCRIPTION OF TEN BENCHMARK DATA SETS 

Dataset Sample Feature Class 

Isolet 7797 617 2 

SpamBase 4601 57 2 

Chess 3196 36 2 

Banknote 1372 5 2 

Diabetes 1151 19 2 

Yeast 1484 8 10 

Website 1353 9 2 

Wine  1599 11 6 

 

Algorithm 1. The pseudo code for KIS clustering algorithm 

Input: X∈ ℝ𝑛×𝑑  

Output: a set of K clusters 

Initialization: U = X;  

Repeat: 

• Update 𝐅 using Eq. (12) 

• Update S using Eq. (19) 

• Update U using Eq. (24) 

Until U converges 

Repeat: 

 

• Update 𝐅 using Eq. (12) 

 

• Update S using Eq. (19) 
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The definition of ACC is given below. 

ACC =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁
  (29) 

where 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡  represents the number of correct clustered 

samples, and 𝑁 represents total number of samples. 

To rank the performance of different algorithms, we used 

dense ranking which the highest accuracy rate receives number 

1, and the next accuracy rate receives the immediately 

following ranking number. Same accuracy rates receive the 

same ranking number. Thus if A ranks ahead of B and C (which 

compare equal) which are both ranked ahead of D, then A gets 

ranking number 1 ("first"), B gets ranking number 2 ("joint 

second"), C also gets ranking number 2 ("joint second") and D 

gets ranking number 3 ("Third"). 

 

D. Experiment Setup 

In the experiments, first, we tested the robustness of the 

proposed KIS clustering algorithm by comparing it with K-

means, Spectral, ROCK, LKG, and U-SPEC clustering 

algorithms using real data sets in terms of evaluation metric 

widely used for clustering research. Second, we investigated the 

parameters’ sensitivity of the proposed KIS clustering 

algorithm (i.e. α and β in Eq. (7)) via varying their values to 

observe the variations of clustering performance. Third, we 

demonstrated the convergence of Algorithm 1 by checking the 

value of the proposed objective function Eq. (7) via iteration 

times. 

 

E. Experimental Results Analysis 

The performances of all algorithms are listed in Table III, 

which shows that the KIS algorithm achieved the best overall 

performance on each of the eight data sets in terms of ACC. 

More specifically, on the average ACC results of all eight data 

sets, the KIS algorithm increased it by 33.42%, 28.03%, 

26.58%, 30.25%, and 25.93% respectively, compared to K-

means clustering result, Spectral, ROCK, U-SPEC, and LPG. 

Other observations are listed below. 

First, KIS, LKG, U-SPCE, and Spectral clustering algorithm 

outperformed K-means clustering algorithm. This implied that 

constructing the graph or learning a new representation of 

original data points improves the clustering performance.  The 

reason could be that original data generally contains some noise 

or redundant information, which is often true in real data set and 

the noise and redundancy may corrupt the performance of 

clustering methods. In contrast, the non-prototype graph-based 

algorithms construct the new representation to conduct 

clustering, which can relieve the affection of noise and 

redundancy from original data, so the clustering performance 

can be improved. 

Second, clustering algorithms using adaptive similarity 

measure, e.g. KIS clustering algorithm, performed better than 

nonadaptive clustering algorithms, e.g. K-means, Spectral, 

ROCK, U-SPCE that use the fixed similarity measurement to 

measure the similarity, our KIS employed an adaptive learning 

strategy to dynamically update the similarity matrix. In this 

way, our KIS can more accurately capture the intrinsic 

correlation of original data. This explains why our KIS easily 

outputs better clustering results than nonadaptive similarity 

clustering algorithms. This proves that the adaptive learning 

similarity leads to optimal clustering results, whereas the 

nonadaptive similarity measure clustering algorithms achieves 

sub-optimal results. 

Third, the proposed KIS clustering algorithm use the unified 

framework to simultaneously address the major issues of 

clustering algorithms. Addressing these issues in a unified way 

achieves one global goal leading to optimal clustering results, 

whereas the multi-stage clustering algorithms with separate 

goals in each stage achieve sub-optimal results. When a 

clustering algorithm addresses those problems separately, it is 

easily to be trapped into the sub-optimal results, for example, 

even if a best initial value or the best similarity matrix is found, 

the final optimal results may not be obtained. Because the 

results of the previous steps are not obtained according to the 

requirements of the final step.  

F. Parameters’ Sensitivity 

We varied parameters 𝛼 and 𝛽 in the range of [10−3, … 103], 
and recorded the values of ACC of eight data sets clustering 

results for KIS clustering algorithm in Fig. 1. The parameter 𝛼 

is used to tune the auxiliary variable F. The parameter 𝛽 is used 

to tradeoff the importance of similarity matrix S. 

The different data sets needed different ranges of parameters 

to achieve the best performance. For example, KIS clustering 

algorithm achieved the best ACC (85.79%) on data set Isolet 

when both parameters  𝛼 is 102and 𝛽 were 103 . But for the 

data set Wine, KIS clustering algorithm achieved the best ACC 

(92.94%) when both 𝛽  = 10−3  and 𝛼  =10−3 . This indicated 

that KIS clustering algorithm was data driven.  

Isolet SpamBase Chess Banknote 

Diabetes Yeast Website Wine 

Fig. 1. ACC results of KIS algorithm with respect to different parameter settings 
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G. Convergence 

Fig. 2 showed the trend of objective values generated by the 

proposed algorithm 1 with respect to iterations. The 

convergence curve indicates the change of the objective 

function value during the iteration process. From Fig. 2, we can 

see that the algorithm 1 monotonically decreased the objective 

function value until it converged, when applying it to optimize 

the proposed objective function in Eq. (7). That means that the 

value of the objective function stop changing or only change in 

a small range e.g. |𝑜𝑏𝑗(𝑡+1) − 𝑜𝑏𝑗(𝑡)| 𝑜𝑏𝑗(𝑡)⁄ ≤ 10−9 , where 

𝑜𝑏𝑗(𝑡) represents the objection function value of Eq. (7) after 

the t-th  iteration. In our proposed optimization algorithm, we 

have employed an alternating optimization strategy to optimize 

our objective function, i.e., iteratively updating each parameter 

until the algorithm converges. Thus, the optimal solution can be 

worked out by multiple iterations until the demand of 

minimizing the objective values is satisfied, which means the 

objective values decline to stable, as shown as the convergence 

lines. It is worth noting that the convergence rate of the 

algorithm 1 was relatively fast, converging to the optimal value 

within 20 iterations on all the data sets used. In other words, we 

can complete the optimization of our model in a fast speed. 

 

Isolet SpamBase Chess Banknote 

Diabetes Yeast Website Wine 

Fig. 2.  Objective function values (OFVs) versus iterations for KIS algorithm 

V. CONCLUSION 

In this research we have proposed a new algorithm named K-

Initialization-Similarity (KIS) which aims to solving the cluster 

number K determination, initialization, similarity measure 

issues of K-means clustering algorithm in a unified way. 

Specifically, we fixed the initialization by using the sum-of-

norms regularization which outputted the new representation of 

original data points. The similarity matrix learning is based on 

the data distribution. The robust loss function is applied to 

automatically generate the cluster number K. The optimal 

performance is achieved when the separated issues are solved 

in a unified way. Experiment results on eight real-world 

benchmark data sets show that KIS outperforms the comparison 

clustering algorithms in terms of accuracy (ACC), the popular 

evaluation metric for clustering algorithm. 

Although the proposed KIS clustering algorithm achieved 

good clustering results, we haven’t considered imbalanced data 

sets. Hence, future research needs to improve our KIS 

clustering algorithm to automatically determine the clustering 

number K, fix the initialization, learn similarity in a unified way 

and have capability of handling imbalanced data. 
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