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TOWARD NATURE-INSPIRED
COMPUTING

� By Jiming Liu and K.C. Tsui �

NIC-based systems utilize autonomous 
entities that self-organize to achieve the goals of systems 

modeling and problem solving. 

N
ature-inspired computing (NIC) is an
emerging computing paradigm that
draws on the principles of self-organi-
zation and complex systems. Here, we
examine NIC from two perspectives.
First, as a way to help explain, model,

and characterize the underlying mechanism(s) of
complex real-world systems by formulating comput-
ing models and testing hypotheses through con-
trolled experimentation. The end product is a
potentially deep understanding or at least a better
explanation of the working mechanism(s) of the
modeled system. And second, as a way to reproduce
autonomous (such as lifelike) behavior in solving
computing problems. With detailed knowledge of
the underlying mechanism(s), simplified abstracted
autonomous lifelike behavior can be used as a model
in practically any general-purpose problem-solving
strategy or technique. 

Neither objective is achievable without formulating
a model of the factors underlying the system. The

modeling process can begin with a theoretical analysis
from either a macroscopic or microscopic view of the
system. Alternatively, the application developer may
adopt a blackbox or whitebox approach. Blackbox
approaches (such as Markov models and artificial
neural networks) normally do not reveal much about
their working mechanism(s). On the other hand,
whitebox approaches (such as agents with bounded
rationality) are more useful for explaining behavior [7]. 

The essence of NIC formulation involves conceiv-
ing a computing system operated by population(s) of
autonomous entities. The rest of the system is referred
to as the environment. An autonomous entity consists
of a detector (or set of detectors), an effector (or set of
effectors), and a repository of local behavior rules (see
Figure 1) [5, 8].

A detector receives information related to its neigh-
bors and to the environment. For example, in a sim-
ulation of a flock of birds, this information would
include the speed and direction the birds are heading
and the distance between the birds in question. The
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details of the content and format of the information
must be defined according to the system to be mod-
eled or to the problem to be solved. The notion of
neighbors may be defined in terms of position (such
as the bird(s) ahead, to the left, and to the right), dis-
tance (such as a radial distance of two grids), or both
(such as the birds up to two grids ahead of the nomi-
nal viewpoint bird). 

Environmental information conveys the status of a
certain feature of interest to an autonomous entity. The
environment can also help carry sharable local knowl-
edge. The effector of an autonomous entity refers col-
lectively to the device for expressing actions. Actions
can be changes to an internal state, an external display
of certain behaviors, or changes to the environment the
entity inhabits. An important role of the effector, as
part of the local behavior model, is to facilitate implicit
information sharing among autonomous entities. 

Central to an autonomous entity are the rules of
behavior governing how it must act or react to the
information collected by the detector from the envi-
ronment and its neighbors. These rules determine into
what state the entity should change and also what local
knowledge should be released via the effector to the
environment. An example of sharable local knowledge
is the role pheromones play in an ant colony. It is
untargeted, and the communication via the environ-
ment is undirected; any ant can pick up the informa-
tion and react according to its own behavior model. 

In order to adapt itself to a problem without being
explicitly told what to do in advance, an autonomous
entity must modify the rules of its behavior over time.
This ability, responding to local changing conditions, is
known as the individual’s learning capability. Worth
noting is that randomness plays a part in the decision-
making process of an autonomous entity despite the
presence of a rule set. It allows an autonomous entity
to explore uncharted territory despite evidence that it
should exploit only a certain path. On the other hand,
randomness helps the entity resolve conflict in the pres-

ence of equal support for sugges-
tions to act in different ways in its
own best interests and avoid being
stuck by randomly choosing an
action in local optima. 

The environment acts as the
domain in which autonomous enti-
ties are free to roam. This is a static
view of the environment. The envi-
ronment of a NIC system can also
act as the “noticeboard” where the
autonomous entities post and read
local information. In this dynamic
view, the environment is constantly
changing For example, in the N-
queen constraint satisfaction prob-
lem [7], the environment can tell a
particular queen on a chessboard
how many constraints are violated

in her neighborhood after a move is made. In effect,
this violations, or conflicts, report translates a global
goal into a local goal for a particular entity. The envi-
ronment also keeps the central clock that helps syn-
chronize the actions of all autonomous entities, as
needed. 

Before exploring examples of NIC for characterizing
complex behavior or for solving computing problems,
we first highlight the central NIC ideas, along with
common NIC characteristics, including autonomous,
distributed, emergent, adaptive, and self-organized, or
ADEAS [5]: 

Autonomous. In NIC systems, entities are individu-
als with bounded rationality that act independently.
There is no central controller for directing and coordi-
nating individual entities. Formal computing models
and techniques are often used to describe how the enti-
ties acquire and improve their reactive behavior, based
on their local and/or shared utilities, and how the
behavior and utilities of the entities become goal-
directed. 

Distributed. Autonomous entities with localized
decision-making capabilities are distributed in a het-
erogeneous computing environment, locally interact-
ing among themselves to exchange their state
information or affect the states of others. In distrib-
uted problem solving (such as scheduling and opti-
mization), they continuously measure, update, and
share information with other entities following cer-
tain predefined protocols. 

Emergent. Distributed autonomous entities collec-
tively exhibit complex (purposeful) behavior not pre-
sent or predefined in the behavior of the autonomous
entities within the system. One interesting issue in
studying the emergent behaviors that leads to some
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Figure 1. Modeling an
autonomous entity in
a NIC-based system. 



desired computing solutions (such as optimal resource
allocation) is how to mathematically model and mea-
sure the interrelationships among the local goals of the
entities and the desired global goal(s) of the NIC sys-
tem in a particular application. 

Adaptive. Entities often change their behavior in
response to changes in the environment in which they
are situated. In doing so, they utilize behavioral adap-
tation mechanisms to continuously evaluate and fine-
tune their behavioral attributes with reference to their
goals, as well as to ongoing feedback (such as inter-
mediate rewards). Evolutionary approaches may be
used to reproduce high-performing entities and elim-
inate poor-performing ones. 

Self-organized. The basic elements of NIC-based
systems are autonomous
entities and their environ-
ment. Local interactions
among them are the most
powerful force in their evo-
lution toward certain
desired states. Self-organiza-
tion is the essential process
of a NIC system’s working
mechanism. Through local
interactions, these systems
self-aggregate and amplify
the outcome of entity
behavior. 

CHARACTERIZING COMPLEX

BEHAVIOR

A complex system can be
analyzed and understood
in many different ways.
The most obvious is to
look at it from the outside,
observing its behaviors and
using models to try to identify and list them.
Assumptions about unknown mechanisms must be
made to start the process. Given observable behav-
iors of the desired system, NIC designers verify the
model by comparing its behavior with the desired
features. This process is repeated several times before
a good, though not perfect, prototype can be found.
Apart from obtaining a working model of the desired
system, an important by-product is the discovery of
the mechanisms that were unknown when the design
process began. 

The human immune system is an example of a
highly sensitive, adaptive, self-regulated complex sys-
tem involving numerous interactions among a vast
number of cells of different types. Despite numerous
clinical case studies and empirical findings [1], the

working mechanism underlying the complex process
of, say, HIV invasion and the erosion and eventual
crash of the immune system (including how the local
interactions in HIV, T-cells, and B-cells affect the
process) are still not fully understood (characterized
and predicted). 

The usefulness of conventional modeling and simu-
lation technologies is limited due to computational
scale and costs. Understanding and modeling complex
systems (such as the human immune system) is a major
challenge for the field of computing for two main rea-
sons: the task of computing is seamlessly carried out in
a variety of physical embodiments, and no single mul-
tipurpose or dedicated machine is able to accomplish
the job. The key to success for simulating self-regulated

complex systems lies in
the large-scale deploy-
ment of computational
entities or agents able to
autonomously make local
decisions and achieve col-
lective goals. 

Seeking to understand
the dynamics of the
immune system during
an HIV attack, NIC
researchers can use a 2D
lattice to build a NIC
model. The lattice is cir-
cular so the edges wrap
around one another.
Each site can be inhab-
ited by HIV, as well as by
immune cells. HIV and

immune cells behave in four main ways: 

Interaction. T-cells recognize HIV by its signature
(protein structure); HIV infects and kills cells; 

Proliferation. Reactions stimulate lymphoid tissue
to produce more T-cells, which are reproduced
naturally; 

Death. Besides being killed by drugs and other
deliberate medical intervention, HIV and T-cells
die naturally; and 

Diffusion. HIV diffuses from densely populated
sites to neighboring sites (see Figure 2). 

Figure 3 outlines the temporal emergence of three-
stage dynamics in HIV infection generated from the
NIC model [12]: 

Before B. Primary response; 
B~C. Clinical latency; and 
After D. Onset of AIDS. 
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At A, the HIV population reaches
a maximum point. Starting from
C, the mechanism that decreases
the natural ability of an organism
to reproduce T-cells is triggered.
These NIC-generated results are
consistent with empirically
observed phenomena [1]. Exper-
iments in [12] have also found
that AIDS cannot break out if
HIV destroys only T-cells with-
out weakening the T-cell repro-
duction mechanism. The
emergence in “shape space” indi-
cates it is because of HIV’s fast
mutation that the immune sys-
tem cannot eradicate HIV as
readily as it does other invaders. These discoveries
are helping immunology researchers understand the
dynamics of HIV-immune interaction. 

The NIC approach to systems modeling starts
from a microscopic view of the immune system. The
elements of the model are the basic units—HIV and
immune cells—of the immune system. The model
aims to capture the essence of the immune system,
though simplification is inevitable. Note that the
autonomous entities in the model that belong to the
same species types normally have a similar set of
behavior rules. The only difference among them is
the parameters of the rules, which may be adapted
throughout the lifetime of the entities. Probabilistic
selection of certain behavior is also common in the
entities. It must be emphasized that the environment
of the model can also be viewed as a unique entity in
the model, with its own behavior rules.

SELF-ORGANIZED WEB REGULARITIES

Researchers have identified several self-organized reg-
ularities related to the Web, ranging from its growth
and evolution to usage patterns in Web surfing.
Many such regularities are best represented by char-
acteristic distributions following a Zipf law or a
power law. Random-walk models [4] have been used
to simulate some statistical regularities empirically
observed on the Web. However, these models do not
relate the emergent regularities to the dynamic inter-
actions between users and the Web, nor do they
reflect the interrelationships between user behavior
and the contents or structure of the Web. User inter-
est and motivation in navigating the Web are among
the most important factors determining user naviga-
tion behavior. 

As part of the NIC approach to regularity charac-
terization, [6] proposed a computational model of

Web surfing that includes user characteristics (such
as interest profiles, motivations, and navigation
strategies). Users are viewed as information-foraging
entities inhabiting the Web environment or as a col-
lection of Web sites connected by hyperlinks. When
an entity finds certain Web sites with content related
to its topic(s) of interest, it will be motivated to
search sites deeper into the Web. On the other hand,
when an entity finds no interesting information after
a certain amount of foraging or finds enough content
to satisfy its interest, it stops foraging and goes
offline, leaving the Web environment. 

Experiments in [6] classified users into three
groups: recurrent users familiar with the Web struc-
ture; rational users new to a particular Web site but
who know what they are looking for; and random
users with no strong intention to retrieve informa-
tion but are just “wandering around.” The results,
which used both synthetic and empirical data from
visitors to NASA Web site(s), showed that the forag-
ing agent-entity-oriented model generates power-law
distributions in surfing and link-click-frequency,
similar to those found in the real world and hence
offer a whitebox explanation of self-organized Web
regularities. 

SOLVING COMPUTING PROBLEMS

The key factors contributing to the success of these
NIC-based models are the distinctive characteristics
of their elements. Marvin Minsky of MIT suggested
in his 1986 book Society of Mind that “To explain
the mind, we have to show how minds are built
from mindless stuff, from parts that are much
smaller and simpler than anything we’d consider
smart.” So, if we want to formulate a problem-solv-
ing strategy based on some observation from nature,
how and where should we begin? To formulate a
NIC problem-solving system, we must identify and
gain a deep understanding of a working system in the
natural or physical world from which models can be
extracted. As with complex-systems modeling, the
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Figure 3. Simulation
results on an HIV 
population during 

several phases of AIDS
development. 
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abstracted behavior of the working system becomes
the property of the elements to be modeled. 

Basing their approach on the general principles of
survival of the fittest (whereby poor performers are
eliminated) and the “law of the jungle” (whereby
weak performers are eaten by stronger ones), several
NIC systems have been devised [7, 9] to solve some
well-known constraint-satisfaction problems. One is
the N-queen problem, in which N queens are placed
on an N x N chessboard, so no two queens ever
appear in the same row, column, or diagonal. Based
on the rules of the problem, a NIC model is formu-
lated in the following way: Each queen is modeled as
an autonomous entity in the system, and multiple
queens are assigned to each row of the chessboard (a
grid environment). This process allows for competi-
tion among the queens in the same row, so the queen
with the best strategy survives. The system calculates
the number of violated constraints for each position
on the grid. This represents the environmental infor-
mation all queens can access when making decisions
about where to move, with possible movements being
restricted to positions in the same row. 

Three movement strategies are possible: random-
move (involving the random selection of a new posi-
tion for a queen); least-move (involving selection of
the position with the least number of violations, or
conflicts); and coop-move (promoting cooperation
among the queens by eliminating certain positions in
which one queen’s position may create conflicts with
other queens). All three are selected probabilistically. 

This NIC system gives an initial amount of energy
to each queen. Like a character in a video game, a
queen “dies” if its energy falls below a predefined
threshold. A queen’s energy level changes in one of
two ways: losing it to the environment and absorbing
it from another queen. When a queen moves to a new
position that violates the set constraint with m queens,
it loses m units of energy. This also causes the queens
that attack this new position to lose one unit of
energy. The intention is to encourage the queens to
find a position with the fewest violations, or conflicts.
The law of the jungle is implemented by having two
or more queens occupy the same grid position and
fight over it. The queen with the greatest amount of
energy wins and eats the loser(s) by absorbing all its
(their) energy. This model efficiently solves the N-
queen problem with only a moderate amount of com-
putation. 

In the commonly used version of a genetic algo-
rithm [3], a member of the family of evolutionary
algorithms, the process of sexual evolution is simpli-
fied to selection, recombination, and mutation, with-
out the explicit identification of male and female

(such as in the gene pool). John Holland of the Uni-
versity of Michigan, in his quest to develop a model to
help explain evolution, has developed a genetic algo-
rithm for optimization. The basic unit in this artificial
evolution is a candidate solution to the optimization
problem, commonly termed a chromosome. A
genetic algorithm has a pool of them. Interactions
among candidate solutions are achieved through arti-
ficial reproduction where operations mimicking nat-
ural evolution allow the candidate solutions to
produce offspring that carry part of either parent
(crossover) with occasional variation (mutation).
While reproduction can be viewed as the cooperative
side of all the chromosomes, competition among
chromosomes for a position in the next generation
directly reflects the principle of survival of the fittest. 

On the other hand, evolutionary autonomous
agents [10] and evolution strategies [11] are closer to
asexual reproduction, with the addition of constraints
on mutation and the introduction of mutation oper-
ator evolution, respectively. Despite this simplification
and modification, evolutionary algorithms capture
the essence of natural evolution and are proven global
multi-objective optimization techniques. Another
successful NIC algorithm that has been applied in
similar domains is the Ant System [2], which mimics
the food-foraging behavior of ants. 

AUTONOMY-ORIENTED COMPUTING

As a concrete manifestation of the NIC paradigm,
autonomy-oriented computing (AOC) has emerged
as a new field of computer science to systematically
explore the metaphors and models of autonomy
offered in nature (such as physical, biological, and
social entities of varying complexity), as well as their
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role in addressing practical computing needs. It
studies emergent autonomy as the core behavior of
a computing system, drawing on such principles as
multi-entity formulation, local interaction, nonlin-
ear aggregation, adaptation, and self-organization
[5, 8]. 

Three general approaches help researchers develop
AOC systems: AOC-by-fabrication, AOC-by-proto-
typing, and AOC-by-self-discovery. Each has been
found to be promising in several application areas [6,
7, 10, 12]. Work on AOC in our research laboratory
over the past decade [5, 8] has opened up new ways
to understand and develop NIC theories and
methodologies. They have provided working exam-
ples that demonstrate the power and features of the
NIC paradigm toward two main goals: characterizing
emergent behavior in natural and artificial systems
involving a large number of self-organizing, locally
interacting entities; and solving problems in large-
scale computation, distributed constraint satisfaction,
and decentralized optimization [5]. 

CONCLUSION

The NIC paradigm differs from traditional impera-
tive, logical, constraint, object-oriented, and com-
ponent-based paradigms, not only in the
characteristics of its fundamental concepts and con-
structs, but in the effectiveness and efficiency of the
computing that can be achieved through its ADEAS
characteristics. NIC approaches have been found
most effective in dealing with computational prob-
lems characterized by the following dimensions: 

High complexity. Problems of high complexity (such
as when the system to be characterized involves a
large number of autonomous entities or the com-
putational computing problem to be solved
involves large-scale, high-dimension, highly non-
linear interactions/relationships, and highly inter-
related/constrained variables); 

Locally interacting problems. They are not central-
ized or ready or efficient enough for batch pro-
cessing; 

Changing environment. The environment in which
problems are situated is dynamically updated or
changes in real time; and 

Deep patterns. The goal of modeling and analysis is
not to extract some superficial patterns/relation-
ships, data transformation, or association from
one form to another, but to discover and under-
stand the deep patterns (such as the underlying
mechanisms and processes that produce the data
in the first place or help explain their cause and
origin). 

We will continue to see new NIC theories and
methodologies developed and learn to appreciate
their wide-ranging effect on computer science, as well
as on other disciplines, including sociology, econom-
ics, and the natural sciences. Promising applications
will help explain gene regulatory networks and drug-
resistance mechanisms for anti-cancer drug design,
predict the socioeconomic sustainability of self-orga-
nizing online markets or communities, and perform
real-time autonomous data processing in massive
mobile sensor networks for eco-geological observa-
tions.  
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