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Abstract

Facing the increasing needs for large-scale, robust,
adaptive, and distributed/decentralized computing capabil-
ities [1, 5] from such fields as Web intelligence, scientific
and social computing, Internet commerce, and pervasive
computing, an unconventional bottom-up paradigm, based
on the notions of Autonomy-Oriented Computing (AOC)
and self-organization in open complex systems, offers new
opportunities for developing promising architectures, meth-
ods, and technologies. The goal of this paper is to describe
the key concepts in this computing paradigm, and further-
more, discuss some of the fundamental principles and mech-
anisms for obtaining self-organized computing solutions.

1. Introduction

In response to the real-world needs for robust and
computationally scalable means of tackling large-scale,
dynamically-evolving, and/or highly-distributed computa-
tional problems [1, 5], such as those in Web intelligence
[19, 48, 51], as well as other applications in scientific and
social computing, Internet commerce, and pervasive tech-
nologies, various computing ideas and techniques have been
studied that explicitly utilize the models of computational
autonomy as inspired by nature, and explore their roles in
addressing our practical computing needs. This paper fo-
cuses on one of such research initiatives, which concerns
the development of an unconventional computing paradigm,
called Autonomy-Oriented Computing (AOC) [18, 21, 22].

Generally speaking, AOC tackles a computing problem
by defining and deploying a system of local autonomy-
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oriented entities. The entities spontaneously interact with
their environments and operate based on their behavioral
rules. They self-organize their structural relationships as
well as behavioral dynamics, with respect to some specific
forms of interactions and control settings. Such a capabil-
ity is referred to, in this paper, as the self-organized com-
putability of autonomous entities.

The goal of this paper is to outline the key concepts in
the design and development of an AOC system, and in ad-
dition, discuss the distinct roles and characteristics of self-
organization in the performance of the AOC system.

The rest of the paper is organized as follows: Section 2
describes some of the basic concepts in AOC. Section 3
further presents a summary of the general steps for per-
forming AOC. Section 4 discusses the general principles for
achieving self-organized computability in an AOC system.
Section 5 revisits some of the earlier AOC-related mod-
els. Finally, Section 6 concludes the paper by highlighting
the essence, applications, as well as features of autonomy-
oriented self-organized computing, and at the same time,
pointing out open research issues.

2. Autonomy-Oriented Modeling

In this section, we will take a look at some of the basic
concepts in the AOC formulation.

2.1 Entities

In AOC, computation involves defining and deploying
a system A of autonomous entities e that can directly or
indirectly interact among themselves as well as with their
environments. Here the notion of entities should be taken
in a broad sense, encompassing conceptual and/or compu-
tational entities.

The entities are considered as not only the elements, but
also the subsystems of A; one type of entities in A can fur-



ther contain other types of entities as their elements. A ex-
hibits its structural and behavioral complexity, through the
coupling relationships as well as the corresponding interac-
tions of its entities at and across various levels, for instance,
in the forms of cells, organisms, communities, and societies.

The number of entities at a certain level in A can also
vary during their interactions (e.g., [8]).

In the foregoing discussions, the entities are not meant
to be homogeneous; they can be, generally speaking, het-
erogeneous entities at various levels. Without loss of gen-
erality, we will not explicitly indicate their specific levels
within A.

2.2 Local Autonomy

Active entities spontaneously interact with, and exert
changes to, not only their local environment El that can
contain other local (e.g., neighboring) entities, but also the
global environment of A, denoted by Eg. In doing so, an
individual entity e in A can be viewed as an automaton dy-
namically governed by its behavioral rules, as stored in a
repository R, to either deliberatively or reactively operate
in its environments. In other words, R defines the neces-
sary local autonomy of entities, internally and/or externally
triggered/influenced, for inducing an emergent solution.

In order to effectively apply its behavioral rules, an indi-
vidual entity needs to evaluate its current state and utility, as
well as the current states of its local and sometimes global
environments (including the current states of other local en-
tities), by using evaluation functions F and u. Thereafter,
the entity accordingly selects its behaviors b from B. It pro-
duces certain effects to itself, and to its local and global
environments, in the forms of: (i) state changes, (ii) utility
updates (e.g., marking and scoring a local configuration in-
cluding its state and F values), and (iii) external operations
or interactions that will further influence other entities as
well as the computation of the AOC system.

2.3 Coupling Relationships

The forms of input conditions received, as well as out-
put operations exerted, by entities in their environments will
be constrained by structural and functional constraint rela-
tionships, both among the entities and with their local and
global environments. Such constraint relationships are re-
ferred to as coupling.

For instance, the local behavior of an entity can be di-
rectly influenced by, or computed upon, those in its neigh-
borhood by means of local coupling functions. One exam-
ple would be the coupling relationship that controls a spin
alignment with its nearest neighbors as in the Ising-like spin
model [15, 40]. The control parameter of temperature in
this case will determine the degree of coupling. In other

forms of coupling, a gain can be used to control the degree
of local response. Given different local coupling forms and
degrees, different collective effects can be reached and ob-
served over different temporal and spatial scales. A certain
dominant (or critical) behavior can be observed if the gain
is set to a critical value.

In general, the forms and degrees of coupling at vari-
ous levels in A can be defined using functions C, which
are either pre-defined or dynamically adjusted, signifying
the evolution of dominant structural and functional rela-
tionships (e.g., coordination) among entities. As a result of
self-organization based on positive feedback processes, the
varying degrees of relatively stable coupling relationships
among entities can further dynamically lead to the emer-
gence of self-organized, structurally and functionally sta-
ble yet interrelated ‘hyper-modules’, e.g., behavioral motifs
[26, 27] and network motifs [35, 36].

Example 2.1 (Social network community mining) In the
case of distributed community mining for social networks
[46], as shown in Figure 1, the coupling relationships
among entities, e.g., network nodes as in an ad hoc net-
work, will be initially determined based on their local con-
nectivities, as obtained by means of using the local behavior
of get view. During the course of self-organized commu-
nity mining, the entities will locally update and reinforce
their coupling relationships, through their local behaviors
of shrink view and enlarge view, according to their lo-
cal communication frequencies.

2.4 Direct and Indirect Interactions

The emergent complex behavior of entities originates
from their local interactions, as enabled by their coupling
relationships at various levels. There exist two types of in-
teractions, namely, direct interactions among entities and
indirect interactions through the shared environments of en-
tities. Different AOC systems will have different ways of
direct and indirect interactions.

Indirect interactions can be achieved based on his-
torically aggregated effects in the environments [21], or
through nonlinear feedback between entities and their inter-
acted/updated adaptive landscape, e.g., in information gen-
eration and exchange [37]. In such a case, interactions can
occur among different entities at the same temporal and/or
spatial scale, e.g., at the same time step or in the same en-
vironments, as well as spontaneously across different tem-
poral and spatial scales. In AOC, the shared environments
will serve not only as the domains for autonomous entities,
but also as the media for their indirect interactions.



Figure 1. Self-organized community mining in a distributed environment [46], where each person (e.g., a pervasive device user)
in this synthetic network is represented as a node being operated by an autonomous entity. The edges of the network show the
communication among entities; the thicker an edge is, the more frequent the communication will be. The desired global solution
here is for the locally-interacting entities to collectively discover, or self-organize, their distributed communities, without involving
a centralized control mechanism.

3 General Steps for Performing AOC

Having described several basic concepts in the bottom-
up self-organized computing paradigm, in what follows we
will present the general steps for formulating and solving a
computational problem using an AOC system:

Step 1. Local-to-global thinking: Identify the global ob-
jective of emergent computation, and delimit the cor-
responding inputs and outputs.

Inputs are concerned with local variables and their
quantitative or qualitative configurations X . They are
identified by analyzing the local properties of the in-
dependent variables in the problem space. Outputs re-
fer to the desired macroscopic structural and/or behav-
ioral patterns/characteristics that are dominant at the
systems level, i.e., global solution or performance Φ.

Step 2. Modeling and mapping: Define local autonomy
for individual entities e of A.

A model of local autonomy is composed of internally
and/or externally triggered/influenced behaviors b in

B, which are controlled according to the behavioral
rules in a repository R. Entities first make evalua-
tions of their states and utilities using F and u. Having
performed their selected behaviors b, entities update
their states and utilities, and interact with their local
environments (e.g., interacting with other entities) and
global environment (e.g., performing certain external
operations O). The evaluations and interactions will
be constrained by the coupling relationships of enti-
ties, C.

Therefore, in modeling local autonomy, the following
will be specified:

1. state space of an entity e in A, Se = {se};

2. state space of its local environment Sl = {sl}
and that of the global environment Sg = {sg}
of A;

3. a set of behavioral rules, R, and a set of behav-
iors, B;

4. a set of coupling relationships among entities
and environments, C on Se × Sl × Sg;



5. a set of evaluation functions, F on Se×Sl×Sg;
6. local utility function u;
7. a set of external operations, O.

Note that this step also implies to establish a mapping
between input configurations X and autonomous en-
tities in A, i.e., X → S

|A|
e , where |A| denotes the

number of entities as involved in computation.

Step 3. Autonomy-oriented computing: Deploy
autonomy-oriented entities for manipulating the
identified input variables and generating desired
macroscopic patterns or a desired global solution.

Entities sense their states and environments, select
their behaviors, and perform interactions, until A col-
lectively achieves the desired emergent solution.

The basic cycle can be stated as follows:

1. initialize entities of A, with respect to X ;
2. WHILE stopping criteria (e.g, the maximum

number of cycles, or desired macroscopic pat-
terns or a global solution) are not met,
DO self-organized computation by individual en-
tities operating, spontaneously, based on their lo-
cal autonomy:
(a) assess F of current states, se, sl, and sg,

based on C, and utility u;
(b) apply behavioral rules in R;
(c) activate selected behaviors b;
(d) aggregate effects of O = {O};
(e) adjust states and utilities, se, sl, sg, and u;
(f) adapt, if necessary, behavioral rules and

control parameters, based on the feedback of
F and u.

Once again, as noted in Section 2.1, the entities that
are referred to here are general notions; they can be
groups or populations composed of entity elements.

4 Self-Organized Computability

As has been alluded to in the above descriptions, there
are some fundamental principles as well as mechanisms un-
derlying the local autonomy of entities in AOC.

Postulate 4.1 (Diversification and aggregation) Short
and long range exploratory actions, e.g., biased random
walks, are necessary for achieving computable diversity,
whereas positive feedback-based accelerated aggregations,
e.g., through (i) entity coupling or influences and (ii) re-
production and inactivation, are necessary for emerging
macroscopically-dominant patterns.

Postulate 4.2 (Collective regulation) In order to achieve
desired macroscopic patterns or a desired global solution,
the local autonomy of entities needs to be collectively regu-
lated in their deliberative or reactive interactions. The col-
lective regulation can be implicitly realized by incorporat-
ing into the evaluations of F and u, as well as the behav-
ioral rules of R, certain traits that are consistent with, and
favored by, the desired global solution, over a greater tem-
poral and/or spatial scale (e.g., in a long run).

In this section, we will discuss the behavioral issues and
implications as related to local autonomy, which can affect
the outcomes of self-organized computing.

4.1 Diversification and Aggregation

In AOC, the necessary condition for self-organized
computability lies in the diversity and emergence of com-
putable configurations. This can be achieved by means of:
(i) short and long-range stochastic or exploratory actions,
and (ii) positive feedback-based accelerated aggregations.

While short and long-range stochasticity creates suffi-
ciently diverse configurations for an AOC system, positive
feedback mechanisms are essential in order to enable the
system to quickly reach a critical mass or threshold level,
e.g., aggregated population or effects, moving toward cer-
tain stable states or dominant patterns.

A right balance between stochasticity and aggregation is
crucial in order to bring the AOC system to a critical state,
operating at the boundaries of stability, or at the edge of
chaos [2, 17]. At this critical state, the AOC system exhibits
certain emergent complex behavior, in which the diversity,
information flow, computational efficiency, and/or resource
savings of the system, can be maximized.

Example 4.1 (Scale-free interactions) Suppose that we
have some autonomous entities interacting with others, in
either a random rewiring or a chaotic connection mode as
set by some initial conditions. The patterns of entity interac-
tions can become scale-free [3], due to either the presence
of self-organized criticality [2] in interaction dynamics or
the mode of Levy flight-like [33] connections. In such a
case, it will be easy for entities to connect to (or ‘travel
to’) others (or ‘locations’), or even the whole system, if the
computational time is long enough. The exact connections
in which the entities interact cannot be pre-determined or
predicted, even though the chaotic traversal is determinis-
tic.

4.2 Interaction vs. Diversity

The relationship between local interactions and emergent
patterns in AOC follows a certain inverse rule. As shown
in the case of constraint satisfaction, too many interactions



among variable agents will slow down or even deteriorate
the performance in finding a solution [10, 11]. The right
extent of interactions needs to be set, so that sufficient di-
versity and robustness in AOC can pervade.

We conjecture that such phenomena exist, and can be
empirically observed, in the emergence and evolution of
structural and functional motifs in complex systems and
networks [16, 26, 27, 35, 36], including structured knowl-
edge ontology, scientific topics and areas, knowledge ecol-
ogy, Web communities, and social networks. And, the rela-
tionship between interactions and stability is similar to that
in an ecosystem, where the probability of making a connec-
tion C between two species in the system is inversely re-
lated to the number of stable species communities Ns, i.e.,
Ns ∝ C−1+ε [34][40, pp.197].

4.3 Collective Regulation

As mentioned in Section 2, apart from reflecting local
goal-directed self-autonomy, e.g., in some pre-programmed
rules or utility function, the behavior of an entity will be
triggered or affected by its environmental conditions. The
environmental conditions, as evaluated with F , consist of:

1. Local influences: Local influences come from entities
or structures of entities, as well as other local condi-
tions, such as resources. A simple example of influ-
ences from locally-coupled interacting entities would
be the spin-spin interactions from the neighborhood in
the Ising-like model [15, 40].

Example 4.2 (Local repulsion) Suppose that entities
perform gradient descent movements in a potential
field as created by other entities and by the goal of
the whole system. The potential field can be dynam-
ically acquired or updated, based on the interactions
of other entities, as in the case of multi-agent robotic
systems [25, 31]. In this case, the local influences of
the environment including neighboring entities can be
viewed as short-range influences or repulsion for enti-
ties to move away from unfavorable configurations.

2. Global influences: While exploratory actions and ag-
gregated/generative effects create structural and/or be-
havioral emergence, the sufficient condition for self-
organized computability is that, as suggested in Postu-
late 4.2, entities implicitly incorporate certain global
influences or biases (‘influencing-but-not-dictating’)
into their local autonomy that are in a long run consis-
tent with, and enhance, the ability of the AOC system
in generating a desired global solution Φ.

Example 4.3 (Global attraction) In order to make
the emergent patterns of self-organized computing

converge toward a desired global solution, besides fol-
lowing the repulsive force in their potential field, the
behavior of entities should also be affected by an at-
tractive force that corresponds to the global attraction
of Φ for the AOC system. This global bias should
be incorporated in the performance of local entities,
through their behavioral rules, in order to implicitly
regulate the self-organization of the AOC system, i.e.,
for entities to move toward the desired configurations
and achieve the global solution.

As described in [21], in a macroscopic sense, the above
process can be viewed as collectively solving the problem of
system-level performance optimization, in which the goal of
the emergent computation in AOC, Φ, becomes the global
objective function to be collectively satisfied.

4.4 Positive Feedback

In order to make the collective regulation of local au-
tonomy more effective and efficient in converging toward a
globally optimal solution, positive-feedback control mech-
anisms can play crucial roles in triggering and speeding up
the global emergence. In doing so, the mechanisms will fa-
vor certain globally desired traits, and/or furthermore, am-
plify them. At the same time, less favorable configurations
will be quickly eliminated.

Example 4.4 (Self-organized imaging) Self-organized
imaging [18, 28, 29] utilizes distributed autonomous
entities to collectively detect certain desired image fea-
tures. The entities that reside in an image environment
are capable of performing a set of local behaviors, such
as directional diffusion and directional reproduction, as
shown in Figure 2 (illustrated in the middle box). In this
case, positive feedback mechanisms are incorporated into
the local autonomy of entities in the following forms: (i)
directional adjustment as control-parameter aggregation
in individuals, and (ii) selection and reproduction in
successful entities. As a result, the global performance of
autonomy-oriented feature extraction, especially adaptive
to the static and/or dynamic locality of an image (i.e.,
without wasting computational resources), can readily be
achieved.

5 Some AOC-Related Models

As outlined in [30], in the bottom-up self-organized
computing paradigm, one of the key tasks is to further
develop and apply nature-inspired [30, 38] autonomy-
oriented models for designing the local autonomy of enti-
ties. Models inspired by physical, biological, cognitive, and



Figure 2. Self-organized imaging, where autonomous entities with directional diffusion and directional reproduction behaviors
(as schematically illustrated inside the middle box) react to the conditions of their local image environments [18, 28, 29]. The desired
global performance of autonomous entities in the emergent computation is to collectively extract dominant patterns or features.

social systems can be best utilized in this regard, e.g., Tur-
ing’s reaction-diffusion model of morphogenesis [42], and
the diffusion-reproduction model in Example 4.4 of Fig-
ure 2.

In what follows, we will revisit some of the earlier AOC-
related models, and highlight the relationships of the previ-
ous efforts with our current AOC paradigm.

5.1 Swarms

Models of social swarm behavior dynamics have been
proposed using individual-based [37] or population-based
[7] motion/kinematic equations expressed in terms of re-
pulsion and attraction. These models are useful in under-
standing the collective behavior dynamics, spatial or non-
spatial, and their properties in social swarms. In doing
so, details on individual interactions and environmental in-
puts are simplified and several assumptions in formulation
are adopted (e.g., non-evolutionary, position information,
and fixed strategies), and uniformly treated for all entities,
for instance, as affected by repulsive and attractive forces

among the entities and between the entities and their envi-
ronment [7].

Besides understanding the collective behavior dynamics
of social swarms, other models have been explicitly deal-
ing with the task of optimization. In this regard, some spe-
cific implementations of AOC systems may deal with appli-
cations and/or computational issues similar to those of ant
colony optimization [4, 12] and particle swarm optimization
[14]. However, in AOC, we are further interested in the gen-
eral methodology, e.g., the three approaches to AOC [21,
22], for designing and discovering robust and computation-
ally scalable means for tackling large-scale, dynamically-
evolving, and/or highly-distributed/decentralized computa-
tional problems, e.g., in distributed problem solving and
complex systems modeling as well as their interplay. In
addition, we explicitly observe the principles and crucial
roles of self-organization in computation.



5.2 Rational Agents

AOC entities can have bounded rationality [39]. They
may perform competition due to the law of diminishing re-
turns or in view of internal utility/energy costs, as well as
cooperation following the law of increasing returns as de-
termined by the critical-mass effects, by means of various
interacting behavioral policies or strategies. In a compet-
itive AOC system, the objective is still to make sure that
the whole system remains efficient in spite of the ‘selfish-
ness’ of the entities. As it has been tested earlier [43], the
efficiency of the system, e.g., the best utilization of given re-
sources, can be achieved if we carefully design or automat-
ically determine the appropriate number of strategies that
an individual entity can have, and the suitable size of its
memory, i.e., the amount of past performance that the entity
should keep.

Example 5.1 (Cooperation vs. competition) Entities will
cooperate, e.g., form structural/functional relationships,
among themselves, and therefore, amplify the performance
throughput and utility gains. Due to their specific interests,
goals, and/or utilities to achieve as well as their coopera-
tive efficiency, different structures of entity organization can
emerge. Since the computational environment in which the
entities inhabit has limited resources, e.g., resources are not
produced fast enough as compared to the rate of consump-
tion. Different entities, or groups of entities, will start to
compete in order to prevail in such a scarcity-perceived en-
vironment.

As competition becomes more and more fierce, the gains
of some teams will be diminishing. This will in turn en-
courage them to compromise their positions and to establish
their common interests and cooperative efficiency. Once
this is achieved, a new form of cooperation at the individ-
ual and/or organizational levels is established. The newly
established partners will function as a new group. Forming
such a new group makes the partners perform better than
working competitively. On the contrary, the group may also
split.

An AOC system is a multi-agent system (MAS) [44].
However, the key issues and applications of AOC differ
from those of MAS. AOC explicitly addresses the issues
of self-organization, self-organized computability, inter-
activity, and computational scalability in solving large-
scale computationally-hard problems or modeling complex
systems, whereas the latter is aimed primarily at providing a
distributed AI or systems development methodology that is
based on the models of rational agents. On the other hand,
the local entities of an AOC system can be ‘light-weight’;
they may not necessarily be cognitive or rational decision-
making entities. AOC also differs from conventional agent-
based simulation, in that the goals of AOC are much more

explicit and broader.

6 Concluding Remarks

In this paper, we have discussed some of the key
concepts, principles, and implications underlying an un-
conventional self-organized paradigm, namely, Autonomy-
Oriented Computing (AOC).

An AOC system is, generally speaking, an open, non-
equilibrium system, in which autonomous entities react to
their internal/external stimuli, or behave in a goal-directed
deliberative manner, and perform interactions, e.g., infor-
mation exchanges and utility updates. As a result, certain
behaviors of the entities and/or their effects will be nonlin-
early aggregated and amplified, as opposed to others. This
process is known as self-organization, and serves as the core
of AOC. For instance, in complex problem solving, AOC
utilizes self-organization to efficiently converge to a desired
solution state. In complex systems modeling, AOC enables
the process of self-organization to effectively characterize
certain empirically-observed emergent behavior and hence
provide a model for its working mechanisms.

6.1 Applications of AOC

So far, the autonomy-oriented self-organized computing
paradigm has been developed and tested in the following
types of applications:

Type 1. Complex systems modeling: It provides the
means of modeling/characterizing and hence under-
standing/unveiling the working mechanisms that lead
to emergent behavior in complex systems. Examples
of complex systems behaviors that have been studied
include:

• user information-foraging behavior on the Web
[9, 32],

• dynamics of social networks [50],

• emergent behavior in HIV-immune interactions
[49], and

• self-organization in multi-agent systems [20].

Type 2. Complex problem solving: It offers a promis-
ing paradigm for designing and developing computa-
tionally scalable solutions (e.g., architectures, meth-
ods, and technologies) to large-scale, distributed com-
putational problems. Examples of complex computing
problems that have been handled include:

• distributed constraint satisfaction [12, 24],

• distributed optimization [41, 45],



• self-organized Web proxies [13],

• sensor network data routing [6],

• social network mining [46, 47],

• robot world modeling [31], and

• dynamic grid resource allocation [23].

It should be mentioned that results from Type 1 applica-
tions in complex systems modeling can readily provide use-
ful models for performing Type 2 applications in complex
problem solving.

We have noted several features and characteristics of the
AOC paradigm:

1. It lends itself well for natural formulation, since many
complex systems or problems at hand are locally-
interacting, autonomous, and distributed/decentralized
in nature;

2. It can be light-weight and easy-to-implement, since
autonomous entities can readily be developed and de-
ployed;

3. It is computationally scalable in performing emergent
systems modeling and computational problem solving,
since the spirit of self-organization lies in the fact that
the larger the computational scale, the more effective
and efficient the process should become.

6.2 Open Problems in Open Computing

The autonomy-oriented self-organized computing
paradigm has presented new opportunities for future
theoretical computer science research as well as practical
development/deployment. Some important local-to-global
questions can be further studied, e.g.,

1. When will an AOC system be globally critical?

2. How to define and dynamically evolve the basin of at-
traction, e.g., conditions or settings for entities, corre-
sponding to the fixed points of AOC solutions? How
sensitive are they?

3. How to effectively accelerate the emergence, espe-
cially for complex problems?

In addition, with respect to emergent computation, we
want to better understand:

1. Convergence: What will be the right balance between
global influences and diversity that can effectively gen-
erate an optimal solution?

2. Robustness: Will the solution be globally stable and
independent of initial settings/conditions?

3. Efficiency: How to characterize and achieve cost-
sensitive efficiency with respect to computational tasks
of different complexities?
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