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One of the central problems in studying and understanding complex networks, such as online social

networks or World Wide Web, is to discover hidden, either physically (e.g., interactions or hyper-

links) or logically (e.g., profiles or semantics) well-defined topological structures. From a practical

point of view, a good example of such structures would be so-called network communities. Earlier

studies have introduced various formulations as well as methods for the problem of identifying

or extracting communities. While each of them has pros and cons as far as the effectiveness and

efficiency are concerned, almost none of them has explicitly dealt with the potential relationship

between the global topological property of a network and the local property of individual nodes.

In order to study this problem, this paper presents a new algorithm, called ICS, which aims to

discover natural network communities by inferring from the local information of nodes inherently

hidden in networks based on a new centrality, that is, clustering centrality, which is a generaliza-

tion of eigenvector centrality. As compared with existing methods, our method runs efficiently with

a good clustering performance. Additionally, it is insensitive to its built-in parameters and prior

knowledge.
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1. INTRODUCTION

Network communities are groups of network nodes, within which links are
dense, but between which links are sparse [Girvan and Newman 2002, Newman
2004a]. The ability to discover communities from different kinds of networks
can help us better understand and visualize their topological structure, and
hence exploit them more effectively from a practical point of view. For instance,
the ability to discover Web communities is useful or even crucial for search
engines to improve both the efficiency and the accuracy of their search [Flake
et al. 2002; Kleinberg 1999].

Although algorithms addressing this problem have been previously devel-
oped, such as spectral methods [Fiedler 1973; Pothen et al. 1990; Shi and Malik
2000], Kernighan-Lin algorithm [Kernighan and Lin 1970], Girvan-Newman
algorithm [Girvan and Newman 2002; Newman and Girvan 2004], Newman
algorithm [Newman 2004b], MFC algorithm [Flake et al. 2002], HITS algo-
rithms [Kleinberg 1999], as well as others [Scott 2000; Wu and Huberman 2004;
Tyler et al. 2003; Radicchi et al. 2004; Pirolli et al. 1996; Kumar et al. 1999;
Chakrabarti et al. 1999; Reichardt et al. 2004], the issue of how to efficiently and
effectively discover network communities remains an open challenge, since it is
nontrivial to get a good trade-off among the following three important require-
ments: speed, accuracy, and insensitivity to parameters. As a result, many of
the existing methods with good accuracy tend to be computationally expensive
(with a time complexity of at least O(n2)), sensitive to their build-in parameters,
and dependent on prior knowledge.

For examples, bisection methods, such as spectral methods [Fiedler 1973;
Pothen et al. 1990; Shi and Malik 2000] and Kernighan-Lin algorithm
[Kernighan and Lin 1970], need to know the expected number or the approxi-
mate sizes of communities, in order to detect and extract all communities. Hi-
erarchical methods, such as Girvan-Newman algorithm [Girvan and Newman
2002; Newman and Girvan 2004], Newman algorithm [Newman 2004b], and
their improved variants [Tyler et al. 2003; Radicchi et al. 2004], on the other
hand, output dendrograms representing the hierarchical structures of commu-
nities; it is not easy to determine which layer of the dendrogram corresponds
to a meaningful partition of a given network. Newman has earlier provided a
solution to this issue based on the notion of modularity [Newman and Girvan
2004]. He suggests that one should cut the dendrogram to produce a partition
with the maximum modularity. Nevertheless, in many real-world applications,
the expected partitions often correspond to local optima rather than global ones.

The methods for identifying Web communities are also sensitive to their
parameters. The MFC algorithm [Flake et al. 2002] requires some source pages
as sinks, in order to call the Max flow-Min cut procedure, which may potentially
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influence the clustering accuracy. The HITS algorithm [Kleinberg 1999] relies
on the quality of the initial graph obtained by the query result of a search
engine. The SAE algorithm [Pirolli et al. 1996] is sensitive to its parameters,
such as the relaxing rate and the spreading rate.

In our previous work, we have studied how to discover community structures
from signed social networks, which contain both positive and negative links, us-
ing an agent-based heuristic method [Yang et al. 2007]. Also, we have developed
an AOC (autonomy oriented computing [Liu et al. 2004; Liu et al. 2005]) based
self-organization method for discovering communities from distributed and de-
centralized networks, such as sensor networks and communication networks
[Yang and Liu 2007]. These studies have inspired us to rethink this problem
from a different angle, that is, how to develop an effective and efficient method
to discover communities based on the relationship between the global network
structure and the local property of individual nodes. According to this idea,
our present work has developed a new algorithm, called ICS, based on a pro-
posed node centrality. As will be described later in this paper, the ICS algorithm
demonstrates good performance in the above-mentioned three aspects.

The remainder of the article is organized as follows: Section 2 describes
our definition of community structure and the basic idea behind the ICS.
Section 3 presents the ICS algorithm. Section 4 tests its performance against
different networks. Section 5 compares it with existing methods and discusses
its distinct features. Finally, Section 6 concludes the paper by highlighting the
major contributions of our work and discusses some future extensions.

2. DEFINITIONS AND THE BASIC IDEA

2.1 Network Community

Definition 2.1. Graph G = (V , E) is a network where V is the set of nodes
(or vertices), E is the set of links (or edges), |V | = n and |E| = m . π = (G1, G2) is
a bipartition of G. G1 = (V1, E1), |V1| = n1, |E1| = m1. G2 = (V2, E2), |V2| = n2,
|E2| = m2. A, A1, A2, respectively, are the adjacency matrices of G, G1, G2. G
is said to be dividable if A, A1 and A2 satisfy the constraint condition C(A, A1,
A2). Otherwise, G is not dividable and is a community. C(A, A1, A2) is defined
as follows:

C(A, A1, A2) =
(

n1∑
j=1

Aij ≥
n∑

j=n1+1

Aij , 1 ≤ i ≤ n1

)

∧
(

n1∑
j=1

Aij ≤
n∑

j=n1+1

Aij , n1 + 1 ≤ i ≤ n

)
. (2.1)

For each node of G1 (1 ≤ i ≤ n1), the number of its incident links inside
G1 should be no less than that outside G1, that is,

∑n1

j=1 Aij ≥ ∑n
j=n1+1 Aij .

Similarly, for each node of G2 (n1 +1 ≤ i ≤ n), we have
∑n1

j=1 Aij ≤ ∑n
j=n1+1 Aij .
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Fig. 1. A schematic example to illustrate the idea behind our algorithm. (a) The adjacency matrix

of the football association network; (b) the output of our algorithm.

2.2 The Basic Idea behind Our Approach

The adjacency matrix of a given network consists of zeros and positive entries.
If a network can be clearly divided into two communities, its adjacency matrix
A will be transformed into an approximate diagonal matrix with two blocks,
A1 and A2, in which A1 and A2 are two dense submatrices with more nonzero
entries and the remainder parts of A are very sparse with more zero entries.
Based on this observation, we can use the following procedure to identify all
communities hidden in a given network:

First, we transform the initial matrix of a given network into an approxi-
mately diagonal one. Then, we find the partition position in the transformed
matrix, such that it can bipartition the matrix into two submatrices satisfying
the constraint condition C. Finally, we refine the two submatrices in a recur-
sive way until each of the existing submatrices cannot be further divided, that
is, each existing subnetwork has turned into a community. At the end of the
procedure, the initial adjacency matrix of the network will be transformed to a
highly regular diagonal one, in which each diagonal block denotes one network
community.

Figure 1 illustrates the result of discovering all communities of a foot-
ball association network [Girvan and Newman 2002] using the above men-
tioned method. Figure 1(a) shows its initial adjacency matrix of the network,
whereas Figure 1(b) presents the output matrix in which the diagonal blocks
with different grey degrees denote different communities, that is, football
associations.

3. ALGORITHMS

3.1 Main Algorithm

The main steps of the ICS algorithm for discovering the communities of a net-
work are given as follows, where the input A0 denotes the adjacency matrix of
the input network to be clustered, and the output A denotes the output matrix
of the clustered network:
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Algorithm 3.1. A = ICS(A0)

1. Transform A0 into a diagonal matrix A by calling TAM (A0) to be introduced in

Section 3.2;

2. Find a bipartition of A satisfying C(A, A1, A2) by calling BP (A) to be introduced in

Section 3.3;

3. If such a bipartition does not exist then return A; otherwise, bipartition A into A1

and A2;

4. A′
1 = ICS (A1);

5. A′
2 = ICS (A2);

6. Return the diagonal matrix consisting of A′
1 and A′

2.

3.2 Matrix Transformation Algorithm

Traditional optimization methods such as genetic algorithms, simulated an-
nealing, and local search are time-consuming because they usually require
much time to converge. Their performance is also extremely sensitive to the
choice of parameters. In our work, we provide a new algorithm for quickly
transforming an irregular adjacency matrix into an approximately diagonal
one. The basic idea behind this algorithm is based on the concept of clustering
centrality.

Definition 3.1. Let A be the adjacency matrix of network N . The clustering
centrality of node i at time t is defined as:

c(t)
i = ac(t−1)

i + (1 − a)
n∑

j=1

Aij c(t−1)
j

/
n∑

j=1

Aij , (3.1)

where constant a is called temporal coefficient and 0 < a < 1.

In essence, the concept of clustering centrality is a generalization of eigenvec-
tor centrality presented by Bonacih [Bonacich 1972, 1987]. Like other central-
ities such as degree, closeness, and betweenness [Freeman 1977], eigenvector
centrality is also used to measure the importance of a node in a given network
such as prestige, prominence, and power. Eigenvector centrality is defined as
an n-dimension vector C = (ci)

T
n , in which ci denotes the centrality of node i

and is defined as:

ci = λ−1
n∑

j=1

Aij c j , (3.2)

where A is the adjacency matrix of a network, and λ is a constant. Equation
(3.2) means an individual will become more powerful when he/she is associated
to some powerful people. In the form of matrix, Equation (3.2) becomes:

λC = AC. (3.3)

From Equation (3.3) we find that vector C is an eigenvector of matrix A cor-
responding to the eigenvalue λ. This is the origin of the name eigenvector cen-
trality. Actually, λ is the principal eigenvalue of A, and C is the corresponding
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eigenvector, both of which can be computed by an accelerated power method
given in Hotelling [1936].

Now we extend the constant λ to a diagonal matrix D

D = diag(λ1, . . . , λn), (3.4)

where λi = ki = ∑n
j=1 Aij , the degree centrality of node i.

Therefore, Equation (3.2) becomes

ci = λ−1
i

n∑
j=1

Aij c j . (3.5)

Correspondingly, Equation (3.3) becomes

C = D−1 AC = NC. (3.6)

The normal matrix N always has the largest eigenvalue equal to 1 associated
to a trivial eigenvector due to the sum of each row is equal to 1. So, the clustering
centrality vector C is actually the dominant eigenvector of the normal matrix
N , which can be iteratively computed using the following power method:

C(t) = aC (t−1) + (1 − a) NC (t−1)
. (3.7)

Note that, Equation (3.7) is actually the matrix version of Equation (3.1).
As shown in Equation (3.7), the clustering centrality vector at timet is deter-

mined by two terms: the previous centrality vector C(t−1) and the new centrality
vector NC(t−1). The coefficient, a, is used to improve the convergence speed of the
power method by regulating the tradeoff between the old and new information.
For this reason, we refer to a as a temporal coefficient.

Equation (3.1) can be understood in depth from the viewpoint of a random
walk process. Suppose that, at each node, there is an agent whose objective is
to move to a virtual destination. Without any heuristic information, each agent
wanders from one node to another along the links until it hits the destination.
At each step, the agent has two choices: 1) stay at current node with probability
a, or 2) leave current node and go to one of its neighbors with probability 1–a.
Actually, the clustering centrality of node i at time t, defined by Equation (3.1),
is the probability that the agent starting from node i hits the destination after
t steps. Due to the dense reciprocal linkage within communities, it is much
easier to hit the destination after a few steps if the starting points of agents
are within the community containing the destination (destination community).
Otherwise, it will be very hard because it is very difficult to enter the destination
community through sparse intercommunity “bridges.” After enough walking
steps, the clustering centralities of nodes within destination community will
be greater than those of outside destination community. Then we can extract
destination community from entire network by appropriately cutting the sorted
centrality distribution.

Based on the above discussion, the main steps of the proposed TAM algorithm
for transforming a matrix are given as follows, where A0 denotes the input
adjacency matrix, and A denotes the transformed matrix.
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Algorithm 3.2. A = TAM(A0)

1. Initialize C(0) with n random numbers between 0 and 1;
2. t = 1;
3. for i = 1:n
4. update c(t)

i according to Equation 3.1;
5. endfor
6. t = t + 1;
7. Repeat Steps 3 to 6 until the following condition is true:

max
k

{c(t)
k } − min

k
{c(t)

k } < ε

8. Sort all nodes into a non-increasing permutation according to their clustering

centralities;

9. Rebuild A0 into A according to the permutation generated by Step 8.

The convergence speed of the power method is governed by the term of
(λ2/λ1)t , where λ1 and λ2 are, respectively, the largest and second largest eigen-
values. Thus, the speed of TAM is not decided by the dimension of the input
matrix, but by the value of λ2. Practically speaking, we have observed that
TAM converges quite fast even for very large networks. In fact, the clustering
centrality vector that is far from the convergence has provided enough infor-
mation for TAM to rearrange all nodes into a permutation in which all nodes
in a virtual destination community are aggregated together. From the point of
random walk, a small walking step is already enough to distinguish the des-
tination community from others. Therefore, TAM does not need to calculate
a “real” eigenvector close to convergence using quite many iterative steps. In
order to test the convergence speed of TAM for practical networks, we have run
the algorithm against several networks of various scales. In this experiment,
we set ε = 10−4 and each network is tested with different temporal coefficients.
n and m in the legend denote the numbers of nodes and links, respectively.

Figure 2 tells us some interesting properties of TAM. First, its convergence
speed is fairly fast; usually no more than 100 iterations, even for a very large
network with 105 nodes and 106 links. Therefore, it is reasonable to consider the
number of required iterations to be insensitive to the network scale. Second, its
convergence speed can be regulated by the temporal coefficient. Usually, TAM
will converge faster with a greater value of the temporal coefficient.

In each iteration (Steps 3 to 6), each component of C(t) is up-
dated using Equation (3.1) and will take O(ki) time, where ki is the
degree of node i. The time taken in each iteration is bounded by∑n

i=1 O(ki + 1) = O(
∑n

i=1 ki + ∑n
i=1 1) = O(m + n). Thus, the time of Steps 3 to

7 is O(t(m + n)). Step 8 takes O(nlogn) time to sort all nodes. Step 9 rebuilds
the matrix by a matrix scanning that will take O(m + n) time. Therefore, the
total time complexity of the TAM algorithm is O(t(m + n) + nlogn). From above
experiments, we know that t is insensitive to the network scale and is quite
small compared with n and m.

The TAM algorithm can transform an irregular adjacency matrix into an
approximately diagonal one by rearranging rows and columns according to
the sorted clustering centralities. We will illustrate this using four practical
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Fig. 2. Testing the convergence speed of TAM against networks of various scales.

social networks including the karate club network [Zachary 1977], the foot-
ball association network [Girvan and Newman 2002], the dolphin network
[Lusseau 2003], and the food web network (http://www.cosin.org/extra/data/
foodwebs/WEB.html), as shown in Figure 3. We set a = 0.5 for all experiments.
Compared with their respective initial adjacency matrices, we can see that all
of transformed adjacency matrices become approximately diagonal.

3.3 Matrix Bipartition Algorithm

In this section, we will discuss how to find a bipartitions of a transformed matrix
satisfying with conditions C defined in Definition 2.1. We first define two (n-1)-
dimension vectors, Num1 and Num2. The pos-th component of Num1 is defined
as follows:

Num1(pos) =
∥∥∥∥∥
{

i, 1 ≤ i ≤ pos

∣∣∣∣∣
∑

1≤ j≤pos

Aij ≥
∑

pos< j≤n

Aij

}∥∥∥∥∥ ,

for 1 ≤ pos < n. (3.8)

The pos-th component of Num2 is defined as:

Num2(pos) =
∥∥∥∥∥
{

i, pos < i ≤ n

∣∣∣∣∣
∑

1≤ j≤pos

Aij ≤
∑

pos< j≤n

Aij

}∥∥∥∥∥ ,

for 1 ≤ pos < n. (3.9)

where ||S|| denotes the size of set S.
Num1(pos) and Num2(pos), respectively, denote the numbers of cut positions

satisfying the first part and the second part of constraint C. Num1 and Num2

can be quickly computed through at most three scans of the complete matrix.
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Fig. 3. The outputs of the TAM algorithm. The shown matrices are the transformed matrices

after rearranging the rows and columns of their initial adjacency matrices according to the sorted

clustering centralities. Dots in panes denote the non-zero entries of matrices. (a) The output matrix

of the karate club network; (b) the output matrix of the football association network; (c) the output

matrix of the dolphin network; (d) the output matrix of the food web network.

The first top-down matrix scanning is to compute the degree vector K, such
that K(i) is the degree of node i. The second top-down matrix scanning is to
compute the vector Num1, as listed in Algorithm 3.3. In a similar manner, we
can compute the vector Num2 through a bottom-up matrix scanning.

Algorithm 3.3. Num1 = Comp Num1(A)

1. Num1 = zeros(1,n); /* initialize a zero vector */

2. for r = 1:n /* r-row index */

3. sum = 0;

4. for c = 1:n /* c-row index */

5. sum = sum + A(r,c);

6. if Sum >= K(r)/2, break; endif;

7. endfor

8. mid (r) = c;

9. endfor

10. for r = 1:n

11. if mid(r) <= r

ACM Transactions on the Web, Vol. 2, No. 1, Article 9, Publication date: February 2008.
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12. Num1(r) = Num1(r) +1;

13. else

14. Num1(mid (r)) = Num1(mid (r)) +1;

15. endif

16. endfor

17. for r = 2:n

18. Num1(r) = Num1 (r) + Num1 (r-1);

19. endfor

Based on Num1 and Num2, a vector S that measures how well different
positions can fit the constraint C is defined as:

S(pos) = Num1(pos)

pos
+ Num2(pos)

n − pos
. (3.10)

It is easy to show that 0 ≤ S(pos) ≤ 2 for 1 ≤ pos < n. The candidate
positions that satisfy the condition C are those with S-values equal to 2. For
the cases with multiple candidates, instead of selecting one at random, one
can choose the middlemost one in order to obtain communities with a roughly
equal size. For the purpose of demonstrating the effectiveness of this bipartition
method, Figure 3 shows the computed cut positions, which are represented by
the solid crosses. All of them are identical with, or close to, real splits.

If such a position does not exist in the transformed matrix by the TAM al-
gorithm, it indicates that the current network is already cohesive enough and
does not need to be further divided. This corresponds to Step 3 of ICS. In this
way, prior knowledge, such as the number of communities, is not required to
decide how to stop the recursive bisections.

One can soften the constraint C to obtain a more flexible criterion, that is, a
fuzzy constraint, defined as follows:

FC(A) :

(
n1∑
j=1

Aij �
n∑

j=n1+1

Aij , 1 ≤ i ≤ n1

)

∧
(

n1∑
j=1

Aij �
n∑

j=n1+1

Aij , n1 + 1 ≤ i ≤ n

)
, (3.11)

where � and �, respectively, denote “is much greater than” and “is much less
than.” Such a fuzzy cut can be directly computed with the aid of the vector S
as defined in Equation (3.10). That is, an optimal cut position in terms of the
FC can be determined as follows:

pos = arg max(S). (3.12)

In order to decide whether or not a sub-network has already been a commu-
nity under the fuzzy constraint, we will present a new stopping criterion.

Suppose that A is the adjacency matrix of a given network with n nodes. Its
utility function is defined as:

u(A) = C2
n −

∑
i, j

Ai j /2. (3.13)
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In fact, the utility of a network corresponds to the number of links newly added
in order to turn it into a clique. Let π = (A1, A2) be a bipartition of A and the
cost of this bipartition be defined as:

cost(π ) = cut(π ) + u(A1) + u(A2), (3.14)

where cut(π ) is defined as:

cut(π ) =
∑

i∈A1, j∈A2

Aij . (3.15)

For a network that is already coherent enough to be a community, the cost
of splitting it into two parts will be extremely costly. Based on this idea, we
introduce the following new stopping criterion:

cost(π ) ≥ u(A). (3.16)

That is, a subnetwork will be considered as a compact community that cannot
be further divided if the cost of splitting it is greater than that without doing
so. Note that the utility function and the cost function can be simultaneously
computed through one matrix scanning process. Therefore, the time complexity
of testing the stopping condition is also O(n + m).

The key steps for finding an optimal bipartition are summarized as follows,
where A denotes the output of TAM, and cut is the optimal bipartition.

Algorithm 3.4. cut = BP(A)

1. Compute the degree vector K through a top-down matrix scanning;

2. Compute the vector Num1 through a top-down matrix scanning;

3. Compute the vector Num2 through a bottom-up matrix scanning;

4. Compute the vector S based on Num1 and Num2;

5. Set the cut with the middlemost position with the maximum S-value;

6. Test the stopping condition: If true, return “cannot divide”; else return cut.

The matrix scanning processes in the BP algorithm are the most compu-
tationally costly steps. In terms of the adjacency list in which only nonzeros
elements are stored, each scanning will take only O(n + m) time. Thus, the
overall time required by the BP algorithm is bounded by O(n + m).

3.4 The Time Complexity of the ICS Algorithm

Let T (A0) be the time complexity of ICS and A0 be the adjacency matrix of the
network to be clustered, we have:

T (A0) =
{

T1 + T2 + T3 + T (A1) + T (A2) + T6, bipartition exists
T1 + T2, else,

where T1, T2 ,T3, and T6 are the time required by Steps 1, 2, 3, and 6 of ICS. We
have T3 +T6 = O(n+m) and T1 +T2 = O(t(n+ m) + n long). Thus, the worst-case
time complexity of ICS is:

T (A0) =
{

O(t(n log n + m)) + T (A1) + T (A2), bipartition exists
Ot(n log n + m), else.

ACM Transactions on the Web, Vol. 2, No. 1, Article 9, Publication date: February 2008.



9:12 • B. Yang and J. Liu

Fig. 4. The interface of Community Mining & Visualizing Tool, in which the network that is being

analyzed is the football association network. In the displayed output matrix, each dot corresponds

to a “1” entry and each of the diagonal blocks with different gray degrees denotes a detected football

association. This tool can also compute and visualize the hierarchical structure of all detected com-

munities in terms of the sequence of bipartitions. For example, the label of 23:Utah:7 respectively

denotes team number, team name, and association number containing this team. We can see from

this example, team 23 respectively belongs to hierarchies 4, 3, 2, 1, and 0 from right to left layers,

and a total of 24 teams from three different communities form a hierarchy with label 2.

In a recursive manner, one can show that:

T (A0) < O(Rt(nlogn + m)),

where R is the total number of times recursively calling ICS by Steps 4 and
5 during the course of finding all K communities. We have R = 2K − 1. So, the
worst-case time complexity of the ICS is O(Kt(nlogn + m)).

4. VALIDATION OF THE ICS ALGORITHM

4.1 Testing the Effectiveness of the ICS Algorithm

In this section, we will test the effectiveness of the ICS algorithm against some
benchmark networks that have been commonly used in related studies. For all
experiments, we set a = 0.5 and ε = 10−4. All hierarchical community struc-
tures are visualized by our Community Mining & Visualizing Tool as shown in
Figure 4.

4.1.1 An Illustrative Network Example. First of all, we use a simple net-
work shown in Figure 5(a) to illustrate the output format of the Community
Mining & Visualizing Tool. In Figures 5(b) and 5(c), the labels on the left are
the node indices, followed by their corresponding community IDs. For example,
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Fig. 5. The community structure of a network identified by the ICS algorithm. (a) An example net-

work; (b) its initial adjacency matrix; (c) the output matrix; (d) the output hierarchical community

structure.

in the first row of Figure 5(c), “1 (2)” denotes “node 1” belonging to “commu-
nity 2.” As the ICS algorithm is, in essence, a depth-first search algorithm, the
numeric labels on the right hand side of Figure 5(c) indicate the sequence of
communities extracted, which also correspond to a hierarchical structure of the
detected communities, as shown in Figure 5(d).

4.1.2 The Karate Club Network. The karate club network, as shown in
Figure 6(a), describes the social interactions among the members of a karate
club at an American university, which was originally constructed by Wayne
Zachary in the 1970s [Zachary 1977]. The different widths of the links corre-
spond to different interaction strengths. As reported in Zachary [1977], the club
eventually split into two communities: Community A was led by its adminis-
trator (node 1) denoted by squares, and Community B by its teacher (node 33)
denoted by circles.

Figure 6(c) presents the output adjacency matrix and the hierarchical com-
munity structure obtained by the ICS algorithm. We can see that the two
largest groups detected are exactly identical with the real division shown in
Figure 6(a).

4.1.3 The Football Association Network. The US college football associa-
tion network [Girvan and Newman 2002] contains 115 nodes and 613 links,
which correspond to football teams and games played among teams, respec-
tively. Figure 1(a) shows its initial adjacency matrix. All teams are divided into
12 conferences. Each conference is considered as one network community since
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Fig. 6. (a) The karate club network; (b) the initial adjacency matrix; (c) the output matrix and

hierarchical community structure.

the number of games played within the same conference is much more than
those between conferences.

Figure 7 shows the output adjacency matrix and the hierarchical community
structure obtained by the ICS algorithm. In the output matrix, the string on the
left of each row contains the team number, team name, and association number.
Most communities are exactly identical with the real associations except for 8
teams from IA Independents (association No. 5), Western Athletic (association
No. 11), and Texas Christian (association No. 4).

4.1.4 The Dolphin Network. The network shown in Figure 8(a) describes
the social relationship of 62 bottlenose dolphins living in Doubtful Sound of
New Zealand, which was first established by Lusseau based on his experimen-
tal observations of the dolphins for seven years [Lusseau 2003]. During his
research studies, he found these dolphins were separated into two groups for
some reasons, as shown in Figure 8(a).

Figure 8(b) shows the output adjacency matrix and the hierarchical com-
munity structure found by the ICS algorithm, in which the two biggest groups
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Fig. 7. The output matrix and hierarchical community structure of the football association

network.

are very close to the real division except the node “sn89.” In addition, the ICS
algorithm predicts some potential divisions for the respective two groups, as
shown in Figure 8(b).

4.2 Applying the ICS to Reduce a Complex Network

Network reduction is a useful technique for analyzing complex networks. In
this section, we illustrate how to reduce a complex network into a dendrogram
using the ICS. The network discussed here is obtained from the bibliography
of the book Graph Products: Structure and Recognition [Imrich et al. 2000]
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/). The bibliography contains 360
papers written by 314 authors. Its corresponding network is a 2-mode graph,
in which each node denotes either one person or one paper, and link (i, j )
represents person i as the author of paper j , as shown in Figure 9.

Figure 10 provides the output of the ICS algorithm, in which 147 communi-
ties are detected from the above bibliography network. As we have expected,
each community contains some papers and their collaborating authors. For ex-
ample, community 1, as shown in Figure 10, contains 2 papers and 6 authors,
corresponding to the following references:
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Fig. 8. (a) The dolphin network; (b) the output matrix and hierarchical community structure.

McEliece et al. [1978] R. J. McEliece, E. Rodemich, and H. C. Rumsey, “The
Lov’asz Bound and Some Generalizations,” J. Combinatorics, Information and
System Sciences, Vol. 3, 1978, pp. 134–152.

Baumert et al. [1971] L. D. Baumert, R. J. McEliece, E. Rodemich, H. C.
Rumsey, R. Stanley, and H. Taylor, “A Combinatorial Packing Problem, Comput-
ers in Algebra and Number Theory,” Proc. SIAM-AMS Symp. Appl. Math.,1977,
pp. 97–108, American Mathematical Society, Providence, RI.
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Fig. 9. The upper panel presents the bibliography network of the book “Graph Products: Structure
and Recognition [Imrich et al. 2000].” The bottom panel shows its adjacency matrix.

Most of the detected communities are self-connected components, and com-
ponent A is the biggest one, containing 13 communities, 158 papers, and 86
authors. Next, we will analyze component A in detail.

First, we transform component A into a weighted network, as shown in
Figure 11(a). This network indicates the collaborations among 86 coauthors,
in which link (i, j ) with weight w denotes authors i and j coauthored w papers.

Then, we apply the ICS algorithm to the coauthors network and find out 14
communities as shown in Figure 11(b), in which different gray degrees indicate
different clusters.

Furthermore, we reduce the clustered coauthors network into a much smaller
weighted network by condensing each community as one node, as shown in
Figure 11(c).
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Fig. 10. The outputs of the ICS algorithm, when applied to the bibliography network.

Again, the ICS algorithm is applied to obtain the top-level network using the
same way, as shown in Figure 11(d).

Finally, a dendrogram corresponding to component A, as shown in
Figure 11(e), is built based on the results obtained in the above steps.

4.3 Mining Web Communities

Web communities are collections of highly topic-related Web pages. The ability
to automatically cluster Web communities based on the link structure is sig-
nificant for improving the efficiency of search engines because clustering Web
pages in terms of their reciprocally referenced relationships is computationally
much cheaper than clustering them in terms of their semantic contents. In this
section, we will show how to identify Web communities from a given sub-Web
network using the ICS algorithm.

We have adopted and tested the experimental dataset as obtained
from http://www.cs.toronto.edu/∼tsap/experiments/download/download.html.
This dataset was originally constructed according to the following steps: (1)
query search engine AltaVista with the keyword Jordan and form the root set
using the first 200 returned pages; (2) enlarge the root set into the “base set”
by taking in all out-links and first 50 in-links of those pages in the root set; (3)
based on the base set, construct the underlying network by specifying pages as
nodes and in-links and out-links between pages as directed links.
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Fig. 11. (a) The coauthors network of the biggest component; (b) the clustered coauthors network;

(c) the condensed coauthors network; (d) the top-level coauthors network; (e) the dendrogram of

the coauthors network (continues).
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Fig. 11. (Continued).

Figure 12(a) shows the network structure of the sub-Web network con-
structed by the above steps, and Figure 12(b) shows the enlarged view of the
circled area in this large network. Figure 12(c) presents its original adjacency
matrix in which each black dot denotes a link. Note that the matrix is symmetric
since we have ignored the directions of the links and have focused only on their
density.

The ICS algorithm takes 490 seconds to find all Web communities in
this network, with a personal computer of 1.8Hz CPU and 512MB memory.
Figure 12(d) presents the output of ICS. We can see that five biggest groups are
detected and the links between the groups are much fewer than those within
the groups. In total, 173 communities have been detected and the average size
of communities is 23. Figure 12(e) provides the community size distribution in
terms of histogram charts which indicate how many communities in the net-
work have a certain number of nodes. Approximately, we can see a power-law
distribution emerging; that is, most communities have a small size, while a
small number of communities contain quit many members.

As an example, we have selected and looked into a compound community that
contains 80 Web pages. This community is composed of four groups, denoted
as A, B, C, and D in Figure 12(f). It looks like a multiple-hub organization, in
which groups B and D are associated together by two groups of hubs. Group
B links to both hub-groups A and C, while group D only links to hub-group C.
Interestingly, most pages in groups B and D are ESPN Web sites, as related
to the NBA events, news, stories or people, while most of the pages in groups
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Fig. 12. The experimental results of the ICS algorithm, as applied to a sub-Web with 4,009 pages.

(a) The sub-Web network; (b) the enlarged view of a circled area in (a); (c) initial adjacency matrix;

(d) output of the ICS algorithm; (e) statistic data regarding the identified communities; (f) one

example community.
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Table I. Time Complexity of Some Related Algorithms

Time complexity

Algorithms Two-way partition K -way partition

ICS algorithm O(t(nlogn + m)) O(K t(nlogn + m))

Wu-Huberman algorithm [Wu et al. 2004] O(r(n + m)) O(Kr(n + m))

Newman algorithm [Newman 2004b] O(n − 2)(n + m) O((n − K )(n + m))

Kernighan-Lin algorithm [Kernighan and Lin

1970]

O(n2) O(Kn2)

Radicchi algorithm [Radicchi et al. 2004] O(m3/n2) O(K m3/n2)

GN algorithm [Girvan and Newman 2002] O(m2n) O(K m2n)

Spectral method [Fiedler 1973; Pothen et al. 1990;

Shi and Malik 2000]

O(m/(λ3 − λ2)) O(K m/(λ3 − λ2))

A and C are related to MSN portals, such as MSN welcome, MSN hotmail,
MSN money, MSN search, MSN shopping, or MSN people and chat. Detailed
information of each page can be found in Appendix 1. That means quite a few
Web pages belonging to the ESPN Web sites are organized together through
the portals of another company. Based on this observation, it is reasonable to
infer the partnership or intensive collaborations between these two involved
companies.

5. DISCUSSIONS

5.1 The Time Complexity of Different Algorithms

The time complexity of some existing algorithms is presented in Table I, where
m and n denote the numbers of links and nodes, λ2 and λ3 denote the second
and third smallest eigenvalues of Laplacian matrix of a given network, t and
r denote the iterations required by different algorithms. In essence, both the
ICS and the GN algorithms are inspired from the concept of node centrality. As
discussed in Section 3.2, the TAM algorithm is based on clustering centrality,
which is an extension of eigenvector centrality [Bonacich 1972, 1987]. The GN
algorithm is based on link betweenness centrality [Girvan and Newman 2002],
which is an extension of node betweenness centrality [Freeman 1977]. However,
calculating link betweenness is very time-consuming, and so far the fastest
algorithms take O(nm) time to calculate all link betweenness for a network
[Newman 2001; Brandes 2001]. In contrast, calculating clustering centralities
for all nodes is quite efficient. As discussed, the centrality distribution of a
network can be computed within an approximate time of O(nlogn + m). This is
the major reason why ICS is more efficient.

5.2 Insensitivity to Built-in Parameters and Prior Knowledge

In essence, the ICS algorithm is a kind of bisection method that finds all network
communities through a series of bipartitions. As discussed in Section 1, most
of the existing bisection methods heavily depend on prior knowledge, such as
the number of communities, the appreciate size of each community, and so on.
Different from them, ICS can discover all natural communities by means of
some predefined stopping conditions rather than such prior knowledge.
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Table II. Parameters or Prior Knowledge as Required by Different Algorithms

Categories Algorithms Parameters or prior knowledge

Bisection methods ICS algorithm temporal coefficient, controlling

error

Kernighan-Lin algorithm

[Kernighan and Lin 1970]

number of communities,

approximate size of each

community

Spectral method [Fiedler 1973,

Pothen et al. 1990; Shi and

Malik 2000]

number of communities, or

threshold of cut score

Wu-Huberman algorithm

[Wu et al. 2004]

number of communities, two

nodes belonging to different

communities, approximate

size of each community

Hierarchical

methods

GN algorithm [Girvan and

Newman 2002]

knowledge of the dendrogram it

produces

Newman algorithm [Newman

2004b]

knowledge of the dendrogram it

produces

Radicchi algorithm [Radicchi

et al. 2004]

cycle of order, knowledge of the

dendrogram it produces

Web communities

mining methods

MFC algorithm [Flake et al.

2002]

sink pages, number of

communities

HITS algorithm [Kleinberg

1999]

query results of a search engine,

number of top pages

SAE algorithm [Pirolli et al.

1996]

query results of a search engine,

relaxing rate, spreading rate

Table II sums up the built-in parameters or prior knowledge as required
by different algorithms. Compared to the hierarchical methods, the bisection
methods and the methods for detecting Web communities involve more param-
eters and prior knowledge.

On the other hand, the ICS algorithm involves only two parameters: tem-
poral coefficient a and controlling error ε. The result of the TAM algorithm is
insensitive to ε, if its value is set to be small enough. Theoretically, we can set
ε as small as we can. But, as restricted by the computing precision of practical
software, a moderate value between 10−5 and 10−3 is suitable. As discussed
before, the performance, such as the speed and accuracy of ICS, is related, but
insensitive, to the temporal coefficient. As Figure 2 shows, the larger a value we
set, the quicker the TAM runs. As Figure 13 shows, the smaller the a value we
set, the higher the clustering accuracy the ICS can achieve. In practical appli-
cations, the temporal coefficient is set as 0.5, in order to obtain a good tradeoff
between speed and accuracy.

5.3 Clustering Accuracy of the ICS Algorithm

Figure 13 presents the clustering accuracy comparison of three algorithms. This
experimental method has been widely adopted by other related studies [Girvan
and Newman 2002; Newman 2004b; Radicchi et al. 2004]. The networks used
here are the computer-generated, random networks. In each random network,
there are 4 communities with size 32. Each node in a community, on average,
emits 16 links. zout is the number of inter-community links. Obviously, as zout

increases, the community structure of a random network becomes more and
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Fig. 13. Testing the clustering accuracy of three different algorithms.

more ambiguous. A clustering is correct, if it precisely detects the original four
communities. In Figure 13, y-axis denotes the ratio of vertices correctly clus-
tered by different algorithms, and each data point in the curves is obtained by
running a specified algorithm over 100 such random networks.

We note that all algorithms work well when zout ≤ 5.5, correctly identifying
more than 95% of nodes. In the case of 6 ≤ zout ≤ 9, the clustering accuracy of
the ICS algorithm is better than the GN algorithm and Newman algorithm. We
also note that the accuracy of ICS is related to the temporal coefficient, that is,
the accuracy slightly decreases as it increases.

5.4 A Comparison with Spectral Methods

Similar to spectral methods, the ICS algorithm can be considered as one kind
of recursive bisection approach that partitions a network by a series of recur-
sive bipartitions. Generally speaking, a recursive bisection approach has three
distinct features; namely, a global objective function, a strategy for performing
the bisection operations, and a criterion for terminating the recursion. How-
ever, it should be pointed out that the ICS and spectral methods differ in their
implementations of such features.

In spectral methods, the objective functions are based on various ‘cut’ scores,
such as average cut or normalize cut [Fiedler 1973; Pothen et al. 1990; Shi and
Malik 2000]. They bisection a network by minimizing a constraint quadratic
function defined as X T MX/XT X . The optimal X is the second smallest eigen-
vector of M . M is equal to D–A in the case of average cut or D−1/2(D − A)D−1/2

in the case of normalized cut. A recursive spectral bisection will stop if no com-
ponent has a cut whose score is below a predefined threshold.

On the other hand, in the ICS algorithm, the objective function is based
on the community criterion as defined in Equation (2.1) or Equation (3.11). It
divides a network into two by computing, sorting, and splitting the clustering
centrality distribution of the network. Its recursive stopping condition is based
on Equation (3.16).
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Like the ICS, in practice, spectral methods can run quite fast when we use
a heuristic method, such as Lanczos algorithm, to calculate an approximate
second smallest eigenvector of M .

5.5 A Comparison with Cross-Association Methods

As Chakrabarti et al. [2004] defined, a cross-association is “a joint decompo-
sition of a binary matrix into disjoint row and column groups such that the
rectangular intersections of groups are homogeneous.” A rectangular intersec-
tion is considered to be homogeneous if most of its entries are the same. An
intersection will be called “0-homogeneous” if most of its entries are “0.” Oth-
erwise, it will be called “1-homogeneous.” In some applications, such as market
data analysis, the ability to mine the cross-association of a given matrix helps
us reveal the hidden patterns of the relationship between objects, such as the
frequent item sets of a market basket data. Several studies are related to this
interesting topic, such as the ITCC algorithm [Dhillon et al. 2003]. Recently, a
novel method, the CA algorithm, based on the information theory is presented
by Chakrabarti et al. [2004], which uses the Shannon entropy as a new crite-
rion to evaluate the homogeneous degree of a given matrix. The CA algorithm
is an efficient method to transform a given matrix into a new one with an ap-
proximately optimal homogeneous layout in terms of a predefined cost function
based on the Shannon entropy.

The CA algorithm and the ICS algorithm are similar because both cases
involve matrix transforming operations. However, they are essentially distinct
from each other due to the following aspects.

First, the theoretical foundations behind them are different. The criterion
adopted by the CA algorithm is based on the Shannon entropy, and it attempts
to find an approximately optimal solution using a local search method. However,
the basic idea behind the ICS algorithm is to find a global community structure
based on local centrality information.

Second, the CA algorithm is limited to dealing with the binary matrix con-
taining only 0 and 1 because we cannot use the Shannon entropy to measure
the homogeneous degree for a weighted matrix.

Finally and most importantly, cross-association and community are two dif-
ferent concepts in essence. Especially, we can note that the community structure
is a kind of cross-association with stricter constraints. For the CA algorithm,
what it concerns is to identify such a cross-association in which each intersec-
tion is homogeneous in spite of 0-homogeneous or 1-homogeneous. However, for
the ICS algorithm, it tries to find such a cross-association in which each rectan-
gular intersection is homogeneous, and at the same time, the intersections cor-
responding to communities are 1-homogeneous and the rest are 0-homogeneous
as shown in Figure 14(a). Without considering those constrains, the CA algo-
rithm might identify the cross-association as shown in Figure 14(b).

Figure 14(a) shows the cross-association layout obtained by the ICS algo-
rithm, in which three communities, denoted by C1, C2, and C3, are detected.
Note that, among the 9 cross-intersections, the rectangles corresponding to
communities are all 1-homogeneous, and the rest are all 0-homogeneous. This
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Fig. 14. An example to show the distinction between the problems of finding cross-associations and

discovering communities. In the two matrices, the rectangle with label “1” denotes a 1-homogeneous

intersection and the rectangle with label “0” denotes a 0-homogeneous intersection.

kind of cross-association implies dense links within communities and sparse
links between communities. Figure 14(b) shows one possible cross-association
layout obtained by the CA algorithm, in which also 9 cross-intersections are
detected. But this time, the rectangles corresponding to communities are mostly
0-homogeneous, and three noncommunities are 1-homogeneous. The kind of
cross-association indicates sparse links within communities and dense links
between communities, which obviously is not what we really want according to
the definition of community.

This difference can be clearly observed through real networks as shown in
Figure 15. We can see the CA algorithm generates quite nice partitions for
all networks with respect to the cross-association criterion. However, all these
partitions are far from real community structures, because of the reason as
mentioned above. In the case of the football association network, the cross-
association layout found by the CA algorithm looks like a community structure,
but it is not yet accurate enough as compared to the real network partition with
12 communities.

6. CONCLUSIONS

In this article, we have presented a new algorithm, called ICS, for discovering
global network community structures based on local centralities of network
nodes. The key concept proposed in our work is clustering centrality, based on
which we have developed the TAM algorithm that can quickly rearrange all
nodes into a new permutation according to their clustering centrality distri-
bution. This permutation output by TAM shows a very useful feature, that is,
the nodes within the same partition will be aggregated together. Therefore, one
can nicely bipartition a network using an exact or a fuzzy constraint. The two
subnetworks will be further refined by means of recursions until all hidden
communities are found.

We have tested ICS against different kinds of networks, such as social net-
works, random networks, and Web page networks. Our experimental results
have shown its good performance with respect to both speed and accuracy.
Its major features include: (1) it is efficient with a running time scaleable to
network sizes; (2) it is effective and, for most real networks, it can find the com-
munity structures similar or identical to real divisions; (3) it is insensitive to
its built-in parameters and requires no prior knowledge; and (4) it can output
a hierarchical structure of all communities.
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Fig. 15. Partition results of the CA algorithm against four real networks discussed in Section 4.

(a) The karate club network; (b) the football association network; (c) the dolphin network; (d) a

subweb obtained by querying Alta Vista with the keyword “Jordan.”

In our future work, we will focus our attention on studying how to extend the
ICS algorithm into a decentralized algorithm being able to process distributed
and dynamic networks.

APPENDIX

The node information in terms of (Node ID, web site, topic) of the Web commu-
nity shown in Figure 12(f).

2947 http://g.msn.com/0nwenus0/AK/01 Welcome to MSN.com
2948 http://g.msn.com/0nwenus0/AK/02 MSN Hotmail
2949 http://g.msn.com/0nwenus0/AK/03 MSN Search—More Useful Everyday
2950 http://g.msn.com/0nwenus0/AK/04 Welcome to MSN Shopping
2951 http://g.msn.com/0nwenus0/AK/05 MSN Money—More Useful Everyday
2952 http://g.msn.com/0nwenus0/AK/06 MSN People and Chat—More

Useful Everyday
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2953 http://g.msn.com/0nwenus0/AK/14 Welcome to MSN.com
2954 http://espn.go.com ESPN.com
2955
http://proxy.espn.go.com/keyword/searchResults?search=Michael+Jordan
&searchType=2&site=espn&CMP=IL20

ESPN.com Search Results for: Michael Jordan
2956
http://proxy.espn.go.com/keyword/searchResults?search=Michael+Jordan
&searchType=1&CMP=IL20269

ESPN.com Search Results for: Michael Jordan
2957 http://insider.espn.go.com/insider/story?id=1554609 ESPN

Insider: ESPN Insider: Benefits
2958 http://insider.espn.go.com/insider/story?id=1554627 ESPN

Insider: ESPN Insider: Benefits
2959 http://insider.espn.go.com/insider/story?id=1554622 ESPN

Insider: ESPN Insider: Benefits
2960 http://sports.espn.go.com/nba/clubhouse?team=bos ESPN.com: NBA

Boston Celtics Clubhouse
2961 http://sports.espn.go.com/nba/boxscore?gameId=230409027

ESPN.com—NBA—Boston Celtics at Washington Wizards
Live NBA Box Score on ESPN.com

2962 http://sports.espn.go.com/nba/clubhouse?team=mia ESPN.com: NBA
Miami Heat Clubhouse

2963 http://sports.espn.go.com/nba/boxscore?gameId=230411014 ESPN.com—
NBA—Washington Wizards at Miami Heat Live NBA Box Score on ESPN.com
2964 http://sports.espn.go.com/nba/clubhouse?team=atl ESPN.com: NBA

Atlanta Hawks Clubhouse
2965 http://sports.espn.go.com/nba/boxscore?gameId=230412027 ESPN.com—
NBA—Atlanta Hawks at Washington Wizards Live NBA Box Score on

ESPN.com
2966 http://sports.espn.go.com/nba/clubhouse?team=nyk ESPN.com: NBA New

York Knicks Clubhouse
2967 http://sports.espn.go.com/nba/boxscore?gameId=230414027 ESPN.com—

NBA—New York Knicks at Washington Wizards Live NBA Box Score on
ESPN.com

2968 http://sports.espn.go.com/nba/clubhouse?team=phi ESPN.com: NBA
Philadelphia 76ers Clubhouse

2969 http://sports.espn.go.com/nba/boxscore?gameId=230416020 ESPN.com—
NBA—Washington Wizards at Philadelphia 76ers Live NBA Box Score on
ESPN.com

2970 http://espn.go.com/sitetools/s/help ESPN.com: SITETOOLS—ESPN.com
Help

2971 http://espn.go.com/mediakit ESPN.com: MEDIAKIT—Media Kit Home
2972 http://espn.go.com/sitetools/s/contact ESPN.com: SITETOOLS—Contact

ESPN
2973 http://espn.go.com/sitetools/s/tools ESPN.com: SITETOOLS—Tools
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2974 http://espn.go.com/sitetools/s/sitemap ESPN.com: SITETOOLS—Site
Map

2975 http://espn.go.com/sitetools/s/terms.html ESPN.com: SITETOOLS—
Terms of Service

2976 http://espn.go.com/sitetools/s/privacy.html ESPN.com: SITETOOLS—
Privacy

2977 http://espn.go.com/sitetools/s/help/jobs.html ESPN.com Job Opportunities
2979 http://g.msn.com/0nwenus0/AK/08 Welcome to MSN.com
2980 http://g.msn.com/0nwenus0/AK/09 MSN Hotmail
2981 http://g.msn.com/0nwenus0/AK/10 MSN Search—More Useful Everyday
2982 http://g.msn.com/0nwenus0/AK/11 Welcome to MSN Shopping
2983 http://g.msn.com/0nwenus0/AK/12 MSN Money—More Useful Everyday
2984 http://g.msn.com/0nwenus0/AK/13 MSN People and Chat—More Useful

Everyday
2985 http://espn.go.com/nba/s/2003/0226/1514649.html ESPN.com: NBA—

Iverson gives NBA new sort of credibility
2986 http://espn.go.com/nba/playoffs2002/s/frozenmoment4.html ESPN.com—
2002 NBA Finals - Bryant’s 3 sparked Lakers to three-peat
2987 http://espn.go.com/nba/columns/lawrence/1313028.html ESPN.com:

NBA—Big game? Jordan in Chicago is meaningless
2988 http://espn.go.com/nba/columns/ratto ray/1421868.html ESPN.com:

NBA—This is not what Dream Teams are made of
2989 http://espn.go.com/page2/s/wiley/011004.html ESPN.com—Page2—The

‘Skins are Schott
2990 http://espn.go.com/nba/columns/stein/1319557.html ESPN.com: NBA—

Brand among those dissed for wrong reason
2991 http://espn.go.com/nba/columns/misc/1496957.html ESPN.com: NBA—

Wizards making a point with Hughes
2992 http://espn.go.com/page2/s/questions/bellamy.html ESPN.com—Page2—

Bill Bellamy
2993 http://espn.go.com/nba/news/2002/0107/1307442.html ESPN.com: NBA—

Jordan’s wife Juanita files for divorce
2994 http://espn.go.com/nba/preview2002/columns/ramsay drjack/1452621.

html ESPN.com: NBA—A cure-all for all 29 NBA teams
2995 http://espn.go.com/talent/danpatrick/s/2002/0412/1367309.html Dan

Patrick:And the winner is ...
2996 http://espn.go.com/nba/columns/walton bill/1481670.html ESPN.com:

NBA—Spreading some Christmas cheer (and jeer)
2997 http://espn.go.com/page2/s/questions/yamaguchi.html ESPN.com—

Page2—Kristi Yamaguchi
2998 http://espn.go.com/nba/columns/aldridge david/1440531.html ESPN.com:

NBA—Crystal basketball: 15 things that could happen
2999 http://espn.go.com/page2/s/whitlock/021010.html ESPN.com—Page2—

Barry easily outslugs the Babe
3000 http://espn.go.com/nba/columns/walton bill/1510753.html ESPN.com:

NBA—Plenty of Presidents’ Day pondering
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3001 http://espn.go.com/nba/columns/ramsay drjack/1476123.html ESPN.com:
NBA—LeBron’s best individual quality: team play

3002 http://sports.espn.go.com/nba/players/profile?playerId=1035&amp;
avg=48 ESPN.com: Michael Jordan

3003 http://sports.espn.go.com/nba/teamstats?team=was ESPN.com: NBA
Washington Wizards Team Statistics

3004 http://espndeportes.espn.go.com/nba/deportes/clubhouse?team=was
ESPNdeportes.com: NBA—Washington Wizards

3006 http://espn.go.com/nba/playoffs2002/columns/bembry jerry/1394263.html
ESPN.com—2002 NBA Finals - Shaq, Kobe, Phil make Lakers perennial
favorites

3007 http://espn.go.com/nba/preview2002/columns/aldridge david/1452455.
html ESPN.com: NBA—Young talent who can determine a franchise’s fate

3008 http://espn.go.com/page2/s/rosen/021002.html ESPN.com—Page2—
NBA’s summer of discontent

3009 http://espn.go.com/nba/columns/ramsay drjack/1434127.html ESPN.com:
NBA—My secrets to NBA head coaching success

3010 http://espn.go.com/nba/columns/aldridge david/1427992.html ESPN.com:
NBA—Solving USA Basketball’s long list of problems

3011 http://espn.go.com/page2/s/wiley/020219.html ESPN.com—Page2—
Payback is a bitch

3012 http://espn.go.com/nba/columns/walton bill/1482822.html ESPN.com:
NBA—Hoping these wishes come true in 2003

3013 http://dmoz.org/Sports/Basketball/Professional/NBA/Players/J/Jordan,
Michael Open Directory—Sports: Basketball: Professional: NBA: Players:

J: Jordan, Michael
3015 http://espn.go.com/nba/playoffs2002/columns/aldridge david/1392640.

html ESPN.com—NBA—PLAYOFFS2002—Let’s hope NBA continues with
fluid style

3016 http://espn.go.com/nba/columns/stein marc/1510267.html ESPN.com:
NBA—No fines? No trades? Not for Cuban ... yet

3017 http://espn.go.com/dickvitale/vcolumn010924jordan.html ESPN.com—
Dick Vitale—vcolumn010925jordan

3018 http://espn.go.com/page2/s/wiley/020530.html ESPN.com—Page2—It’s
crunch time ... C-Webb disappear

3019 http://espn.go.com/page2/s/wiley/020627.html ESPN.com - Page2—
Uncensored thoughts about NBA draft

3020 http://espn.go.com/nba/columns/stein marc/1521167.html ESPN.com:
NBA—MJ shouldn’t be blowing stack at Stackhouse

3021 http://sports.espn.go.com/nba/teamsched?team=was ESPN.com: NBA
Washington Wizards Team Schedule

3022 http://espn.go.com/page2/s/closer/020212.html ESPN.com—Page2—Love
Triangle: Michael, Phil and Kobe

3023 http://espn.go.com/page2/s/wiley/020919.html ESPN.com—Page2—
Polished NFL outshines NBA

3024 http://espn.go.com/nba/allstar/2003/news/2003/0209/1506552.html
ESPN.com: NBA—A star among stars: Garnett earns All-Star MVP

ACM Transactions on the Web, Vol. 2, No. 1, Article 9, Publication date: February 2008.



Discovering Global Network Communities Based on Local Centralities • 9:31

3025 http://espn.go.com/nba/steinline/030217.html ESPN.com: NBA—The
Stein Line

3026 http://espn.go.com/nba/camp2002/columns/stein marc/1447644.html
ESPN.com: NBA—Lakers already pumped up over four-peat

3027 http://espn.go.com/nba/news/2002/0911/1430627.html ESPN.com: NBA—
Stackhouse dealt to Wizards in six-player deal

3028 http://espn.go.com/page2/s/rosen/021115.html ESPN.com—Page2—
Stockton, Malone master fading away

3029 http://espn.go.com/page2/wash/s/questions/ptiguys.html ESPN.com—
Page2—10 Burning Questions for ’PTI’ duo

3030 http://games.espn.go.com/cgi/fba/request.dll?PLAYERCARD&amp;
nPlayerID=1035 Fantasy Basketball: Error
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