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Abstract

Recently, mobile location estimation is drawing considerable attention in the field of wireless com-

munications. Among different mobile location estimation methods, the one which estimates the lo-

cation of mobile stations with reference to the wave propagation model is drawing much attention on

the grounds that it is applicable to different kinds of cellular network. However, the signal propaga-

tion models require estimation of propagation parameters. We have revised the existing EM algorithm

which is designed for signal propagation models. We have classified the EM algorithm into two cases

— Sufficient Data Collection and Insufficient Data Collection. We experimented our modified EM al-

gorithm with 192,177 sets of real life data collected from a major mobile phone operator of Hong Kong.

Results show that the modified EM algorithm improves the existing parameters estimation algorithm

in terms of estimation accuracy, stability in different types of landscapes.

1 Introduction

Using the signal propagation model for wireless location estimation is one of the most promising approach

since signal strength is an intrinsics of wireless communication and is well handled in all cellular systems.

However, there are many factors affecting the electromagnetic wave propagation, they can be generally

classified into three attributes — reflection, diffraction and scattering. In most cellular radio systems

operate in urban areas, the electromagnetic waves travel along different paths of various lengths due to



multiple reflections from various objects such as high rise buildings. This phenomenon causes multipath

fading at a specific location which increases the difficulties in predicting the signal strength at the specific

location.

Signal propagation models are used to predict the mean signal strength for an arbitrary distance between

transmitter and receiver (T-R Seperation). The propagation model which is used to estimate the coverage

area of transmitter is calledlarge-scalepropagation model. The T-R seperation for this kind of propa-

gation model is usually around several hundreds meters to several thousand of meters. Whereas, another

propagation model is calledsmall-scalefading, which characterize the rapid fluctuations of received signal

strengths over short travel distance (a few wavelengths) or short time duration (on the order of seconds).

In this technical report, only the large-scale fading is discussed.

For the rest of this report, in Section 2, we first give an overview of the propagation model and existing

propagation parameters estimation methods. These are followed by the description of our modified EM

algorithm in Section 3. The experiments and results of validating the modified EM algorithm are described

in Section 4. Finally, we summarize our work in Section 5.

2 Background

2.1 Signal Propagation Model

The fundamental signal propagation model is the free space propagation model which is given by Friis [1],

Pr =
PtGtGrλ

2

(4π)2 d2L
(1)

where,Pt is the transmitted power,Pr is the received power,Gt is the transmitter antenna gain,Gr is

the receiver antenna gain,d is the T-R seperation,L is the system loss factor not related to propagation

(L ≥ 1), andλ is the wavelength in meters. The free space propagation model is derived from the first

principles and it shows that the receive power decays with a distance at a rate of 20dB/decade when

there is no obstacles between the transmitter and the receiver. In real environment, a single Line of Sight

(LOS) path between the transmitter and receiver seldom occurs especially in urban environment. Thus,

the free space propagation model cannot be applied in this situation. Many propagation models based

on the free space propagation model have been proposed like 2-ray Model, Okumura Model and HATA

Model [2, 5, 7]. However, these propagation models are non-directional. From our observations, the

directive gain of the directional antenna affects the Received Signal Strength (RSS) to a certain extent.

Furthermore, the environmental factor is another attributes which should be considered. Unfortunately,

most of the existing propagation models have not dealt with these two factors. In view of this, our group
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had proposed a statistical Directional Propagation Model (DPM) [3] to incorporate these two parameters

for mobile location estimations.

The DPM model enhanced the free space signal propagation model by relating the directive gain of the

directional antenna to it. In brief, the DPM is defined as follows,

pl = β0 + β1ga + β2ge + β3 log h + (β4 + β5 log h + β6e) ln d (2)

where,pl is the mean propagation loss. It is defined as the difference between the RSS,s and the transmit

power,p in decibel. d is the distance in meter between the Mobile Station (MS) and the Base Station

(BTS)1. ga andge are the azimuth and elevation directive gain of an antenna typet respectively.e is the

environment index which is the building density in specific directions of the BTS andh is the height in

meter of the BTS.β = [β0β1β2β3β4β5]
T are the coefficients needed to be estimated.

The mean propagation loss (pl ) is assumed to follow a Gaussian distribution and its probability density

function (p.d.f.) is defined as follows,

f
(
pl |d, ga, ge, h, e, t, θ

)
=

1√
2πσ(t)

exp


−1

2

(
pl − pl

(t)

σ(t)

)2

 (3)

whereθ is the set of propagation parameters,σ(t) is the standard deviation andexp is the exponential

function with basee.

2.2 Propagation Parameters Estimation

Using the Ordinary Least Square (OLE), the propagation parameters,β̂(t) 2 can be estimated by3,

β̂(t) =

[(
X(t)TX(t)

)−1

X(t)T
]
−→y (t) (4)

where,

β̂(t) =




β̂
(t)
0

β̂
(t)
1

β̂
(t)
2
...

β̂
(t)
6




−→y (t) =




pl
(t)

1

pl
(t)

2

pl
(t)

3
...

pl
(t)

n




1Both MS and BTS can be transmitter and receiver at the same time.
2The estimated variableX is represented bŷX
3The transpose of MatrixX is represented byXT
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X(t) =




1 g
(t)
a1 g

(t)
e1 log h

(t)
1 ln d

(t)
1 log h

(t)
1 ln d

(t)
1 e

(t)
1 ln d

(t)
1

1 g
(t)
a2 g

(t)
e2 log h

(t)
2 ln d

(t)
2 log h

(t)
2 ln d

(t)
2 e

(t)
2 ln d

(t)
2

1 g
(t)
a3 g

(t)
e3 log h

(t)
3 ln d

(t)
3 log h

(t)
3 ln d

(t)
3 e

(t)
3 ln d

(t)
3

...
...

...
...

...
...

...
1 g

(t)
an g

(t)
en log h

(t)
n ln d

(t)
n log h

(t)
n ln d

(t)
n e

(t)
n ln d

(t)
n




wheren is the number of measurements and̂σ(t) is given as follows,

σ̂(t) =

√
e(t)Te(t)

n
(5)

where,e(t) =

(
I−X(t)

(
X(t)TX(t)

)−1

X(t)T
)
−→y (t).

In additional to the OLE, the propagation parameters can be estimated by using the Expected-Maximization

(EM) algorithm proposed by Teemu Roos, Petri Myllymaki, and Henry Trri [6]. The EM algorithm es-

timates the propagation parameters by finding the local maximum of the likelihood function from the

incomplete data. It consists of two steps, the expectation step and the maximization step. During the ex-

pectation step, unknown parameters are estimated based on the measurement and the current parameters.

This estimated complete data is called the ”hidden data”. While in the maximization step, the parameters

are estimated by maximizing the ”hidden data” using the Maximum Likelihood method. These two steps

are repeated until the estimated parameters converge.

The EM algorithm is used because the RSS obtained (or measured) is either rounded off to finite accu-

racy or truncated. These two problems occurred because the RSS is mapped to an RXLEV in accordance

with the GSM specifications [4] as shown in table 1. However, we found that the EM algorithm in [6] has

Table 1: Mapping between RXLEV and RSS

RXLEV RSS (dBm)
0 < −110

1 −110 to−109

2 −109 to−108
...

...
62 −49 to−48

63 > −48

some problems. It assumed that the actual RSS can be any value exceeds the boundary when the observed

RSS is equal to the threshold value. However, according to the GSM specification, the range of received

signal strength is between -29dBm and -114dBm only. In view of these problems, we revised the EM

algorithm in [6] accordingly.
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3 Modified EM Algorithm

3.1 Sufficient Data Collection

We classify the observed RSS and actual RSS according to the range of received signals into three types

which are defined as follows.




o
(t)
i − εl ≤ s

(t)
i < o

(t)
i + εn

2
(C1: s(t)

i ≤ −110)
o
(t)
i − εn

2
≤ s

(t)
i < o

(t)
i + εn

2
(C2:−110 < s

(t)
i < −48)

o
(t)
i − εn

2
≤ s

(t)
i < o

(t)
i + εu (C3: s(t)

i ≥ −48)

(6)

where,o(t)
i is theith observed RSS from a BTS of antenna typet at a location.st

i is theith actual RSS

from a BTS of antenna typet at a location. Whileεl, εn andεu are the lower boundary error, normal error

and upper boundary error respectively, their values are shown as follows.




εl = 4dBm

εn = 1dBm

εu = 19dBm

(7)

The mean observed RSS,o, and the mean actual RSS,s, are defined as follows4.

o
def
= E

(
o
(t)
i

)
(8)

s
def
= E

(
s
(t)
i |o(t)

i

)
(9)

So,o ands can be represented as follows,

o− l ≤ s < o + u (10)

where

l = 2C1εl+C2εn

2(C1+C2)
u = C2εn+2C3εu

2(C2+C3) (11)

C1 = Total no. of observations from a BTS of antenna typet at a location satisfies C1 in Eq. (6)

C2 = Total no. of observations from a BTS of antenna typet at a location satisfies C2 in Eq. (6)

C3 = Total no. of observations from a BTS of antenna typet at a location satisfies C3 in Eq. (6)

4E(X) denotes the expectation ofX.
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During the expectation step of the EM algorithm,−→y (t) is defined as,

−→y (t) def
=




p
(t)
1 − E

(
s
(t)
1 |θ̂(t)

′)

p
(t)
2 − E

(
s
(t)
2 |θ̂(t)

′)

...

p
(t)
i − E

(
s
(t)
i |θ̂(t)

′)

...

p
(t)
j − E

(
s
(t)
j |θ̂(t)

′)




(12)

where,p(t)
i is the transmitted power of a BTS of antenna typet at locationi. j is number of location of

antenna typet. θ̂(t)
′
is the estimated propagation parameters in the previous maximization step.

E
[
s
(t)
i |θ̂t

′]
=

[
exp

(
−1

2
(a

(t)
i )2

)]
−

[
exp

(
−1

2
(b

(t)
i )2

)]
σ̂t
′

√
2π

[
Φ

(
b
(t)
i

)
− Φ

(
a

(t)
i

)] + µ̂
(t)
i

′
(13)

where,a(t)
i andb

(t)
i are given by,

a
(t)
i

def
=

(o
(t)
i − lti)− µ̂

(t)
i

′

σ̂t
′ (14)

b
(t)
i

def
=

(o
(t)
i + ut

i)− µ̂
(t)
i

′

σ̂t
′ (15)

Φ is the cumulative distribution function of a Gaussian distribution with zero mean and unity variance,

µ̂
(t)
i

′
is the mean signal strength value given by Eq 2 using the estimated propagation parameters,θ̂t

′
in the

previous maximization step.̂σt
′
is the standard derivation of antenna typet in the previous maximization

step and is given as follows,

σ̂t
′
=

√
SESEt

j
(16)

where,SESEt is defined as,

SESEt
def
=

j∑
i=1

E

[
(s

(t)
i − µ̂

(t)
i )2|θ̂(t)

′]
(17)

and,

E

[(
s
(t)
i − µ̂

(t)
i

)2

|θ̂(t)
′
]

=
(σ̂

(t)
i

′
)2

(
a
(t)
i

[
exp

(
− 1

2
a
(t)
i

)2
]
−b

(t)
i

[
exp

(
− 1

2
b
(t)
i

)2
])

√
2π

[
Φ

(
b
(t)
i

)
−Φ

(
a
(t)
i

)]

+
2σ̂

(t)
i

′(
µ̂

(t)
i

′
−µ̂

(t)
i

)([
exp

(
− 1

2
a
(t)
i

)2
]
−

[
exp

(
− 1

2
b
(t)
i

)2
])

√
2π

[
Φ

(
b
(t)
i

)
−Φ

(
a
(t)
i

)]

+(σ̂
(t)
i

′
)2 + (µ̂

(t)
i

′
− µ̂

(t)
i )2

(18)
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After calculating the−→y (t) and σ̂(t), the propagation parametersθ(t) are maximized using Eq 4. The

updated propagation parameters are then looped back to the expectation step until they are converged.

3.2 Insufficient Data Collection

Parameters estimation involve a lot of training data. However, we may not be able to collect enough data

for this purpose. To solve this problem, we would like to introduce the hidden RSS. Generally, a MS can

received signals from 9 BTSs only. However, when there a lot of surrounding BTSs, the MS may receive

more than 9 BTSs. These RSSs can not be collected directly but they should not be greater than the

minimum RSS measured by the MS at a location. We called these RSS as hidden RSS. Thus, in addition

to the observed RSS, we could used the hidden RSS to increase the training sample size.

In brief, the hidden RSS is given by,

h
(t)
i ≤ min(o

(t)
i +

εn

2
) (19)

where,min(o
(t)
i ) is the minimum of theith observed RSS from a BTS of antenna typet at a location.ht

i

is theith hidden RSS from a BTS of antenna typet at a location.

The mean hidden RSS,h is defined as,

h
def
= E

(
h

(t)
i |min(o

(t)
i )

)
(20)

and,

h ≤ min(o) +
εn

2
(21)

Similar to the Sufficient Data Collection case, in the expectation step,−→y (t) is defined as,

−→y (t) def
=




p
(t)
1 − E

(
s
(t)
1 |θ̂(t)

′)

...

p
(t)
i − E

(
s
(t)
i |θ̂(t)

′)

p
(t)
i+1 − E

(
h

(t)
i+1|θ̂(t)

′)

...

p
(t)
j − E

(
h

(t)
j |θ̂(t)

′)




(22)

and,

E
[
h

(t)
i |θ̂t

′]
= −

exp
(
−1

2
c
(t)
i

)2

σ̂t
′

√
2πΦ

(
c
(t)
i

) + µ̂
(t)
i

′
(23)
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where,c(t)
i is given by,

c
(t)
i

def
=

(min(o
(t)
i ) + εn

2
)− µ̂

(t)
i

′

σ̂t
′ (24)

σ̂t
′
is given by Eq 16 and Eq 17, andE[(s

(t)
i − µ̂

(t)
i )2|θ̂(t)

′
] is given by,

E

[(
s
(t)
i − µ̂

(t)
i

)2

|θ̂(t)
′
]

= − (σ̂
(t)
i

′
)2c

(t)
i exp

(
− 1

2
(c

(t)
i )2

)

√
2πΦ

(
c
(t)
i

) −
2σ̂

(t)
i

′(
µ̂

(t)
i

′
−µ̂

(t)
i

)
exp

(
− 1

2
c
(t)
i

)2

√
2πΦ

(
c
(t)
i

)

+(σ̂
(t)
i

′
)2 + (µ̂

(t)
i

′
− µ̂

(t)
i )2

(25)

Similar to the Sufficient Data case, the propagation parametersθ(t) are maximized using Eq 4 and then

repeated the expectation step with the updated propagation parameters.

3.3 Location Estimation

To perform location estimation, first, we find the posterior p.d.f. of each location with reference to these

serving and neighboring BTSs. The estimated location is then the maximum posterior p.d.f. of these

locations.

Given a set of propagation loss (pl) from a set of receiving BTSs (bs) and the estimated propagation

parameterŝθ, pl is given by,

pl = p− o (26)

and the posterior p.d.f of a location (l) is as follows,

p
(
l|pl,bs, θ̂

)
=

g
(
pl|l,bs, θ̂

)
π (l)

∫
g

(
pl|l′,bs, θ̂

)
π (l′) dl′

(27)

where,p ando are the transmitted power and the observed RSS respectively, andπ (l) is the prior p.d.f of

locationl.

Furthermore, for Sufficient Data Collection case, we have

g
(
pl|l,bs, θ̂

)
=

n∏
i=1

∫ pli+li

pli−ui

gi

(
pli|l , bsi , θ̂

)
dpli (28)

wheren is the number of receiving BTSs andpli is the propagation loss with respect tobsi.

For Insufficient Data Collection case,

g
(
pl|l,bs, θ̂

)
=

n1∏
i=1

∫ pli+li

pli−ui

gi

(
pli|l , bsi , θ̂

)
dpli

n2∏
j=1

∫ ∞

plj− εn
2

gj

(
plj|l , bsj , θ̂

)
dplj (29)
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wheren1 andn2 is the number of observed receiving BTSs and hidden BTSs respectively.

gi

(
pl i |l, bsi θ̂

)
is defined as

g
(
pl |l, bs , θ) def

= f
(
pl |d (l, lbs) , ga (l, lbs, tbs) , ge (l, lbs, tbs) , hbs, e (l, lbs) , tbs, θ

)
(30)

wheref
(
pl |d (l, lbs) , g (l, lbs, tbs) , hbs, e (l, lbs) , tbs, θ

)
has been defined in Eq. (3) withd (l, lbs) is the

distance between the locationl and BTS’s locationlbs. ga (l, lbs, tbs) andge (l, lbs, tbs) are the azimuth and

elevation directive gain with respect to the locationl respectively and, BTS’s locationlbs and the antenna

typetbs. hbs is the height of the BTS ande (l, lbs) is the environment index betweenl andlbs.

4 Results

We obtained supports from a major mobile operator of Hong Kong in conducting this research. We con-

ducted field tests in 52 different areas in Hong Kong and classified them into four types of environments,

which are seashore, suburban, urban and metropolitan areas. In our field tests, we first planned some check

points in the districts for our study. We call each of these pointsMarker Location. Then we collect the

geographical location of the serving or involved BTSs in the districts on the days of field tests and the

received signal strength from the marker locations from the operator. We used30% of the data for param-

eters estimation and used the rest of the data for location estimation. Table 2 shows the results of the DPM

using different parameters estimation methods. The EM*, EM and OLE in Table 2 denote the Modified

EM algorithm, the EM algorithm in [6] and the OLE algorithm respectively. As observed from Table 2,

the EM* and EM perform much better than the OLE method in different kinds of environment for location

estimation. When comparing EM* and EM, we found that the EM* give a slightly better estimation than

the EM. Moreover, the variance of the EM* is smaller than the EM in all aspect of areas which proved that

the EM* is a more stable algorithm.

5 Conclusions

We have revised the EM algorithm for propagation parameters estimation. The modified EM algorithm is

based on the EM algorithm proposed in [6]. In addition, we have provided the Insufficient Data Collection

mode which can be applied for parameters estimation when the amount of data collected is not enough

for estimation. We used the DPM for validating the modified EM algorithm. From our experiments, we

proved that the modified EM algorithm yields better results than the EM algorithm in [6].
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Table 2: Estimation results using different parameters estimation methods

Environment Models Avg. Err. Min. Error Max. Err. Variance
DPM [EM*] 475.46 m 11.18 m 3370.21 m 282129.92

Seaside DPM [EM] 478.01 m 11.18 m 3370.21 m 282326.62
DPM [OLE] 500.19 m 3.61 m 3175.96 m 232713.37
DPM [EM*] 445.57 m 37.47 m 2051.01 m 154725.03

Suburban DPM [EM] 458.68 m 37.47 m 2302.40 m 178398.44
DPM [OLE] 461.03 m 26.86 m 2799.15 m 180202.05
DPM [EM*] 305.29 m 7.37 m 1730.46 m 93357.31

Urban DPM [EM] 304.63 m 7.37 m 1730.46 m 94061.88
DPM [OLE] 363.02 m 12.50 m 2502.28 m 173112.37
DPM [EM*] 124.87 m 5.39 m 909.47 m 10143.43

Metropolitan DPM [EM] 123.43 m 5.39 m 909.47 m 10520.63
DPM [OLE] 220.45 m 6.82 m 1285.24 m 62189.91
DPM [EM*] 325.41 m 5.39 m 3370.21 m 142738.08

Overall DPM [EM] 328.18 m 5.39 m 3370.21 m 149183.93
DPM [OLE] 376.73 m 3.61 m 3175.96 m 169308.30
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