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Abstract

Mobile Location Estimation is drawing considerable attention in the field of wireless com-

munications. In this research study, we focus on the signal fluctuation problem in location

estimation. We present an estimation algorithm which consider all the information we have to

reduce the effect of the signal fluctuation from base stations. And we named it as Statistical

Estimation. In short, Statistical Estimation is derived from the signal information and the

location information of the Base Stations(BSs) and utilizes these information to estimate the

location of the Mobile Station(MS). In our experiments, the Statistical Estimation algorithm

can provide a more accurate estimation on the location and reduce the estimation error caused

by the effect of signal fluctuation. In fact, it acts as a filter to handle the signal fluctuation

problem in location estimation.

1 Introduction

Mobile location estimation is an interesting problem. There are many methods trying to solve

it over the past few years. And to find out the location of a Mobile Station(MS) based on the signal

strength and the base stations(BSs) is one thread to solve the mobile location problem. There are

some results which follow this thread [1, 2, 3, 4, 5, 6, 7, 9, 10, 11].

Through our research and observed from the field test data, signal strength at one place do

fluctuate. That is, the signal strength received from the same BS is different at two sampling time
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in the same place, and some places are more serious than the others. Of course, this phenomenon

of fluctuating can be described by the random model, like in [1, 6, 7]. But the models only use

one snapshot information to find out the MS location. If we get more than one sample snapshots

at one place, but only choose one of them to find out the estimation of MS location, then we may

lose some information among these snapshots.

We want to use more information about the snapshots received from the BSs to find out the

estimation of MS location. Since we believe that all the information about the snapshots have

some contribution for estimating the MS location, the more information we use to find out the MS

location, the more accurate the estimation. In this study, we present an estimation, named by the

statistical estimation, and we also give two special structures of the statistical estimation.

This research study is divided into four sections. In the following section, we will discuss

the Statistical Estimation in details, then we describe the simulation results of the Statistical

Estimation in section 3. And lastly in section 4, we present a summary of our research and discuss

about the future work.

2 The Statistical Estimation

Given a MS location (x0, y0), we can obtain the received signal strengths from the surrounding

BSs through the mobile station handset, and provided that we also know the locations and the

transmission powers of the BSs, we can derive the signal attenuation between each of the BSs and

the MS. We denote signal strength received from the surroundings BSs and the MS location at one

time as a snap shot. If we take a numbers of samples of received signal strength at one place, we

will have captured some snapshots information which can be useful for location estimation.

Suppose we have n snapshots at MS location in a field test. The signal information collected

can be denoted by a matrix, S:

S =




s11 s12 · · · s1m1

s21 s22 · · · s2m2

...
...

. . .
...

sn1 sn2 · · · snmn




, (2.1)

And the location information of the surrounding BSs can be denoted by matrix L:
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L =




l11 l12 · · · l1m1

l21 l22 · · · l2m2

...
...

. . .
...

ln1 ln2 · · · lnmn




. (2.2)

where

each row of S and L is one snap shot information of the MS received;

m1,m2, ..., mn are the number of each row, which may be not the same;

Since each time the number of the signal strength received from the BSs can be different, the

information and the location matrix can be irregular. Namely, m1,· · · , mn can be different.

In one snapshot, we can get an estimation of the location by some algorithms, such as CG, CT,

Locus , the Geometric Algorithm based on EPM (GEPM) [1] and the Iterative Algorithm based on

EPM (IGEPM) [2]. If we have n snapshots, then we have n estimations of the same MS location.

2.1 Main Idea of the Statistical Estimation

We have a probability method to solve this problem. We describe the problem in detail as

follows.

Suppose for a particular MS location, we have the signal information matrix, S:

S =




s11 s12 · · · s1m1

s21 s22 · · · s2m2

...
...

. . .
...

sn1 sn2 · · · snmn




, (2.3)

and the corresponding BSs location information matrix, L:

L =




l11 l12 · · · l1m1

l21 l22 · · · l2m2

...
...

. . .
...

ln1 ln2 · · · lnmn




. (2.4)

Given the first row of information from the two matrixes S and L. For each snapshot , that

is to say, for each row, we get an estimation of the MS location. Based on the signal information,

s11,s12,· · · , s1m1 , and the location information, l11,l12,· · · , l1m1 , we can get an estimation of the

MS location, denoted by (x1, y1).

Suppose we have two random variables x,y, which are independent to each other. They are

used to describe the east and north coordinates, and their exact distributions can be known or
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unknown to us, for example, the value of the two variables can be distributed under the normal

distribution. So the estimation can be seen as a conditional expectation of the signal and location

information, denoted by,

x1 = E(x|x0, y0), and y1 = E(y|x0, y0)

where (x0, y0) is the initial information.

This is the estimation of MS location, but we just use one snapshot of the information.

We consider the second row of signal strength: s21,s22,· · · , s2m2 , and the corresponding loca-

tion information,l21,l22,· · · , l2m2 . And with this information, we also can get another estimation.

If the second estimation does not consider the first one, then we would have wasted some valu-

able information,s11,s12,· · · , s1m1 , l11,l12,· · · , l1m1 . So the second estimation should have some

relationship with the first one. And it can be written as

x2 = E(x|x1, y1, x0, y0), y2 = E(y|x1, y1, x0, y0).

Since we have n snapshots, so the n-th estimation can be written as

xn = E(x|xn−1, yn−1, · · · , x1, y1, x0, y0), yn = E(y|xn−1, yn−1, · · · , x1, y1, x0, y0).

If we choose this approach as the estimation algorithm, then it would be better than the other

estimation by incorporating statistical knowledge of previous history into our calculation.

Set Dt = {xt, yt, Dt−1}, and D0 = {x0, y0}, we have a series of the estimation by the above

formula:

x1 = E(x|D0), y1 = E(y|D0);

x2 = E(x|D1), y2 = E(y|D1);

· · ·
xn = E(x|Dn−1), yn = E(y|Dn−1).

That is, xn = E(x|Dn−1), yn = E(y|Dn−1) and Dn = {xn, yn, Dn−1},for n ≥ 1, where D0 =

{x0, y0}.
we call the estimation of (xn, yn) the statistical estimation.

2.2 Good Feature of the Statistical Estimation

Suppose E(xn) = x0 and E(yn) = y0 for n ≥ 1.

Set Error(n) =
√

(xn − x0)2 + (yn − y0)2, and we use it as the estimation measuring criteria.

Since we know that xn and yn are random variables from their definitions, Error(n) is also a

random variable. So we should compare them with their expectations.

And we have var(xn) ≤ var(xm), var(yn) ≤ var(ym), for m ≤ n.
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Since var(xn) = var(E(x|Dn−1)) ≤ var(E(x|Dn−2) = var(xn−1).

And now we have a conclusion about the error criteria as Lemma1.

Lemma 1: If E(xn) = x0, E(yn) = y0, and var(xn) < +∞, var(yn) < +∞, then

E(Error(n)) ≤ E(Error(n− 1)).

Proof :

Since

Error(n) =
√

(xn − x0)2 + (yn − y0)2,

so

Error2(n) = (xn − x0)2 + (yn − y0)2,

and

E(Error2(n)) = E((xn − x0)2 + (yn − y0)2

= var(xn) + var(yn) ≤ var(xn−1) + var(yn−1) = E(Error2(n− 1)).

That is

E(Error2(n)) ≤ E(Error2(n− 1)).

On the other hand, we can get it from the definition,

0 < E(Error(n)) < +∞, for all n.

So

E(Error(n)− Error(n− 1)) =

E((Error2(n)− Error2(n− 1))/(Error(n) + Error(n− 1))).

By the Slusky Theorem,

E((Error2(n)− Error2(n− 1))/(Error(n) + Error(n− 1))) =

E((Error2(n)− Error2(n− 1)))/E(Error(n) + Error(n− 1))

There exists a positive real number c, which satisfies

0 < c < E(Error(n) + Error(n− 1)) < +∞.

So

E(Error(n)− Error(n− 1)) ≤ E(Error2(n)− Error2(n− 1))/c ≤ 0.
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That is,

E(Error(n)) ≤ E(Error(n− 1)).

Q.E.D.

So we can draw a conclusion that if n increases, then the expectation of Error(n) will not

increase. If we have n snapshots, then choose (xn, yn) where xn = E(x|Dn−1), yn = E(y|Dn−1) as

the estimation will produce the best result in terms of stability.

2.3 Structure of the Statistical Estimation

Since xn = E(x|Dn−1), yn = E(y|Dn−1), and Dn = {Dn−1, xn, yn}, where D0 = {x0, y0}. We

can rewrite (xn, yn) as a function of the information of signal strength and BS location. with the

information matrixes:

S =




s11 s12 · · · s1m1

s21 s22 · · · s2m2

...
...

. . .
...

sn1 sn2 · · · snmn




, (2.5)

and

L =




l11 l12 · · · l1m1

l21 l22 · · · l1m2

...
...

. . .
...

ln1 ln2 · · · l1mn




, (2.6)

we can rewrite the series of estimations mentioned in the previous section as

xn = fn(xn−1, yn−1, · · · , x1, y1, x0, y0; sn1, · · · , snmn ; ln1, · · · , lnmn) + εn;

yn = gn(xn−1, yn−1, · · · , x1, y1, x0, y0; sn1, · · · , snmn ; ln1, · · · , lnmn) + ηn;

for n ≥ 1;

where

fn and gn are continuous functions in the definition field;

εn and ηn are random variables, E(εn) = 0, E(ηn) = 0, var(εn) = σεn , var(ηn) = σηn ;

εn and ηn are independent.

Since

x1 = f1(x0, y0; s11, · · · , s1m1 ; l11, · · · , l1m1) + ε1,

y1 = g1(x0, y0; s11, · · · , s1m1 ; l11, · · · , l1m1) + η1,
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we have

xn = f∗n(x0, y0; s11, · · · , s1m1 , · · · , sn1, · · · , snmn
; l11, · · · , l1m1 , · · · , ln1, · · · , lnmn

) + ε∗n,

yn = g∗n(x0, y0; s11, · · · , s1m1 , · · · , sn1, · · · , snmn ; l11, · · · , l1m1 , · · · , ln1, · · · , lnmn) + η∗n,

where

f∗n and g∗n are continuous functions in the definition field;

E(ε∗n) = 0, E(η∗n) = 0; var(ε∗n) = σ∗εn
, var(η∗n) = σ∗ηn

;

ε∗n and η∗n are independent.

For each snapshot, we can find one estimation of the MS location, denoted by (xn, yn), which

are different from the notation above. That is

xn = fn(x0, y0; sn1, · · · , snmn
; ln1, · · · , lnmn

) + εn,

yn = gn(x0, y0; sn1, · · · , snmn ; ln1, · · · , lnmn) + ηn,

where

fn and gn are continuous functions in the definition field;

εn and ηn are random variables, E(εn) = 0, E(ηn) = 0, var(εn) = σεn , var(ηn) = σηn ;

εn and ηn are independent.

Therefore, we have

x1 = f1(x0, y0; s11, · · · , s1m1 ; l11, · · · , l1m1) + ε1,

y1 = g1(x0, y0; s11, · · · , s1m1 ; l11, · · · , l1m1) + η1,

· · ·
xn = fn(x0, y0; sn1, · · · , snmn ; ln1, · · · , lnmn) + εn,

yn = gn(x0, y0; sn1, · · · , snmn ; ln1, · · · , lnmn) + ηn,

and we have some idea about the structure of the series {xn, yn}, which is the combination of these

series. In other words, we have two threads about the combination, if we consider every snapshot

has the same contribution to the estimation, then we have a common average structure, otherwise,

we have a weighted average structure.

We present two structures for the Statistical Estimation: one for the common average, and one

for a special weighted average structure.

The average structure

It has the same contribution to the estimation for each snapshot.

That is

xn = 1
n

n∑
i=1

xi,yn = 1
n

n∑
i=1

yi.
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fn = (f1 + f2 + · · ·+ fn)/n,

gn = (g1 + g2 + · · ·+ gn)/n,

εn = (ε1 + ε2 + · · ·+ εn)/n,

ηn = (η1 + η2 + · · ·+ ηn)/n,

The Special weighted average structure

x1 = x1, y1 = y1,

x2 = (x2 + x1)/2, y2 = (y2 + y2)/2 ,

· · ·
xn = (xn + xn−1)/2, yn = (yn + yn−1)/2

where

f1 = f1,g1 = g1,ε1 = ε1,η1 = η1;

· · ·
fn = (fn + fn−1)/2, gn = (gn + gn−1)/2, εn = (εn + εn−1)/2, ηn = (ηn + ηn−1)/2.

The average structure fits for the case that each snapshot has the same contribution to the

estimation, so it puts the same weighting into each snapshot. And the special weighted structure

will fit for the different contribution given by the each snapshot and consider the more recent

estimation will give more important information for the estimation, and it exactly give one half of

the contribution to the estimation.

3 Simulation Results

We use the field test data of HK to test the effect of the Statistical Estimation. And the data

used here are same in [1] and [2].

Since the field test data are sampled in one time for one region, and we consider each snapshot

will have the same contribution to the estimation, so we choose the average structure of the

Statistical Estimation to compute these data. If the data received in one region are sampled in

different time , we suggest to choose the weighted average structure, since the effect of information

will be declined as the time pass as away.

One more paragraph describing the results as presented in Table 1.

4 Summary and Future work

In this study, we have presented a filter to handle the signal fluctuation problem, namely, the

Statistical Estimation. We also give two special structures of the Statistical Estimation. Simulation
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Algorithm Average (m) Standard Deviation

CG 335.11 319.61

CT 321.62 229.06

GEPM 285.27 309.80

IGEPM 282.68 309.05

SE of GEPM 260.26 285.64

SE of IGEPM 257.94 288.53

Table 1: Comparing results among different algorithms.

results show that the Statistical Estimation has improved the property of the MS location. It can

reduce the effect of signal fluctuation to the MS location, thus, it can provide a more accurate

estimation for the location service.

The Statistical Estimation can provide a more accurate estimation than the Geometric Algo-

rithm [1] and Iterative Algorithm [2], since the Statistical Estimation uses all the information we

have to find out the MS location, while the Geometric Algorithm and the Iterative Algorithm just

use the information from one snapshot. Hence, the Statistical Estimation is a feasible filter to

handle signal fluctuation problem.

Since all the methods and models from our research group until now just consider the 2-D

situation, that is to say, the estimation we provided is just a 2-D solution. But we live in a 3-D

real world, therefore, it is only natural to work on a 3-D estimation for location services. By our

research, the height of the antenna is also taking an important part for the MS location in the

hilly terrains in Hong Kong. So one of our future work is to extend the EPM into a 3-D model in

order to provide a 3-D estimation to meet the real world situation in location estimation.
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