Recommending Interest Groups to Social Media Users by Incorporating Heterogeneous Resources

Wei Zeng and Li Chen (lichen@comp.hkbu.edu.hk)

Department of Computer Science Hong Kong Baptist University

Motivation

Traditional recommendations

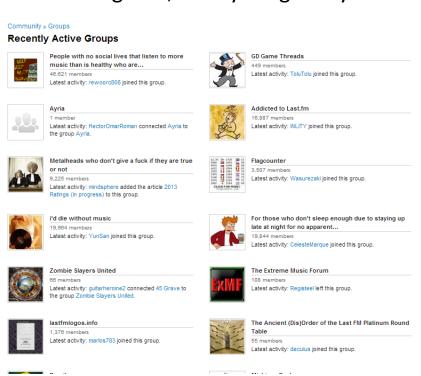
Recommended Artists (see all)

▶ Grafton Primary
▶ Alacran
▶ Bumblebeez
▶ Andrea Echeverri
♦ Colder
▶ Muscles
▶ Damn Arms
♦ Fabiana Cantilo
▶ Portishead & Moloko

Jarabe de Palo

Our focus: recommending interest groups

Groups are based on a common interest, an artist or genre, or anything really!



Challenge

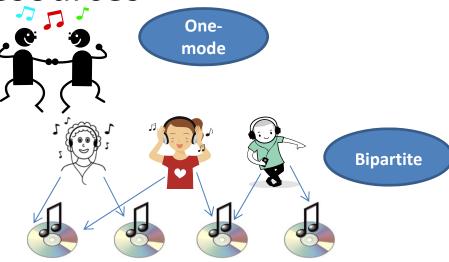
- Data sparsity problem
 - Last.fm, 100,000 users, user-item pairs 29,908,020, but user-group pairs 1,132,281
- Related work
 - Community/affiliation recommendation based on graph proximity model (Vasuke et al. RecSys'10), combinational collaborative filtering (Chen et al., KDD'08), or Latent Dirichlet Allocation (Chen et al., WWW'09)
- But, few have fully incorporated other available resources to further increase the recommendation accuracy

Our methodology

To fuse two auxiliary resources

User-user friendship

User-item preferences



- Research questions
 - How to fuse, due to the different properties?
 - Which resource takes more effective effect?
 - What about their combined effect?

Algorithm

- Fusion framework: Matrix Factorization
 - Advantages: scalability, efficiency, potential accuracy
- To fuse friendship
 - Regularization model
 - Advantage: for minimizing the gap between two entities
- To fuse user-item preferences
 - Factorization model
 - Advantage: for effectively factorizing user-item relations into two components

To fuse friendship

Basic matrix factorization of user-group matrix

equals 1 if the user *u* joined group *g*

$$\min_{u*,g*} \sum_{u,g} c_{ug}^* (\underline{p_{ug}^*} - x_u^T z_g)^2 + \lambda (\sum_{u} ||x_u||^2 + \sum_{g} ||z_g||^2)$$

$$+ \underbrace{\lambda_f(\parallel x_u - \frac{1}{\mid F(u) \mid} \sum_{f \in F(u)} \widehat{\frac{sim}{f}(u, f)} x_f \parallel^2)}_{}$$

Regularization of user-user friendship

coefficient for the friendship regularization

normalized similarity degree between the user u and her/his friend f, based on common items, common groups, or common friends

To fuse user-item preferences

Basic matrix factorization of usergroup matrix

$$\alpha \min_{u*,g*} \sum_{u,g} c_{ug}^* (p_{ug}^* - x_u^T z_g)^2 + \lambda (\sum_u ||x_u||^2 + \sum_g ||z_g||^2) +$$

$$(1 - \underline{\alpha}) \min_{u*,i*} \sum_{u,i} c_{ui} (\underline{p_{ui}} - x_u^T y_i)^2 + \lambda (\sum_{u} ||x_u||^2 + \sum_{i} ||y_i||^2)$$

Factorization of user-item matrix

equals 1 if the user *u* clicked item *i* (implicit feedback)

used to adjust the relative weights of user-item matrix

Cont.

Alternatively, for the comparison purpose

$$\min_{u*,g*} \sum_{u,g} c_{ug}^* (p_{ug}^* - x_u^T z_g)^2 + \lambda (\sum_{u} || x_u ||^2 + \sum_{g} || z_g ||^2)$$
$$+ \lambda_f (|| x_u - \frac{1}{N(u)} \sum_{n \in N(u)} \underline{\omega_{un}^* * x_n ||^2})$$

user u's neighbors who have common items with u

Regularization of user-item relation

weight of similarity between two users *u* and *n*, based on their common items

To fuse them together

Basic matrix factorization of usergroup matrix

$$\alpha \min_{u*,g*} \sum_{u,g} c_{ug}^* (p_{ug}^* - x_u^T z_g)^2 + \lambda (\sum_{u} ||x_u||^2 + \sum_{g} ||z_g||^2) +$$

$$\lambda_f(\parallel x_u - \frac{1}{\mid F(u) \mid} \sum_{f \in F(u)} \widehat{sim}(u, f) x_f \parallel^2) +$$

$$(1 - \alpha) \min_{u*,i*} \sum_{u,i} c_{ui} (p_{ui} - x_u^T y_i)^2 + \lambda (\sum_{u} ||x_u||^2 + \sum_{i} ||y_i||^2)$$

Factorization of user-item matrix

Regularization of user-user friendship

Experiment

	Element	Size	Element	Size
Last.fm	#user	100,000	#user-item pair	29,908,020
	#item	22,443	#friendship pair	583,621
	#group	$25,\!397$	#user-group pair	1,132,281
Douban	#user	71,034	#user-item pair	12,292,429
	#item	$25,\!258$	#friendship pair	273,832
	#group	2,973	#user-group pair	373,239

Evaluation: leave-one-out, hit-ratio metric

Results – fusing user-item preferences

	Last.fm		Douban			
Method	Hits@5	Hits@10	Hits@5	Hits@10		
Group.MF (baseline)	0.0530	0.0875	0.1995	0.2933		
Fusing user-item preferences (via Factorization)						
Group.MF.I.F@train.20	0.0573	0.0899	0.2030	0.2950		
Group. MF.I.F@train. 40	0.0678	0.1026	0.2102	0.3013		
Group. MF.I.F@train. 60	0.0714	0.1068	0.2113	0.3079		
${\tt Group.MF.I.F@train.80}$	0.0722	0.1070	0.2120	0.3095		
Fusing user-item preferences (via Regularization)						
Group.MF.I.R@train.20	0.0559	0.0885	0.2025	0.2932		
Group. MF.I.F@train. 40	0.0559	0.0885	0.2026	0.2936		
Group. MF. I. R@train. 60	0.0560	0.0886	0.2026	0.2936		
Group.MF.I.R@train.80	0.0561	0.0887	0.2027	0.2937		
Fusing friendship						
Group.MF.F.R	0.0566	0.0910	0.2072	0.2973		
Group.MF.F.F	0.0553	0.0876	0.2038	0.2928		
${\bf Group.MF.F.FCos}$	0.0549	0.0861	0.2075	0.2974		
${\bf Group.MF.F.GCos}$	0.0593	0.0923	0.2093	0.2999		
Group.MF.F.ICos	0.0569	0.0897	0.2062	0.2921		

Result 1: the accuracy of factorization model (Group.MF.I.F) is improved with the increase of the density

Result 2: the accuracy of regularization model (Group.MF.I.R) is lower and does not obviously change when the data density varied

Results – fusing user-user friendship

	Last.fm		Douban			
Method	Hits@5	Hits@10	Hits@5	Hits@10		
Group.MF (baseline)	0.0530	0.0875	0.1995	0.2933		
Fusing user-item preferences (via Factorization)						
Group.MF.I.F@train.20	0.0573	0.0899	0.2030	0.2950		
Group. MF.I.F@train. 40	0.0678	0.1026	0.2102	0.3013		
Group. MF.I.F@train. 60	0.0714	0.1068	0.2113	0.3079		
Group.MF.I.F@train.80	0.0722	0.1070	0.2120	0.3095		
Fusing user-item preferences (via Regularization)						
Group.MF.I.R@train.20	0.0559	0.0885	0.2025	0.2932		
Group. MF.I.F@train. 40	0.0559	0.0885	0.2026	0.2936		
Group.MF.I.R@train.60	0.0560	0.0886	0.2026	0.2936		
Group.MF.I.R@train.80	0.0561	0.0887	0.2027	0.2937		
Fusing friendship						
Group.MF.F.R	0.0566	0.0910	0.2072	0.2973		
Group.MF.F.F	0.0553	0.0876	0.2038	0.2928		
${\bf Group.MF.F.FCos}$	0.0549	0.0861	0.2075	0.2974		
${\tt Group.MF.F.GCos}$	0.0593	0.0923	0.2093	0.2999		
Group.MF.F.ICos	0.0569	0.0897	0.2062	0.2921		

Result 3: the regularization model (Group.MF.F.R) outperforms the factorization model (Group.MF.F.F)

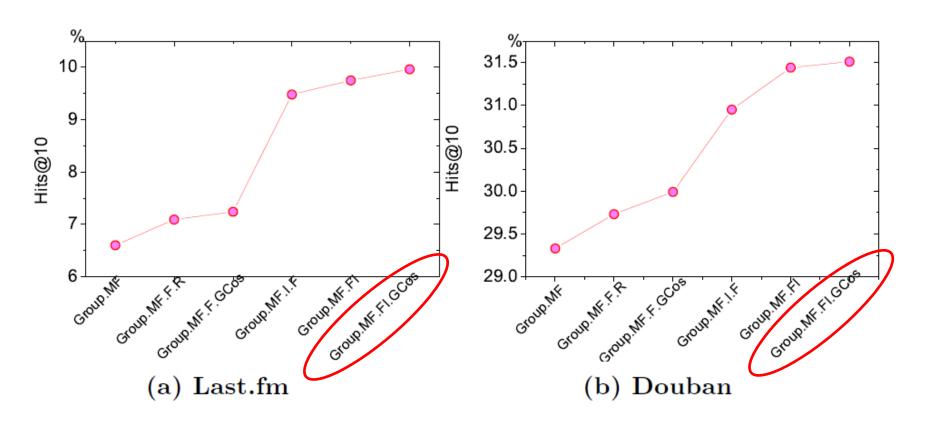
Result 4: the integration of group-based similarity measure (Group.MF.F.GCos) outperforms the others

Results – comparison of the two resources

	Last.fm		Douban			
Method	Hits@5	Hits@10	Hits@5	Hits@10		
Group.MF (baseline)	0.0530	0.0875	0.1995	0.2933		
Fusing user-item preferences (via Factorization)						
Group.MF.I.F@train.20	0.0573	0.0899	0.2030	0.2950		
Group. MF.I.F@train. 40	0.0678	0.1026	0.2102	0.3013		
Group.MF.I.F@train.60	0.0714	0.1068	0.2113	0.3079		
Group.MF.I.F@train.80	0.0722	0.1070	0.2120	0.3095		
Fusing user-item preferences (via Regularization)						
Group.MF.I.R@train.20	0.0559	0.0885	0.2025	0.2932		
Group.MF.I.F@train.40	0.0559	0.0885	0.2026	0.2936		
Group.MF.I.R@train.60	0.0560	0.0886	0.2026	0.2936		
Group.MF.I.R@train.80	0.0561	0.0887	0.2027	0.2937		
Fusing friendship						
Group.MF.F.R	0.0566	0.0910	0.2072	0.2973		
Group.MF.F.F	0.0553	0.0876	0.2038	0.2928		
Group.MF.F.FCos	0.0549	0.0861	0.2075	0.2974		
Group.MF.F.GCos	0.0593	0.0923	0.2093	0.2999		
Group.MF.F.ICos	0.0569	0.0897	0.2062	0.2921		

Result 5: the user-item preferences act more positive than the friendship in terms of enhancing group recommendation

Results – combined effect



Result 6: combination of Group.MF.F.GCos and Group.MF.I.F@train.80 for fusing the two resources friendship and user-item preferences together achieves accuracy improvement

Conclusion

- Fused both friendship and user-item preference data to improve the accuracy of recommending interest groups
- Proved the outperforming suitability of regularization model for handling the one mode friendship data, and the factorization model for processing the user-item bipartite data
- Future work: more auxiliary resources, more algorithm comparisons