
Adapting Recommendations Organization to User Preferences

Li Chen
Department of Computer Science

Hong Kong Baptist University, Hong Kong
lichen@comp.hkbu.edu.hk

Abstract — Given the overwhelming information appearing in
the current web environment, recommendations have been
increasingly applied to assist users in handling with the
information overload and locating items that interest them. As
a different way to generate and display recommendations, the
organization interface has been found being more effective in
building users’ trust. In this paper, we propose a novel
approach to generating the organization of recommendations,
with the goal of making it dynamically adaptive to different
conditions of user preferences (i.e. “incomplete preferences”
and/or “preference conflicts”), so as to optimally support
users’ preference construction process and accurate decisions.

Keywords - web recommendations, organization interface,
preference elicitation

I. INTRODUCTION
The recommender system has emerged as an important

research area in the web environment over the last decade
[1]. It is a software application that aims to support users in
efficiently locating their desired items when interacting with
large information spaces. Most of related systems have been
oriented to products with low-risks such as music, movies
and books, for which users’ preferences can be built
according to their prior usage experiences. However, as for
products with complex structures and high financial risks
(e.g. digital cameras, computers, and cars), it is unlikely to
infer the user’s needs up front given that few people would
have experienced them before they search for a new one.
Essentially, the user’s preferences in such product domains
have been often defined as multi-objective preferential
decision problems [4,8], since they inherently consist of
multiple criteria to be satisfied (e.g. the criteria on the
computer’s price, processor speed, memory, etc.).

A more intelligent and personalized preference elicitation
tool is hence necessarily required to help users build
accurate preference models and maximally improve their
decision accuracy. According to adaptive decision theory
[7], human decision process is in nature highly constructive
and adaptive to the current decision task and decision
environment, especially when s/he is confronted with an
unfamiliar product domain or overwhelming information.
Most of traditional preference elicitation tools nevertheless
neglect that users’ initial preferences can be uncertain and
erroneous. They ask users to answer a list of fixed need or
preference assessment questions to which users may lack
the knowledge and motivation to respond correctly. On the

other hand, when a user has established a certain set of
criteria while they have conflicting values (e.g. higher
processor speed and cheaper price), a “nothing found”
message is usually returned as in most of existing e-
commerce websites because the system simply retrieves
products that exactly match all of the user’s criteria.

In fact, the two phenomena, “incomplete preferences”
and “conflicting preferences”, commonly appear at different
stages of the user’s preference construction process [10]. It
hence poses the question of how to effectively guide users
to establish accurate preferences via appropriate and
informative recommendations. Some approaches, such as
case-based conversational recommenders and example-
critiquing systems [6,8,11], unfortunately, are limited in
adapting the generation of their recommendations to the
variety of user preferences in nature.

In this paper, we propose a novel approach, called
adaptive recommendations organization, with three
principal objectives: 1) personalization and adaptability.
The recommendation computation is personalized to treat
different preference conditions separately, considering
individual requirements and being adaptive within the single
user’s whole decision session. For instance, when the user’s
preferences are incomplete, preference suggestions will be
presented to stimulate users to reveal hidden needs. In
another condition that no available item is satisfactory with
all of the user’s current criteria, a partial satisfaction set will
be returned with suggested tradeoff directions so as for the
user to adjust her preferences’ weights; 2) organization.
Recommended items are organized into categories in terms
of their similar and shared properties, given that the
structured and organized view has been found to more
effectively enhance users’ subjective trust constructs and
have higher potential to increase their decision performance
[3,9], compared to the list view where items are purely
listed one by one; 3) explanation. We use explanations not
only to provide system transparency, but more importantly
to educate users about the incompleteness and/or conflicts
appearing in their specified preferences.

II. ADAPTIVE RECOMMENDATIONS ORGANIZATION
Owing to the constructive nature of user preference

establishment, our algorithm is developed to dynamically
adjust to the user’s current preferences and accordingly
evoke the appropriate component. More concretely, during
each recommendation cycle, it first analyzes the user’s stated

2009 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.230

58

2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.230

58

preferences by far and then determines whether to produce
recommendations to stimulate users to uncover hidden needs,
or guide them to revise preferences (if there are conflicts), or
act with both purposes. The user’s reactions to those
recommendations will be used by the system to
automatically refine the user’s preference model and
compute a new set of recommendations in the next cycle.
This incremental preference elicitation and recommendation
process can continue till the user’s preferences are
maximally complete and precise, at which point the best
matching product would be the user’s ideally targeted choice.
In the following, we in detail describe how recommendations
are computed and organized respectively in “incomplete
preferences” and “conflicting preferences” conditions.

A. Modeling User Preferences
We first model the user preferences over all products

according to the Multi-Attribute Utility Theory (MAUT)
under the additive independence assumption [4]. This
MAUT-based user model is inherently in accordance with
the most normal and compensatory decision strategy, the
Weighted Additive Rule (WADD) that explicitly resolves
conflicting value preferences by considering tradeoffs [7].
Each user’s preference model is formally defined as a set of
pairs {(V1, w1), (V2, w2), …, (Vn, wn)}, where Vi is the value
function for each participating attribute Ai (normalized
within the range of [0..1]), and wi is the importance (i.e.,
weight) of Ai relative to other attributes. A utility score of

each product (1 2, ,..., na a a〈 〉) (where ai is the product’s
value on Ai) can be hence calculated with the formula (1),
which represents its weighted satisfying degree:

1 2
1

(, ,...,) ()
n

n i i i
i

U a a a wV a
=

〈 〉 =∑

(1)

B. Stimulating Hidden Preferences
According to adaptive decision theory as well as

observations from our previous user studies [7,8], the user’s
preferences are often incomplete and uncertain, especially
during her initial interaction cycles when she is unfamiliar
with the product catalog or has not formed strong objectives
for what she is truly interested in. Our algorithm constantly
captures such incompleteness through both of the
preferences the user already stated and the reaction she did
to the displayed items. Specifically, during one interaction
cycle, assuming that the user has already stated criteria over
attributes A* = (Ai1, Ai2, …, Aim), while not on other
attributes A’ = {Aj, Aj ∈A and Aj ∉A*} (A is the set of all
attributes), default preferences on the attributes A’ will be
incorporated for the recommendation computation. For
example, if the user stated a price range initially but did not
specify any requirement on the processor speed of PCs
(either due to unfamiliarity with such feature or lack of
knowledge about its association with other attributes), the
system will integrate the default preference on the processor

speed (e.g. the higher, the better) and then suggest to the
user for her consideration.

As indicated by [5], adding default preferences saves the
user’s effort by allowing her to provide fewer preferences
initially. We believe that except for this benefit, it could also
help users become more knowledgeable about the product
domain and stimulate them to reveal hidden needs when
concrete example products with such suggestions are
shown. Furthermore, the cold-start problem, a typical
phenomenon encountered by related recommender systems
[1], can be avoided in our approach since even none of
criteria was specified by the user in the beginning, a set of
recommendations will be still returned with suggested
preferences on participating attributes. These suggestions
are additionally organized by discovering frequently
associated attributes among the retrieval set and presented in
the form as “these products have higher processor speed and
bigger memory that you may like”.

Formally, we discover association rules between un-
stated attributes, based on which suggestions are made on
them. The Apiori algorithm (a typical data mining tool to
discover association rules) has been applied to fulfill this
task [2]. Each product in the retrieval set (that matches the
user’s currently stated preferences) is converted into a vector,
indicating its properties on the un-stated attributes
(“improved” denoted as ↑ or “compromised” denoted as ↓)
by comparing each of the attribute values with its average
across all retrieved products. As an example, one product can
be formalized as {(processor speed, ↑), (weight, ↑), (memory,
↓)} (where the three attributes are with un-stated criteria),
meaning that this product has higher processor speed, lighter
weight but smaller memory relative to their average values in
the retrieval set. These product vectors are then inputted to
the Apriori algorithm so as to identify how different attribute
properties are associated between one another. The discovery
of associative properties can hence help the user realize what
additional benefits she could obtain in the displayed products
(see the sample interface in Figure 1).

Figure 1. Organization of recommendations to stimulate hidden

preferences.

Manufacturer = Toshiba
Price <= 3500

Display size: larger, better
Installed memory: more, better;
etc.

+
User’s current preferences Default preferences on un-stated attributes

5959

C. Solving Preference Conflicts
Compete preferences do not mean that they are accurate

enough. It sometimes happens that there are conflicting
attribute preferences, so no available item exactly satisfies
all of them, which indeed also occurs in the condition of
incomplete preferences where conflicts exist in the user’s
stated criteria. At this point, the system should be able to
help the user revise the relative importance (i.e. the weight
wi in the formula 1), which is in nature a tradeoff process.
Thus, it can be seen that during this step, the main purpose
is to adjust weight values, while in section B it is to elicit
value functions (i.e. Vi(ai) in the formula (1)) on un-stated
attributes.

Tradeoff-making involves increasing weights on
attributes that are more important for the user, while
accepting compromises with the decreased weights on less
important ones. We propose different tradeoff directions for
the user to consider in order to help them decide which
attribute constraints they would be willing to relax in return
for ideal matching on more important ones.

Specifically, a partial satisfaction set is first retrieved
(which are best nearly satisfying the user’s current
preferences) and tradeoff relations between conflicting
attributes among these retrieved products are to be
discovered. The Apriori algorithm is again employed here to
determine the association rules, but the inputs to it is
different from the ones in section B. That is, each product is
formally converted into a tradeoff vector containing the
information of which attribute preferences it satisfies and
which it does not. For example, one product is formalized
like {(display size, ↑), (weight, ↑), (processor speed, ↓)}
(here ↑ means “satisfactory” and ↓ “unsatisfactory”),
representing that “this product satisfies your preferences on
display size and weight, but not on processor speed”. All of
the tradeoff vectors are then transferred into Apriori so as to
mine the recurring and representative association rules with
the form of X => Y. Each rule infers that X (with satisfying
attributes) is frequently associated with Y (dissatisfying
ones) in the retrieved products. With the presence of these
rules (see Figure 2), the user could decide the tradeoff she
would like to accept, e.g. decreasing weights of less
important attributes (i.e. Y in one rule) and emphasizing on
more important ones (i.e. increasing weights of attributes in
X).

Therefore, such association rules reveal to the user the
conflicting relations being in her stated preferences and
indicate different tradeoff directions that she may choose,
which will result in the refinement of her preference model
in terms of weight adjustment. Our method can be hence
regarded as an improvement on purely presenting partially
satisfied products, through showing the association
knowledge and revision suggestions.

The conflicting phenomenon can be easily captured by
the system when few or no available product is matching to
the user’s stated preferences. It may also appear
simultaneously with the observation of “incomplete

preferences” as described in section B, at which point both
of preference and tradeoff suggestions will be presented, e.g.
“these products satisfy your preferences on price, weight,
but not on processor speed. In addition, they have bigger
hard capability”. The user can then decide whether to take
such tradeoff (e.g. lower processor speed for cheaper price
and lighter weight) and indicate additional interests on other
previously un-considered attributes (e.g. hard capability).

Figure 2. Organization of recommendations to solve preference

conflicts.

D. Organizing and Explaining
Since a number of association rules will be likely

returned by the Apriori, it then comes to the step of
selecting the most prominent ones. Being different from
standard ranking strategy that simply selects ones with
lower supports (i.e. lower percentage of products that satisfy
the rule) [11], our approach is to favor rules with higher
relative gains (against losses) according to the user’s
preferences. The score is concretely determined by two parts
(see the formula (2)): one is the weighted value of the rule,
and another is the average utility of products satisfying it.
Formally, each association rule is a set of (attribute, tradeoff)
pairs, where the “improved”/“compromised” property
assigned to attribute (in section B) or “satisfactory”/
“unsatisfactory” property (in section C) are all unified under
the term “tradeoff”. Thus, the score of each association rule
is computed as:

∑ ∑
= ∈

××=
||

1

|)(|

)(
))(

|)(|
1())(()(

C

i

CSR

CSRr
ii rU

CSR
tradeoffattributewCRuleScore

 (2)

where C denotes the rule (a set of (attribute, tradeoff) pairs)
and SR(C) is the set of products that satisfy C.

| |

1

()
C

i i
i

w attribute tradeoff
=

×∑
 hence computes the weighted sum

of tradeoff properties involved in C. ()iw attribute is the
weight of attributei (default as 3, the middle point of the
range from 1 to 5 for attributes without explicitly stated

Manufacture = Toshiba, Price <= 3500, battery life >= 5 hours, display
size >= 12 in, hard drive capacity >= 80 GB, etc.

User’s current preferences:

6060

weights) and tradeoffi is default as 0.75 if “improved” or
“satisfactory”, or 0.25 if “compromised” or “unsatisfactory”.

| () |1 ()
| () | ()

SR C
U r

SR C r SR C
∑

∈ is the average utility (from formula
(1)) of all the products that satisfy the rule C.

Diversity is further incorporated in order to avoid
returning categories of products too similar to each other.
Concretely, each remaining un-selected category (i.e. one
association rule with its satisfying products) is computed
with a diversity degree which indicates its dissimilarity to
the so-far selected categories. The one with the highest
unified score (combined with the RuleScore as in the
formula (3)) will be then selected:

),()()(SCCDiversityCRuleScoreCF ×= (3)
where SC denotes the set of categories selected thus far.

Thus the first selected category should be the one with the
highest RuleScore (since its SC is empty), and the
subsequent category is selected if it has the highest value of
F(C) in comparison with the current SC set. The selection
process ends when the desired k categories have been
determined. The diversity degree of C is calculated as the
minimal local diversity of C with all categories in the SC set.
The local diversity of two categories (C and Ci in SC) is
further defined by two factors (see the formula (4)): the
diversity between rules themselves and the diversity
between their associated products (i.e. SR(C) and SR(Ci)).

iC

| | | () () |(,) min ((1) (1))
| | | () |

i i
SC

C C SR C SR CDiversity C SC
C SR C∈

∩ ∩
= − × −

(4)

Once the desired k categories have been selected, each
category containing a group of products sharing the same
association rule (e.g. {(price, ↑), (weight, ↑), (memory, ↓)}),
a pre-designed set of explanation templates is used to
explain the rules in a conversational language so that the
user may easily understand. Specifically, during this
explanation step, the property (i.e. ↑ and ↓) assigned to each
attribute is concretized in terms of its actual meaning. For
instance, if it is “improved” on an attribute (e.g. processor
speed), it means it is a suggested preference on this attribute
and the explanation is hence generated like “higher
processor speed” by correlating it with the appropriate
phrase in the pre-designed explanation base. In another case,
if it is “satisfactory” referring to an attribute value satisfying
the user’s stated criterion (e.g. on price), the explanation
outcome will be like “satisfy your preference on price”. The
explanations of a whole association rule will be displayed as
a category title to represent its associated products (see
Figure 1&2).

III. CONCLUSION
In this paper, we proposed a new approach to generating

and organizing recommendations taking into account of
users’ adaptive preference construction in nature. At
different stages of the construction process, the preferences’
completeness and certainty degrees may vary. They will be

incomplete in terms of un-stated attributes that the user may
lack of knowledge. The phenomenon of preference conflicts
will also appear when no product satisfies all of the user’s
stated criteria. An adaptive recommender method that can
dynamically respond to the variety of preference conditions
should be hence meaningful to help users establish accurate
preferences accordingly, especially when they are searching
for less experienced and high involvement products (e.g.
computers and cars) that standard collaborative filtering and
content-based recommender systems can not ideally fit for.

Our algorithm is essentially based on the association rule
mining technique to discover association rules dependent on
the current condition of the user preferences. Preference
suggestions on un-stated attributes are identified to stimulate
hidden needs, or explanations of partial satisfaction set are
returned to show tradeoff relations among users’ conflicting
attribute preferences. We descried the algorithm steps in
these conditions and illustrated the interface design
respecting its organization and explanation characteristics.
For the future work, we will verify our method’s practical
benefits through both of empirical experiments and user
evaluations, and will attempt to integrate it in real online
websites in order to test its stability and scalability.

REFERENCES
[1] G. Adomavicius and A. Tuzhilin, Toward the Next Generation of

Recommender Systems: a Survey of the State-of-the-Art and Possible
Extensions. IEEE Transactions on Knowledge and Data Engineering
17 (6), 2005, pp. 734-749.

[2] R. Agrawal, T. Imielinski and A. Swami, Mining Association Rules
between Sets of Items in Large Databases. In Proceedings of the 1993
ACM SIGMOD international Conference on Management of Data,
1993, pp. 207–216.

[3] L. Chen and P. Pu, Preference-based Organization Interfaces: Aiding
User Critiques in Recommender Systems. In Proceedings of
International Conference on User Modeling, 2007, pp. 77-86.

[4] R. Keeney and H. Raiffa, Decisions with Multiple Objectives:
Preferences and Value Tradeoffs. Cambridge University Press, 1976.

[5] G. Linden, S. Hanks and N. Lesh. Interactive Assessment of User
Preferences Models: the Automated Travel Assistant. In Proceedings
of the 5th International Conference on User Modeling, 1997, pp. 67-
78.

[6] L. McGinty and B. Smyth, Adaptive Selection: An Analysis of
Critiquing and Preference-Based Feedback in Conversational
Recommender Systems. International Journal of Electronic
Commerce 11 (2), 2006, pp. 35-57.

[7] J.W. Payne, J.R. Bettman and E.J. Johnson, The Adaptive Decision
Maker. Cambridge University Press, 1993.

[8] P. Pu and L. Chen, Integrating Tradeoff Support in Product Search
Tools for e-Commerce Sites. In Proceedings of the 6th ACM
Conference on Electronic Commerce, 2005, pp. 269-278

[9] P. Pu and L. Chen, Trust Building with Explanation Interfaces. In
Proceedings of the 11th International Conference on Intelligent User
Interfaces, 2006, pp. 93-100.

[10] P. Pu and B. Faltings, Decision Tradeoff Using Example-Critiquing
and Constraint Programming. Constraints 9 (4), 2004, pp. 289-310.

[11] J. Reilly, K. McCarthy, L. McGinty and B. Smyth, Dynamic
Critiquing. In Proceedings of the 7th European Conference on Case-
Based Reasoning, 2004, pp. 763-777.

6161

