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Abstract—Graph convolutional networks (GCNs) have sub-
stantially advanced state-of-the-art collaborative filtering (CF)
methods. Recent GCN-based CF methods have started to explore
potential neighbor relations instead of only focusing on direct
user-item interactions. Despite the encouraging progress, they
still suffer from two notable limitations: (1) only one type of
potential neighbor relations is explored, i.e., co-interacting with
the same item/user, neglecting the fact that user-item interactions
are associated with various attributes and thus there can exist
multiple potential neighbor relations from different aspects;
(2) the distinction between information from direct user-item
interactions and potential neighbor relations and their different
extents of influence are not fully considered, which represent
very different aspects of a user or an item. In this paper, we
propose a novel Multiple Neighbor Relation enhanced method for
Graph Collaborative Filtering (MNR-GCF) to address these two
limitations. First, in order to capture multiple potential neighbor
relations, we introduce a new construction of heterogeneous
information networks with multiple types of edges to account
for multiple neighbor relations, and a multi-relation aggregation
mechanism to effectively integrate relation-aware information.
We then enhance CF with a degree-aware dynamic routing
mechanism to dynamically and adaptively fuse information from
direct user-item interactions and potential neighbor relations at
each aggregation layer. Our extensive experimental results show
that our solution consistently and substantially outperforms a
large number of state-of-the-art CF methods on three public
benchmark datasets.

Index Terms—Collaborative filtering, graph convolutional net-
work, neighbor relation

I. INTRODUCTION

Recommender systems have been widely adopted in differ-

ent business applications, such as e-commerce [1], [2], online

advertising [3], and social media platforms [4], to alleviate

the issue of information overload, improve user experience

and boost revenue. Collaborative filtering (CF) is a widely

used recommendation technique that leverages collaborative

information among users and items to predict users’ prefer-

ences [5], [6].

Recently, graph-based methods, especially those based on

graph convolutional networks (GCNs), have been increasingly

adopted in CF. They formulate both users and items as nodes
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Fig. 1. An illustration of user-item interactions in the e-commerce scenario.
The interactions contain various attributes, such as timestamp, rating, and
behavior, which are critical to reveal different potential neighbor relations.

in a graph and allow to jointly investigate the correlations

among users and items. Existing GCN-based works usually

model user-item interactions as a bipartite graph [7], [8],

where users and items are two disjoint node sets, and edges

between them indicate their interactions. Thus, the high-

order collaborative information between users and items can

be captured by stacking multiple propagation layers on the

user-item bipartite graph. However, the above methods only

focus on mining users’ preferences from the direct user-item
interactions, which suffers from two major limitations. On the

one hand, direct user-item interactions might be sparse for

inactive users or unpopular items, resulting in the cold-start

problem or the popularity bias issue, which impedes the qual-

ity of representations. On the other hand, due to the inherent

limitation of a recommender system’s exposure mechanism,

the direct interacted items of a user may not be exhaustive to

reflect all his/her potential preferences [6], [9]–[11]. As such,

some very recent studies [6], [10]–[15] have started to explore

potential neighbor relations in different ways to enhance CF.

For example, Multi-GCCF [11] leverages potential user-user

and item-item relations by calculating pairwise cosine simi-

larities between users’ or items’ interactions. NIA-GCN [6]

randomly selects K users/items co-interacted with the same

item/user to construct potential neighbor relations.

While these latest efforts lead to encouraging results, we

argue that there are still several problems to be considered

in order to further enhance the model’s performance. First,
previous studies usually investigate only one type of potential

neighbor relations, i.e., co-interacting with the same item/user,
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despite the fact that user-item interactions can be associated

with various attributes, such as timestamp, rating, and behavior

(e.g., click, purchase, browse, etc.) [16], which leads to

multiple potential neighbor relations from different aspects.

Fig. 1 shows an example of the various attributes of user-

item interactions in the e-commerce scenario. In this example,

user A and user B both bought the quilted jacket in summer

probably because the quilted jacket was on sale, reflecting the

similarity of their purchasing habits (e.g., paying attention to

products’ price-performance ratios), while user A and user C

share similar preferences on the quilted jacket because they

gave the same rating. Second, most existing methods do not

discriminate the information from direct user-item interactions

and potential neighbor relations, which represent very different

aspects of a user or an item [15]. The neighboring users of a

target user can normally well unveil his/her general preference,

while the interacted items of a target user may better indicate

his/her specific preferences. To the best of our knowledge,

Multi-GCCF [11] is the only work that discriminates the

information from direct user-item interactions and potential

neighbor relations using multiple graphs. However, such in-

formation is simply concatenated in the final output layer and

treated equally without a careful distinction, which may lead to

an incomplete understanding of user preferences. As such, the

importance of information from direct user-item interactions

and potential neighbor relations is different and needs to be

more carefully factored in.
In addressing these aforementioned problems, we propose

a Multiple Neighbor Relation enhanced Graph Collaborative

Filtering (MNR-GCF), which extends information sources of

a user or an item to its neighbors under multiple relations in

terms of pre-defined heterogeneous information networks
(HINs). Specifically, we construct the HINs based on various

attributes of user-item interactions. Take the construction of a

user-user heterogeneous information network as an example: A

user-user heterogeneous information network consists of one

type of nodes representing users and multiple types of edges,

each of which corresponds to users’ interactions with common

items with respect to a specific attribute, e.g., timestamp, and

represents a potential relation between users. An item-item

heterogeneous information network is constructed in a similar

way. After that, a multi-relation aggregation mechanism is

proposed to aggregate relation-aware information from HINs.

Note that the HINs enable to effectively capture the infor-

mation from multiple neighbor relations, similar to existing

works, we use a user-item bipartite graph to capture the

information from direct user-item interactions. Finally, after

obtaining the aggregated information from different sources,

we design a degree-aware dynamic routing mechanism
to dynamically and adaptively fuse them by considering the

affinity between the fused information and the aggregated

information from different sources at each aggregation layer.
We summarize our key contributions as follows.

• We highlight the importance of multiple neighbor rela-

tions and explicitly model them in terms of heterogeneous

information networks by considering multiple attributes

of user-item interactions. A multi-relation aggregation

mechanism is introduced to aggregate relation-aware in-

formation.

• We design a simple yet effective degree-aware dynamic

routing mechanism to fuse the aggregated information

from different sources, in which node degrees are used to

initialize the importance of different information sources.

Unlike existing works, the dynamic routing mechanism

enables dynamical and adaptive fusion at each aggrega-

tion layer.

• We perform extensive experiments on three public

datasets and demonstrate that our proposed solution sub-

stantially and consistently outperforms a wide range of

state-of-the-art competitors.

II. RELATED WORK

A. Model-Based CF Methods

CF is a prevalent technique in modern recommender sys-

tems. The core of CF lies in how to design a model so

that it can learn more representative embeddings from similar

users or items. Earlier CF models like matrix factorization

(MF) [17], [18] project users and items as embedding vectors

and conduct inner product as an interaction function between

them to predict an unobserved interaction. However, such

an interaction function is insufficient to reveal the complex

and nonlinear relations between users and items. For this

reason, some recent works focus on exploiting deep learning

techniques to enhance the interaction function. For instance,

NeuMF [19] employs nonlinear neural networks as the inter-

action function. More recent works have found that different

historical interactions contribute differently to the prediction of

future interactions. To this end, attention mechanisms, such as

ACF [20] and DeepICF [21], are introduced to automatically

learn the importance of each historical interaction.

B. GCN-Based CF Methods

Recently, graph convolutional networks (GCNs) have at-

tracted increasing attention for CF due to their powerful

capability of capturing the collaborative information among

users and items. Many GCN-based CF methods [7], [8], [22]–

[27] have been developed. GC-MC [22] proposes a graph

convolutional auto-encoder for explicit matrix completion.

PinSage [23] adopts random walks on an item-item graph

for image recommendation. NGCF [7] captures the high-

order collaborative information between users and items by

stacking multiple embedding propagation layers on a user-

item graph. Inspired by the study on simplifying GCNs [28],

researchers also introspect on the complex designs of GCN-

based recommendation models. LightGCN [8] shows that

transformation functions and nonlinear activations have limited

positive effects on CF and sometimes might even degrade the

performance. By removing these two components, it yields

better performance on CF tasks. To alleviate the inherent

over-smoothing problem of GCN, LR-GCCF [25] revisits

the GCN-based CF methods with a linear residual graph

convolutional approach. Due to the limitations of only mining
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users’ preferences from direct user-item interactions, some

very recent works [6], [11]–[15] have started to explore poten-

tial neighbor relations in different ways to enhance CF. Multi-

GCCF [11] constructs two separate user-user and item-item

graphs. It employs a multi-graph encoding layer to integrate

the information provided by user-item, user-user and item-

item graphs. NIA-GCN [6] develops a cross-depth ensemble

layer to extract user-user, item-item and user-item relations

from a single user-item graph. NGAT4Rec [29] employs a

neighbor-aware graph attention layer that assigns different

neighbor-aware attention coefficients to different neighbors

of a given node to capture neighbor relations. EGLN [30]

calculates the cosine similarity between users’ and items’

embeddings, and retains the edges with top-K computed sim-

ilarities to build an enhanced user-item graph. Distinct from

mainstream CF models that model interactions in a uniform

manner, DGCF [31] and IMP [32] pay special attention to

user-item relationships at a finer granularity of user intents.

DGCF disentangles representations of users and items, while

IMP decomposes a user-item graph as multiple subgraphs for

message passing. Instead of using explicit message passing,

UltraGCN [12] directly approximates the limit of infinite-

layer graph convolutions via constraint losses for efficient

recommendation. However, all the above GCN-based methods

still suffer from the two notable problems discussed previously,

which motivates our proposed solution.

III. PROPOSED MODEL

In this section, we present our proposed MNR-GCF frame-

work in detail, whose architecture is illustrated in Fig. 2. There

are five components in the framework: (1) a heterogeneous

graph construction component that constructs heterogeneous

information networks; (2) an embedding initialization compo-

nent that initializes user embeddings and item embeddings;

(3) multiple aggregation layers that refine the embeddings by

aggregating information from direct user-item interactions and

multiple neighbor relations; (4) a layer combination module

that aggregates the refined embeddings from different aggre-

gation layers; and (5) a prediction component that outputs the

prediction score of a user-item pair.

A. Heterogeneous Graph Construction

Unlike existing methods that explore only one type of poten-

tial neighbor relations, we introduce multiple potential neigh-

bor relations in terms of heterogeneous information networks

(HINs) based on various attributes of user-item interactions. In

what follows, we focus on explaining how to construct a user-

user HIN. An item-item HIN can be constructed in a similar

way.

The user-user HIN consists of one type of nodes represent-

ing users and multiple types of edges, where each type of

edges corresponds to users’ interactions with common items

with respect to a specific attribute and represents one of the

potential relations between users. For ease of presentation

and better clarity, given a set of interaction attributes A, we

illustrate the idea by considering two example attributes, A =

{timestamp, rating}. These two selected attributes are present

in various datasets, for example, the benchmark datasets we

use in the experiments. We point out that it is straightforward
to include other types of attributes under our construction of
HINs. For timestamp, we consider the time interval between

two interactions to create an edge between user u and user v
who interacted with the same item i via

AU,timestamp
uv =

∑
i∈Cuv

I(|tui − tvi| < γ). (1)

Here AU,timestamp
uv is the element corresponding to user u and

user v in the user-user HIN’s adjacency matrix AU,timestamp by

considering timestamp. Cuv is the set of common interacted

items of user u and user v. tui is the timestamp of the

interaction between user u and item i. I(·) is an indicator

function, which returns 1 when the condition holds and 0

otherwise. γ is a predefined threshold to filter out less reliable

relations. The intuition of this design is that the shorter the

time interval between two interactions with the same item is,

the more similar the two users are, which is similar to the idea

in TiSASRec [33].
For rating, we create an edge between user u and user v if

they interacted with the same item and gave the same rating:

AU,rating
uv =

∑
i∈Cuv

I(rui = rvi). (2)

where AU,rating
uv is the corresponding element in the user-user

HIN’s adjacency matrix AU,rating by considering rating, rui is

user u’s rating on item i. The user-user and item-item HINs

are illustrated in Fig. 2. Please note that they are weighted

undirected graphs.
In addition to the novel user-user and item-item HINs, we

follow existing works [7], [8] to model user-item interactions

by constructing a user-item bipartite graph, where users and

items are two disjoint node sets, and edges between them

indicate their interactions.

B. Embedding Initialization
There are two types of nodes in the graphs, namely user

nodes and item nodes. We use u and v to denote user nodes,

and i and j to denote item nodes. Embedding initialization

aims at mapping the IDs of user u and item i into dense

embedding vectors e
(0)
u ∈ R

d and e
(0)
i ∈ R

d, where d is

the dimension of embedding vectors. We build two parameter

matrices as embedding look-up tables for embedding initial-

ization:

e(0)u = P�xu, e
(0)
i = Q�xi, (3)

where P and Q are trainable parameter matrices of users and

items, and xu and xi are the one-hot encodings of IDs of user

u ∈ U and item i ∈ I with U and I being the set of users

and items, respectively.

C. Neighbor Aggregation
Neighbor aggregation layers aim to capture CF signals along

graph structures and enrich the basic embeddings of users and

items, e
(0)
u , e

(0)
i ∈ R

d, by aggregating information from their

neighbors in the graphs.

42

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 28,2023 at 08:50:34 UTC from IEEE Xplore.  Restrictions apply. 



��

��

��

���

��

��

	
�

����

	
�

����

	��

����

	��

����

	��

����

�
�

�
�

	
��

��

��


	
�

��

	��

����

	��

����

	
�

����

	
�

����

	
�

����

�
�

�
�

��

��

��

��


��

��

	��


��

���

	���

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

��

	

���

	�

���

	

��� 	


��� 	

���

	�

��� 	�

��� 	�

���

	


	�

�� ��� ��

Fig. 2. The overall architecture of our MNR-GCF framework.

1) Multi-Relation Aggregation: Recall that the heteroge-

neous information networks (HINs) are constructed with mul-

tiple types of edges, where each type corresponds to a specific

interaction attribute a ∈ A, and reflects one of the potential

neighbor relations. To better distinguish the influences of

different potential neighbor relations, we propose a multi-

relation aggregation mechanism to aggregate information from

neighbors in HINs via relation-aware self gating mechanism,

which determines what information of neighbors can be ag-

gregated to the next layer according to the relation:

e(k)u←v =
∑
a∈A

∑
v∈Ma

u

ÃU,a
uv (e(k−1)

v ⊗ σ(Wae
(k−1)
v + ba)),

e
(k)
i←j =

∑
a∈A

∑
j∈Ma

i

ÃI,a
ij (e

(k−1)
j ⊗ σ(Wae

(k−1)
j + ba)).

(4)

Here e
(k)
u←v and e

(k)
i←j are the embeddings of user u and item i

after aggregating information from their neighbors under mul-

tiple relations. Ma
∗ is the set of immediate neighbors of a user

or an item under attribute a. Wa ∈ R
d×d and ba ∈ R

d are the

attribute-specific, i.e., relation-specific parameters, which are

shared between users and items. σ(·) is the sigmoid activation

function, and ⊗ is the element-wise product. e
(k−1)
v and e

(k−1)
j

are the final embeddings of user v and item j after fusing

aggregated information from direct user-item interactions and

multiple neighbor relations at layer k − 1, which will be

explained in detail in the next subsection. ÃU,a
uv and ÃI,a

ij

are the corresponding elements in the Laplacian normalized

adjacency matrix of HINs under attribute a, which can be

formulated as:

ÃU,a
uv =

AU,a
uv√

Dho,a
u

√
Dho,a

v

, ÃI,a
ij =

AI,a
ij√

Dho,a
i

√
Dho,a

j

, (5)

where Dho,a
∗ is the degree of a user or an item in the HINs

under attribute a, e.g., Dho,a
u =

∑
v∈Ma

u
AU,a

uv .

As for the user-item bipartite graph, the aggregation rules

are identical to those of LightGCN [8]:

e
(k)
u←i =

∑
i∈Nu

1√
Dhe

u

√
Dhe

i

e
(k−1)
i ,

e
(k)
i←u =

∑
u∈Ni

1√
Dhe

i

√
Dhe

u

e(k−1)
u ,

(6)

where e
(k)
u←i and e

(k)
i←u are the embeddings after aggregation

in the user-item bipartite graph and N∗ is the set of interacted

neighbors of a user or an item. Dhe
∗ is the degree of a user or

an item in the user-item graph, e.g., Dhe
u = |Nu|.

2) Degree-Aware Dynamic Routing: Instead of aggregating

information from direct user-item interactions and multiple

neighbor relations separately and fusing the final outputs

for recommendation, we fuse both aggregated information at
each aggregation layer to better characterize users and items.

Mathematically, the fusion operation is defined as

e(k)u = w
(k)
u←i · e(k)u←i + w(k)

u←v · e(k)u←v,

e
(k)
i = w

(k)
i←u · e(k)i←u + w

(k)
i←j · e(k)i←j .

(7)

Here w
(k)
u←i and w

(k)
i←u are the importance weights of ag-

gregated information from direct user-item interactions, and

w
(k)
u←v and w

(k)
i←j are the importance weights of aggregated

information from multiple neighbor relations at layer k. Since

the above aggregated information from different sources rep-

resents very different aspects of a user or an item, the weights

should be properly initialized and need to be carefully factored

in. Inspired by the dynamic routing mechanism’s capability of

achieving promising results in disentangling users’ multiple
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interests [31], [34], we propose a novel degree-aware dynamic

routing mechanism to dynamically and adaptively balance

and fuse the aggregated information, with initialized weights

proportional to the node degree. For users, we first initialize

the weights via node degrees in different graphs:

w
(1)
u←i =

Dhe
u

Dhe
u +Dho

u

, w(1)
u←v =

Dho
u

Dhe
u +Dho

u

, (8)

where Dho
u =

∑
a∈A Dho,a

u . Then we update the weights itera-

tively by considering the affinity between the fused embedding

e
(k−1)
u and the aggregated information, e

(k−1)
u←i and e

(k−1)
u←v :

w
(k)
u←i =

w̃
(k)
u←i

w̃
(k)
u←i + w̃

(k)
u←v

, w(k)
u←v =

w̃
(k)
u←v

w̃
(k)
u←i + w̃

(k)
u←v

, (9)

where w̃
(k)
u←i = w

(k−1)
u←i + e

(k−1)
u

�
tanh (e

(k−1)
u←i ) and w̃

(k)
u←v =

w
(k−1)
u←v +e

(k−1)
u

�
tanh (e

(k−1)
u←v ) with tanh (·) being a nonlin-

ear activation function to increase the model’s representation

ability. For items, we can initialize and update their weights

in a similar way.

D. Layer Combination and Prediction

After a total of K layers of neighbor aggregations and

information fusion, we can obtain user u’s multiple em-

beddings {e(1)u , e
(2)
u , · · · , e(K)

u } and item i’s embeddings

{e(1)i , e
(2)
i , · · · , e(K)

i } from different layers. We combine the

initial embedding and the embeddings obtained at each layer

to form the final representation of a user or an item:

eu =
1

K + 1
(e(0)u + · · ·+ e(K)

u ),

ei =
1

K + 1
(e

(0)
i + · · ·+ e

(K)
i ).

(10)

Furthermore, we can obtain user u’s or item i’s multiple

embeddings after aggregating in the user-item bipartite graph

(i.e., {e(1)u←i, · · · , e(K)
u←i}) and the heterogeneous information

networks (e.g., {e(1)u←v, · · · , e(K)
u←v}), which provide comple-

mentary information. We can use a method similar to Eq. (10)

to get the final representation of a user or an item using

only information from direct user-item interactions or multiple

neighbor relations. We denote them by eui, euv , eiu and eij .

The model prediction is done by calculating the inner

product of user and item representations:

ŷui = eTuei + α · eTuieiu + β · eTuveij , (11)

where α and β are trade-off parameters for the direct interac-

tions’ ranking score (i.e., eTuieiu) and the multiple relations’

ranking score (i.e., eTuveij), respectively.

Another possible way of utilizing eui, euv , eiu and eij is

to devise a multi-task learning scheme to leverage additional

supervision over the direct interactions’ ranking scores and the

multiple relations’ ranking scores. However, such an attempt

affects our model’s training stability and leads to worse

performance.

TABLE I
THE STATISTICS OF THE DATASETS USED IN THE EXPERIMENTS.

Dataset #Users #Items #Interactions Density

Gowalla 29, 858 40, 981 1, 027, 370 0.084%
Amazon-Beauty 6, 000 6, 024 47, 831 0.117%
Amazon-Sports 8, 732 9, 128 67, 703 0.085%

E. Model Training

We employ the pairwise Bayesian personalized ranking

(BPR) loss [18] to optimize the model parameters Θ =

{e(0)u , e
(0)
i ,Wa|u ∈ U , i ∈ I, a ∈ A}. Specifically, it

encourages the prediction scores of a user’s historical items

to be higher than those of unobserved items:

L = −
∑
u∈U

∑
i∈Nu

∑
j /∈Nu

lnσ(ŷui − ŷuj) + λ‖Θ‖22, (12)

where σ(·) is the sigmoid activation function, and λ is the

coefficient controlling the strength of L2 regularization. We

do not use dropout mechanisms because our solution is so

lightweight that enforcing L2 regularization is sufficient to

prevent overfitting.

IV. EXPERIMENTS

In this section, we perform extensive experiments on three

real-world datasets to evaluate our proposed MNR-GCF model

and answer the following research questions:

• RQ1: How does MNR-GCF perform when compared

with state-of-the-art CF methods?

• RQ2: How do different components in MNR-GCF, es-

pecially multiple neighbor relations, contribute to model

performance?

• RQ3: How do different hyperparameters (e.g., α, β, and

K) affect MNR-GCF’s performance?

A. Experimental Setup

1) Datasets and Evaluation Metrics: We consider three

widely used public benchmark datasets in the experiments:

Gowalla1, Amazon-Beauty2 and Amazon-Sports2, which have

different properties in terms of domain, size and sparsity.

Gowalla is a check-in dataset obtained from the location-

based social networking service Gowalla [35], and Amazon-

Beauty and Amazon-Sports are representative datasets from

the Amazon-Review collection [36]. Table I summarizes the

statistics of the three datasets.

For a fair comparison, we follow the settings used in

NGCF [7] and LightGCN [8]. For each dataset, the training

set is constructed using 80% of the historical interactions of

each user, and the remaining is used as the test set. We treat

each observed user-item interaction as a positive instance,

and adopt the negative sampling strategy to randomly sample

unobserved items for users to form negative instances. To

ensure the quality of the datasets, we also use the 10-core

1https://snap.stanford.edu/data/loc-gowalla.html
2https://jmcauley.ucsd.edu/data/amazon/
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TABLE II
THE PERFORMANCE COMPARISON WITH BASELINES. ALL IMPROVEMENTS ARE SIGNIFICANT WITH p-VALUE < 0.05 BASED ON PAIRED t-TESTS.

Gowalla Amazon-Beauty Amazon-Sports

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BPRMF (UAI’09) 0.1291 0.1109 0.0231 0.0177 0.0153 0.0140
NeuMF (WWW’17) 0.1399 0.1212 0.0249 0.0191 0.0168 0.0152
NGCF (SIGIR’19) 0.1569 0.1327 0.0283 0.0267 0.0172 0.0158

LightGCN (SIGIR’20) 0.1823 0.1555 0.0507 0.0282 0.0374 0.0219

Multi-GCCF (ICDM’19) 0.1610 0.1318 0.0391 0.0273 0.0269 0.0167
NIA-GCN (SIGIR’20) 0.1726 0.1358 0.0460 0.0279 0.0315 0.0183

DGCF (SIGIR’20) 0.1842 0.1561 0.0443 0.0258 0.0328 0.0169
IMP (WWW’21) 0.1869 0.1585 0.0530 0.0294 0.0449 0.0246

UltraGCN (CIKM’21) 0.1862 0.1580 0.0487 0.0270 0.0372 0.0203

MNR-GCF (Ours) 0.1930 0.1655 0.0541 0.0301 0.0456 0.0255

Improvement 3.26% 4.42% 2.17% 2.38% 1.53% 3.66%
p-value 8e−5 1e−4 3e−4 1e−3 1e−2 5e−3

setting, i.e., retaining users and items with at least ten inter-

actions. The evaluation metrics we consider are Recall@20

and NDCG@20, identical to the metrics used in NGCF and

LightGCN.

B. Baseline Algorithms

To demonstrate the effectiveness of our solution, we com-

pare it with a wide range of representative methods, including

four direct user-item interaction based methods and five po-

tential neighbor relation enhanced methods.

• BPRMF [18] is a matrix factorization based method

optimized by the BPR loss.

• NeuMF [19] is a state-of-the-art neural CF model that

uses multiple hidden layers to capture nonlinear relations

between users and items.

• NGCF [7] is a seminal GCN-based CF model that

captures the high-order connectivity between users and

items by stacking multiple aggregation layers on user-

item bipartite graphs.

• LightGCN [8] is a GCN-based CF model evolved from

NGCF, which simplifies the design of the feature aggre-

gation component by removing non-linear activations and

transformation matrices.

• Multi-GCCF [11] employs a multi-graph encoding layer

to integrate the information from the user-item, user-user,

and item-item graphs.

• NIA-GCN [6] is a state-of-the-art GCN-based CF model,

which aggregates both neighbors and interacted nodes

from a user-item graph via a cross-depth ensemble layer.

• DGCF [31] considers user-item interactions at a finer

granularity by iteratively refining intent-aware interaction

graphs and representations.

• IMP [32] decomposes a user-item graph into a set

of subgraphs consisting of users with similar interests

and performs high-order graph convolution inside the

subgraphs.

• UltraGCN [12] directly approximates the limit of

infinite-layer graph convolutions via constraint losses for

efficient recommendations.

1) Implementation Details: Identical to the settings of

NGCF and LightGCN, the embedding size is fixed to 64,

and the embedding parameters are initialized with the Xavier

method [37] for all models. We optimize our model with

Adam [38] and use the default learning rate of 0.001 and de-

fault mini-batch size of 2048. The L2 regularization coefficient

λ is set to 10−4, and the default number of layers K is set to

3. The trade-off parameters α and β are both searched in the

range of {0.05, 0.1, 0.2, 0.5} on a validation dataset which is a

random 10% subset of the training set and set to 0.2 by default.

We implemented our model in PyTorch. The hyperparameters

of all baseline algorithms are carefully tuned by grid search.

All experiments were run on a workstation with an Intel Xeon

Platinum 2.40GHz CPU, an NVIDIA Quadro RTX 8000 GPU

and 500GB RAM.

C. Comparison with Baselines (RQ1)

We report the main results in Table II, where the best results

are boldfaced and the second-best results are underlined. We

can draw a few interesting observations.

• Our solution consistently yields the best performance

on three datasets. Its relative improvements over the

strongest baselines are 3.26%, 2.17% and 1.53% in terms

of Recall@20 and 4.42%, 2.38% and 3.66% in terms of

NDCG@20 on Gowalla, Amazon-Beauty and Amazon-

Sports, respectively. All improvements are significant

with p-value < 0.05 based on paired t-tests. We attribute

such improvements to a few reasons. First, explicitly

modeling multiple neighbor relations among users or

items is essential for learning informative user and item

representations. Second, by dynamically and adaptively
fusing information from different sources while respect-

ing their different extents of contribution, MNR-GCF can

better reflect users’ real preferences.

• Compared with the strongest baseline IMP, which ag-

gregates information from multiple decomposed user-

item subgraphs, MNR-GCF consistently achieves better

performance, validating the necessity of discriminating

the information from direct user-item interactions and
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(a) Gowalla

(b) Beauty

Fig. 3. Impact of different components on MNR-GCF.

potential neighbor relations and the effectiveness of ex-

plicitly constructing heterogeneous information networks

to capture multiple potential neighbor relations.

• Compared with another latest baseline UltraGCN, which

derives constraint losses on both user-item and item-

item relations and adjusts the importance of different

relations with predefined hyperparameters, MNR-GCF

dynamically and adaptively fuses the aggregated infor-

mation from two different sources by adjusting their

importance at each aggregation layer of a GCN, leading

to consistently better performance on all three datasets.

D. Impact of Different Components (RQ2)

To verify the benefits of different components in MNR-GCF,

we conduct an ablation study with several variants:

• w/o-mul constructs heterogeneous information networks

based on only one type of attributes of user-item interac-

tions, which means only one type of potential neighbor

relations is captured.

• w/o-deg fuses aggregated information from different

sources equally via mean pooling without adopting the

degree-aware dynamic routing mechanism.

• w/o-aux calculates the final ranking score without consid-

ering the auxiliary terms eui, euv , eiu and eij in Eq. (11).

Fig. 3 shows the performance of different variants. We

only report the results on Gowalla and Amazon-Beauty, and

the observations are similar on the Amazon-Sport dataset.

It can be seen that modeling multiple neighbor relations

among users or items consistently improves the performance

by a significant margin. Adaptively weighing the different

importance of aggregated information from direct user-item

interactions and multiple neighbor relations and incorporating

the auxiliary terms into the ranking score can further improve

the performance.

E. Impact of Hyperparameters (RQ3)

We also study the impact of different hyperparameters. We

vary the number of neighbor aggregation layers K in the range

(a) Layer number K

(b) Trade-off parameters α & β

Fig. 4. Impact of different hyperparameters on MNR-GCF.

of {1, 2, 3, 4} and report the results in Fig. 4(a). We only

report the results on Gowalla. The observations are similar

on other datasets. We can observe that initially aggregating

more layers can better capture high-order connectivity and

lead to substantially better performance. However, stacking

too many layers may introduce much noise and suffer from

the over-smoothing problem, resulting in worse performance.

In addition, since the trade-off parameters in the final ranking

score play a pivotal role, we report their impact on the

performance in Fig. 4(b). For simplicity, we set α equal to

β and search in the range of {0.05, 0.1, 0.2, 0.5}. We can

observe that MNR-GCF achieves the best performance with

α = β = 0.2 on Gowalla, indicating that the auxiliary terms of

ranking scores can positively contribute to model performance.

V. CONCLUSION

The success of CF in the era of GCNs relies on not

only an effective method to precisely characterize multiple

relations of users and items in terms of graphs, but also

carefully regulated aggregation of information from different

relations. In this paper, motivated by the notable limitations of

existing GCN-based CF methods, we proposed a novel neural

method called MNR-GCF, which features multiple neighbor

relations in terms of heterogeneous information networks by

considering multiple attributes associated with interactions. A

multi-relation aggregation mechanism was presented, which

uses a relation-aware self gating mechanism to aggregate

information from neighbors in multiple relations. We further

introduced a degree-aware dynamic routing mechanism to

dynamically and adaptively fuse information from direct user-

item interactions and multiple neighbor relations at each

aggregation layer, which is distinctive from existing ideas. We

conducted a comprehensive experimental evaluation to show

that our MNR-GCF framework consistently and significantly

outperforms a large number of state-of-the-art competitors

on three public benchmark datasets that represent different

application domains and that are of different data properties.
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