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Abstract. Unexpectedness recommendations are getting more attention
as a solution to the over-specialization of traditional accuracy-oriented
recommender systems. However, most of the existing works make limited
use of available interaction information to compute distance and neglect
the fact that varying time intervals for recommendations would lead to
different perceptions of unexpectedness from users. In this work, we pro-
pose a novel Temporal Unexpected Recommendation (TUR) app-
roach to improve e-commerce recommendations’ unexpectedness. Specif-
ically, we consider the complementarity of both implicit and explicit
distances, modeling unexpectedness from the latent space (i.e., embed-
ding vectors) and the side information (i.e., item taxonomy) respectively.
Meanwhile, we import a module based on the time-aware GRU to lever-
age the impact of timeliness on recommendation unexpectedness. Exper-
iments on a large-scale e-commerce dataset containing real users’ feed-
back show that TUR significantly outperforms the baselines in enhancing
unexpectedness while maintaining a comparable accuracy level.

Keywords: Recommender systems · Unexpectedness · Timeliness ·
E-commerce

1 Introduction

Over-specialization caused by accuracy-oriented recommendation approaches
may isolate users from potential items that may better match their hidden prefer-
ences [7]. To counteract such limitations, various beyond-accuracy objectives have
been taken into consideration, among which serendipity has been proven to be
more effective in affecting user satisfaction [2]. By definition, serendipity aims to
achieve a desired trade-off between accuracy (also call relevance) and unexpected-
ness. The latter usually refers to the degree of items being different from the user’s
profile and in nature involves the user’s emotional response [7]. How to enhance
recommendation unexpectedness while still ensuring accuracy comparable to that
of classical recommendation algorithms hence becomes a challenging issue.

Either by modifying accuracy-oriented algorithms [1,5,15] or through
employing some advanced deep learning techniques (e.g., neural networks) [8–
11], existing approaches manage to enhance unexpectedness and alleviate the
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over-specialization, but to a limited extent. For example, most of them capture
unexpectedness either by implicit distance (e.g., the difference between item
embeddings) [8] or by explicit distance with side information (e.g., co-rated users
and/or co-occurrence of items) [6,16]. But few works attempt to leverage their
complementarity so as to better model unexpectedness. Moreover, few works
consider timeliness (i.e., how good the time is to recommend a certain item to
the target user) in model design, though its significant relationship with users’
perceived unexpectedness was demonstrated in a large-scale user survey [2].

To address the above limitations, we propose a novel Temporal Unexpected
Recommendation (TUR) approach for e-commerce recommendations in this
work. Specifically, we utilize the complementarity of implicit and explicit dis-
tances, as well as capturing recommendation timeliness via a time-aware GRU-
based module. As for algorithm evaluation, we employ a user survey dataset
containing users’ real feedback on recommendation unexpectedness [2,13] to
evaluate the performance of our method TUR in comparison with several base-
lines. Results show that TUR significantly outperforms the baselines in terms of
unexpectedness, while still maintaining a comparable level of recommendation
accuracy.

2 Related Work

The first type of unexpectedness-oriented recommendation approaches modify
conventional accuracy-oriented recommendation algorithms using techniques like
pre-filtering [5] or re-ranking [1,15]. However, approaches of this type might
be constrained by the prediction ability of the underlying algorithm employed.
Therefore, recently, some machine learning methods are proposed. For example,
Onuma et al. [11] employ the graph-based mining technique to recommend items
that are close enough to the target user’s preferences but have a high potential to
reach other nodes. Li et al. [9] identify the target user’s short-term preferences for
movie genres through a RNN with Gated Recurrent Units (GRU), and calculate
the elastic relevance between the target movie’s user diversity and the target
user’s in-profile movie diversity. In their follow-up work [10], they further capture
not only users’ short-term preferences but also long-term preferences, through
Gaussian Mixture Model and Capsule Networks respectively. Li et al. [8] define
unexpectedness as the distance between the target item and the target user’s
preference closure in the latent vector space and use Self-Attentive GRU to
predict item ratings.

However, those approaches are limited in the following four aspects. First,
their utilization of available information is limited because they mainly rely
on a single type of distance (i.e., either implicit distance or explicit distance)
to define item unexpectedness. Second, existing approaches for unexpectedness
mostly neglect recommendation timeliness. That is, an item would bring the
same unexpectedness to the user no matter when it is recommended, which may
result in low user satisfaction [2]. Third, they mostly evaluate recommendation
unexpectedness through self-designed approximation metrics, but lack validation
from users’ real feedback. Fourth, the works purely emphasizing unexpectedness
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may compromise recommendation accuracy (relevance) to a certain extent [11].
Thus, in this work, we have been engaged in overcoming these limitations.

3 Temporal Unexpected Recommendation (TUR)

Adopting the utility theory that combining relevance and unexpectedness into
a hybrid utility function may jointly learn the two for producing the over-
all utility [1,7,16], we extend the utility function of Personalized Unexpected
Recommender System (PURS) [8], which, to the best of our knowledge, is the
most recent representative utility-based unexpectedness-oriented work. Formally,
given the target user u and the target item i, PURS computes the overall rec-
ommendation utility as

Utility(u, i) = Rel(u, i) + f(Unexp(u, i)) ∗ Unexp factor(u, i) (1)

where Rel(u, i) is the estimated relevance score of the target item i to the target
user u; Unexp(u, i) is the predicted unexpectedness of i to u, generalized via
the activation function f(x) = x ∗ e−x; and Unexp factor(u, i) is to measure
the user u’s propensity to accepting the item i’s unexpectedness, which can be
learned through a local activation unit.

To overcome the limitations mentioned previously, our proposed method
TUR extends the computation of unexpectedness by adding the explicit distance
instead of purely computing the implicit distance as in PURS and considering
timeliness. The utility function is as follows:

Utility∗(u, i, tr) = Rel(u, i) + f(Unexp∗(u, i, tr)) ∗ Unexp factor(u, i) (2)

where tr is the time to provide the recommendation, and the unexpectedness
score is computed as

Unexp∗(u,i,tr)=σ(α·Implicit(u,i)+β ·Explicit(u,i)+γ ·Timeliness(u,i,tr)) (3)

where σ is the sigmoid function that turns the integrated impact into the pre-
dicted unexpectedness score, and α, β, and γ are hyperparameters integrating
the different scales.

We then predict the user’s purchase probability by adding a sigmoid func-
tion to the utility, i.e., Prob(u, i) = σ(Utility∗(u, i, tr)). With the ground truth
labels that indicate whether i is really bought by the target user u, we formally
train the framework via a cross-entropy loss function. To be noted, our unex-
pectedness module can be easily integrated with other accuracy-oriented predic-
tion approaches under this framework, by changing the computation method of
Rel(u, i) in Eq. (1).

3.1 Implicit Distance and Explicit Distance

The computation of implicit distance is mainly inspired by PURS [8] that calcu-
lates the difference between the embedding vector of the target item i and user
interest clusters. Concretely, the average Euclidean distance is employed:
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Fig. 1. The item category taxonomy
from Mobile Taobao [13].

Fig. 2. The time-aware GRU in our
framework.

Implicit(u, i) =

∑
Cj

u∈Cu
d(�i, �

Cj
u)

|Cu| (4)

where Cu denotes the set of user interest clusters through an unsupervised clus-
tering algorithm [8] over all the embeddings of items that belong to the user’s

profile Pu, �i and �
Cj

u are respectively the embedding vectors of the target item i

and one interest cluster Cj
u, and d(�i, �

Cj
u) is the Euclidean distance.

We further consider explicit distance based on side information. Because hier-
archical item taxonomy (see example in Fig. 1) is typically adopted by popular
e-commerce platforms (e.g., Amazon, e-Bay, and Taobao) to categorize products,
we calculate taxonomy-based category distance. A common approach is to
count the least hops between two items’ leaf categories (hop-based distance).
However, this method cannot well distinguish the category differences between
pairs of items when their leaf categories lie at different levels. For example, in
Fig. 1, the hop-based distance between an item under the leaf category “Work
uniform” and that under “Student uniform” is 2, and that between items under
“T-shirt” and “Pajamas” is also 2, but the former two nodes turn different at
the 4th-level, while the latter two turn different at the 3rd level, so the distances
should be different.

Therefore, we employ a computation method that can identify the level at
which two items’ category paths start to turn different [13]. Formally, the unex-
pectedness based on explicit distance is defined as:

Explicit(u, i) =
∑

j∈Pu

1
|Pu| (L + 1 − Lij) (5)

where Pu is the user u’s profile, L is the total number of levels in the employed
taxonomy (e.g., L = 5 in Fig. 1), and Lij is the category distance of the target
item i and an item j as represented by the length of their common category path
(e.g., Lij = 3, if i is under “Work uniform” and j is under “Student uniform” in
Fig. 1, while it is 2 if i is under “T-shirt” and j is under “Pajamas”).

In a short summary, compared to previous works that purely consider either
implicit distance or explicit distance, our framework leverages both of them for
taking advantage of their complementarity.
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3.2 Time-Aware GRU for Unexpectedness

As mentioned before, although the significant effect of timeliness on user percep-
tion of unexpectedness has been revealed [2], little algorithm work takes timeli-
ness into consideration when predicting an item’s unexpectedness score. To fill
this gap, we design a time-aware GRU module (see Fig. 2) to learn the impact
of the interaction time of each historical behavior on the unexpectedness degree
of a certain item that the target user might perceive.

First, for each item k that belongs to u’s profile Pu where all visited items
are sorted by their interaction timestamps, we obtain its action embedding xk =
Lki · Bk

u , where Lki is the length of common category path between k and i,
Bk

u is the concatenation of the embedding vectors of the user �u and the item
k’s category �ck, both of which are updated via back-propagation through the
utility function optimization. With the dot product, we make xk a weighted
representation of u’s historical action at the category level, thus larger category
distance Lki would empower the historical action with greater impact during the
learning process since it may imply higher unexpectedness.

Next, we consider the actual temporal distance between the target item
and the historical interaction. As users with high-frequency behaviors might
be more sensitive to a long time interval from the recent interaction till the
current recommendation than those with low-frequency, we encode two kinds
of time information as the additional inputs, i.e., the time interval Δt(k−1)k =
log(tuk − tu(k−1) + 1) + 1 between tu(k−1) (when the user u visited the k − 1-
th item) and tuk (when the user visited the k-th item), and the time interval
Δtkr = log(tr − tuk + 1) + 1 between tuk and the time of providing the current
recommendation tr.

Inspired by the enhancement on LSTM in [14], we introduce two additional
time gates for GRU by assigning more trainable dense matrices to the three
input variables (i.e., xk, Δt(k−1)k, and Δtkr) for linear transformation, so that
the historical behaviors and temporal features could be learned in a joint manner
(see Eqs. (8) and (9)). To be more specific, we introduce weight matrices W

′
for

t(k−1)k and tkr to integrate the two time features. By adding more matrices
W/U and establishing interactions with xk, the two features are converted into
the time gates respectively. The governing equations of the modified part are:

Δt
′
(k−1)k = σh(W

′
(k−1)kΔt(k−1)k + b

′
(k−1)k) (6)

Δt
′
kr = σh(W

′
krΔtkr + b

′
kr) (7)

T(k−1)k = σg(xkW(k−1)k + Δt
′
(k−1)kU(k−1)k + b(k−1)k) (8)

Tkr = σg(xkWkr + Δt
′
krUkr + bkr) (9)

From Fig. 2 we can see that the current state is controlled not only by the original
update gate zk and the reset gate rk, but also by the two time gates T(k−1)k and
Tkr.

To further differentiate the impact of each historical interaction on the item
i’s unexpectedness to user u, we apply a self-attention block to the output of the
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Fig. 3. The distribution of users’
ratings on unexpectedness.

Table 1. Statistics of the taobao serendipity
dataset

Data User
number

Item
number

Interaction
number

Sparsity

Historical records 11,383 7,717,420 21,405,555 0.024%

Survey data 11,383 9,985 11,383 0.010%

All 11,383 7,719,403 21,416,938 0.024%

time-aware GRU. The weighted output is subsequently presented to an MLP,
incorporated with Br

u (i.e., the concatenation of user vector �u and embedding
vector of item category �cr) to forecast how good the time is to surprise the user
(i.e., Timeliness(u, i, tr) in Eq. (3)).

4 Experiment

To measure the performance of our proposed method, we employed Taobao
Serendipity Dataset1 that contains users’ real feedback on the recommendation’s
unexpectedness [2,13].

4.1 Taobao Serendipity Dataset

This dataset was collected from Mobile Taobao, a popular e-commerce platform
in China, from Dec. 21, 2017 to March 17, 2018. Concretely, 11,383 users’ feed-
back on the unexpectedness of recommendation was acquired through an online
survey (w.r.t. the question “The item recommended to me is unexpected”), as
well as their purchase intention (w.r.t. “I would buy the item recommended, given
the opportunity”), both rated on a 5-point Likert scale from 1 - “strongly dis-
agree” to 5 - “strongly agree”. From Fig. 3 we can see that users’ unexpectedness
ratings are distributed over all the five points. In addition, we have every user’s
historical records (clicks/purchases) in the past three months before s/he took
part in the survey. Each record can be denoted as (u, i, ci, tui, p), indicating that
the user u clicked (p = 0) or purchased (p = 1) the item i at the timestamp
tui, the category of which is ci. In total, there are 21,405,555 historical records,
4.21% of which are purchasing records (see statistics in Table 1). What’s more,
the category ci of each item i denotes its leaf category along the path over the
hierarchical item taxonomy (see Fig. 1).

To train the time-aware GRU, we followed the idea of session-based recom-
mendation by extracting items during a session window of length K = 10 as
one input sample. For example, if a user u has an interaction sequence Pu =
[iu1, iu2, iu3, ...iu11], there will be 2 data samples (u, iu10, [iu1, iu2, iu3, ...iu9]) and

1 https://github.com/greenblue96/Taobao-Serendipity-Dataset.

https://github.com/greenblue96/Taobao-Serendipity-Dataset
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(u, iu11, [iu2, iu3, iu4, ...iu10]), the dimension of which respectively denote the tar-
get user, the target item to be predicted, and the most recent nine interactions
before the recommendation time. Then we followed the popular 80/20 rule to
split historical data samples into the training/testing dataset, and all the survey
data were treated as testing data. The goal was to recommend items users are
likely to purchase, so records with p = 1 (for historical records) or purchase
intention > 3 (for survey data) are labeled as positive samples.

4.2 Compared Methods

There are in total nine compared methods, and eight variations by respectively
integrating PURS and TUR with the four accuracy-oriented approaches (e.g.,
“DIN+TUR” refers to the integration of TUR with the accuracy-oriented app-
roach DIN). Concretely, we compared our method TUR with 5 unexpectedness-
oriented methods:

– Full-Auralist [15], a personalized algorithm injecting novelty, diversity and
serendipity into the learning process;

– HOM-LIN [1], a utility-based model to estimate the overall preference a
user holds for an item;

– UNEXP-AUG [16], a modification of PureSVD by including the unexpect-
edness as a penalty factor to model both usefulness and unexpectedness;

– SOG [6] that introduces feature diversification to promote the recommenda-
tion serendipity; and

– PURS [8], an advanced framework that unifies relevance and unexpectedness
into a hybrid utility function as we described before.

Moreover, we implemented four state-of-the-art accuracy-oriented approac-
hes, in order to see whether the accuracy of our method could be comparable to
theirs, and furthermore whether it would be feasible to enhance their unexpect-
edness by integrating TUR into their framework.

– DIN [17] that introduces a local activation unit to adaptively learn represen-
tation vector for each user to capture her interests;

– PNN [12] that extracts high-order feature interactions by introducing a prod-
uct layer between the embedding layer and the fully connected layer;

– Wide&Deep [3] that jointly trains a linear model for feature processing and
a feed-forward neural network for feature learning; and

– DeepFM [4] that combines the factorization machine and a feed-forward
neural network to learn feature interactions.

Each method was trained and tested three times and the means of their
accuracy and unexpectedness performance are reported in Tables 2 and 3.
More details on codes and parameters can be found in https://github.com/
greenblue96/TUR.

https://github.com/greenblue96/TUR
https://github.com/greenblue96/TUR
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Table 2. Comparison of TUR
with unexpectedness-oriented and
accuracy-oriented baselines

Method Accuracy Unexpectedness

(AUC) (MAE) (RMSE)

Full-Auralist 0.5660 0.5048 0.6087

HOM-LIN 0.5352 0.4963 0.5978

UNEXP-AUG 0.4991 0.4157 0.5236

SOG 0.5142 0.3831 0.4716

PURS 0.6273 0.5260 0.6373

DIN 0.6186 – –

PNN 0.5950 – –

Wide&Deep 0.5930 – –

DeepFM 0.6305 – –

TUR 0.5920 0.3267 0.4083

Improvement – 14.72% 15.50%

Note: The improvement is against

the second-best performed method

(p < 0.001 by Student’s t-test).

Table 3. Comparison between TUR and
PURS being integrated with other accuracy-
oriented methods

Method Accuracy Unexpectedness

(AUC) (MAE) (RMSE)

DIN +PURS 0.6857 0.5234 0.6337

+TUR 0.6854 ↑0.3338 ↑0.4183
PNN +PURS 0.6859 0.5234 0.6337

+TUR 0.6852 ↑0.3350 ↑0.4199
Wide&Deep +PURS 0.6854 0.5181 0.6269

+TUR 0.6815 ↑0.3411 ↑0.4278
DeepFM +PURS 0.6807 0.5209 0.6306

+TUR 0.6799 ↑0.3251 ↑0.4053
Average

improvement

– 35.99% 33.80%

Note: ↑ indicates that xxx+TUR (e.g., DIN+TUR)

achieves significantly better prediction than

xxx+PURS regarding the corresponding

unexpectedness metric (p < 0.001 by Student’s t-test).

5 Results

Metrics. To evaluate accuracy, we adopted the weighted AUC, the same as
that used in PURS [8]. To evaluate unexpectedness, we calculated MAE and
RMSE between the predicted unexpectedness and the user’s real unexpected-
ness feedback after performing min-max normalization. For TUR and PURS,
the predicted unexpectedness is the unexpectedness score. For HOM-LIN, it is
the linear distance from i to u’s expectation set. For UNEXP-AUG, it is the
linear combination of i’s rareness and its dissimilarity to u’s profile. For Auralist
[15] and SOG [6], we only use components except the relevance estimation for
unexpectedness prediction.

Comparison with Baselines. There are several interesting observations (see
Table 2): First, regarding recommendation accuracy, TUR outperforms four
unexpectedness-oriented baselines, with 4.59% significant improvement (p <
0.001 by Student’s t-test) than the second-best baseline Full-Auralist in terms
of AUC. We also find that the accuracy of TUR can be comparable to those of
the state-of-the-art accuracy-oriented algorithms (e.g., PNN and Wide&Deep),
but be slightly lower than DIN and DeepFM. Second, as for unexpectedness,
TUR performs significantly better than all the unexpectedness-oriented base-
lines, with 14.72% and 15.50% improvements on the second-best baseline SOG
in terms of MAE and RMSE respectively, and 37.89% and 35.93% against PURS
that TUR extends.

Integration with Accuracy-Oriented Method. Given that both TUR and
PURS can act as a utility-based framework to be integrated with other accuracy-
oriented methods, we are interested in comparing the two frameworks in this
regard. Note that the integration can be simply done by replacing the rele-
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vance estimation (e.g., Rel(u, i) in Equation (3) for TUR) with the output of an
accuracy-oriented algorithm (i.e., DIN, PNN, Wide&Deep, or DeepFM).

From Table 3 we can see that all the combinations are basically equivalent
regarding accuracy (with AUC ranging from 0.6799 to 0.6859), and the results
are obviously better than those in Table 2 (in which the best accuracy is 0.6305 by
DeepFM). More notably, the comparison between TUR and PURS shows that,
when being integrated with the same accuracy-oriented algorithm, the former
always significantly outperforms the latter regarding the unexpectedness met-
rics, with the best MAE and RMSE (0.3251 and 0.4053 respectively) obtained by
DeepFM+TUR among all. On average, TUR shows an improvement of 35.99%
w.r.t. MAE and 33.80% w.r.t. RMSE compared to to PURS. The results indicate
that TUR can be more effective than PURS in terms of boosting the recommen-
dation unexpectedness, while not compromising accuracy (and even increasing)
when it is integrated with the accuracy-oriented method.

Table 4. Results of the ablation study

Method Accuracy Unexpectedness Method Accuracy Unexpectedness

(AUC) (MAE) (RMSE) (AUC) (MAE) (RMSE)

TUR0 0.6854 0.33381−6 0.41831−6

TURI
1 0.6855 0.5191 0.6281 TURIE

4 0.68560 0.41931−3 0.52821−3

TURE
2 0.68560,6 0.43861,3 0.55451,3 TURIT

5 0.68730,2,4,6 0.49881 0.60101

TURT
3 0.6874 0.49601,5 0.59731,5 TURET

6 0.6854 0.34431−5 0.43201−5

Note: The superscript indicates that the corresponding method is significantly better
than the numbered one.

Ablation Study. As shown above, DIN+TUR’s overall performance is more sat-
isfactory regarding both accuracy and unexpectedness, we therefore conducted
ablation study on this version that is abbreviated as TUR henceforth. Six vari-
ants were implemented: TURI , TURE , TURT ,TURIE , TURIT , and TURET ,
where the subscript letter indicates the component considered by the variant (i.e.,
I, E, and T for implicit distance, explicit distance, and timeliness, respectively).
Results show that all the six variants are inferior to the complete version of TUR
(i.e., DIN+TUR) in capturing users’ unexpectedness perception, with at least
3.15% worse w.r.t. MAE and 3.28% worse w.r.t. RMSE than TUR (see Table 4).
It hence suggests that these three components, i.e., implicit distance, explicit dis-
tance, and recommendation timeliness, all contribute to TUR’s unexpectedness
prediction to a certain extent. We also notice that the timeliness module can
help largely increase unexpectedness. For instance, the comparison of TUR with
TURIE reveals that the former obtains 25.61% and 26.27% improvements on
unexpectedness in terms of MAE and RMSE respectively. Another interesting
finding is that, the differences of TURIE from TURI and TURE are both sig-
nificant (p < 0.001), which verifies our assumption of taking into account their
complementarity for enhancing unexpectedness prediction.
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6 Conclusions

In this work, we propose the Temporal Unexpected Recommendation (TUR)
approach. Specifically, grounded on the utility theory, we model user preference
as a utility function accommodating both recommendation relevance and unex-
pectedness. For the latter, we particularly unify three components, i.e., implicit
distance defined in the latent space, explicit distance computed over hierarchi-
cal category taxonomy, and timeliness learned through the time-aware GRU.
Experiments on an e-commerce dataset containing users’ real feedback show the
superiority of our method to several baselines by significantly improving unex-
pectedness, while not compromising accuracy. In the future, we will be engaged
in generalizing the findings to other domains, and considering leveraging users’
personal characteristics (e.g., curiosity [13]) to further enhance unexpectedness.

Acknowledgements. This work was supported by Hong Kong Research Grants
Council (RGC) (project RGC/HKBU12201620).
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