

COLUMBIA 香港浸會大學 JNIVERSITY HONG KONG BAPTIST UNIVERSI

- Achieve much faster learning speed and better accuracy than existing methods
- Perform well on both seen and unseen testing categories

Unsupervised Embedding Learning via Invariant and Spreading Instance Feature * CVPR LONG BEACH

Mang Ye¹, Xu Zhang², Pong C. Yuen¹, Shih-Fu Chang² ¹ Hong Kong Baptist University ² Columbia University

Proposed Method

NN search

Classifier/Detector

Doesn't Require similarity consistency

Exemplar CNN :

• Considers each instance as one category and learns a multi-class classifier for all samples.

Too many weights, weights and samples are not aligned.

NCE:

Uses feature from last epoch as weights.

✓ Stored features are out-of-date.

Softmax Embedding on 'Real' Instance Feature

 \succ The augmented sample $\hat{\mathbf{x}}_i$ should be classified into instance *i*

$$P(i|\hat{\mathbf{x}}_i) = \frac{\exp(\mathbf{f}_i^T \hat{\mathbf{f}}_i / \tau)}{\sum_{k=1}^m \exp(\mathbf{f}_k^T \hat{\mathbf{f}}_i / \tau)}$$

 \succ The negative sample \mathbf{x}_i should not be classified into instance i

$$P(i|\mathbf{x}_j) = \frac{\exp(\mathbf{f}_i^T \mathbf{f}_j / \tau)}{\sum_{k=1}^m \exp(\mathbf{f}_k^T \mathbf{f}_j / \tau)}, \ j \neq i$$

Siamese Network Training

Branch 1: *n* randomly selected anchor instances **Branch 2**: Random data augmentation of the *n* anchor instances

Code: https://github.com/mangye16/Unsupervised_Embedding_Learning

 \Box We consider a small random sampled batch $\{x_1, \dots, x_m\}$ rather than all instances

Maximize

Minimize

Experimental Results

CIFAR-10 dataset

□ Training and testing set share the same categories

(b) Cosine similarity distributions

□ Training and testing set do not have the same categories

_		_	-				_	-		
R@1	R@2	R@4	R@8	NMI	Methods	R@	01 R(@1 R	@100	NMI
39.2	52.1	66.1	78.2	51.4				0		
Supervised Learning					Initial (FC)	40	.8 56	5.7	72.1	38.3
43.6	56.6	68.6	79.6	56.5	Exemplar	45	.0 60).3	75.2	85.0
48.2	61.4	71.8	81.9	59.2	NCE	46	.6 62	2.3	76.8	85.8
45.9	57.7	69.6	79.8	58.1	DeepCluster	34	.6 52	2.6	66.8	82.8
49.8	62.3	74.1	83.3	59.9	MOM	43	.3 57	7.2	73.2	84.4
Unsupervised Learning					Ours	48	.9 64	1.0	78.0	86.0
40.8 52.8 65.1 76.0 52.6					(b) Stanford Product dataset					
40.0	52.0	63.1	70.0	52.0	Methods	R@1	R@2	R@4	R@8	NMI
38.2	50.3	62.8	/5.0	45.0	Initial (FC)	35.1	47.4	60.0	72.0	38.3
39.2	51.4	63.7	75.8	45.1	Exemplar	26 5	10 1	E0.2	71.0	
42.9	54.1	65.6	76.2	53.0	Exemplar	50.5	40.1	59.2	/1.0	55.4
15.2	57 0	68.6	70 /	55.0	NCE	37.5	48.7	59.8	71.5	35.6
45.5	57.8	00.0	70.4	55.0	DeepCluster	32.6	43.8	57.0	69.5	38.5
46.2	59.0	70.1	80.2	55.4	МОМ	35.5	48.2	60.6	72.4	38.6
CUR200 2011 datacat					Ours	41.3	52.3	63.6	74.9	35.8
LUDZU	0-2011	ualasel				(c) (Car196 d	dataset		
						· · / ·				

This work is partially supported by Research Grants Council (RGC/HKBU12200518), Hong Kong. This work is partially supported by the United States Air Force Research Laboratory (AFRL) and the Defense Advanced Research Projects Agency (DARPA) under Contract No. FA8750-16-C-0166. Any opinions, findings and conclusions or recommendations expressed in this material are solely the responsibility of the authors and does not necessarily represent the official views of AFRL, DARPA, or the U.S. Government.