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Label estimation is an |mportant component In an unsu- -

) |
pervised person re-identi cation (re-ID) system. This pa- ! Update Learn !
per focuses on cross-camera label estimation, whichcanbe ~ ~~ 7777777~ o
subsequently used in feature learning to learn robust re-ID _ eline I ] h hing i ducted af
models. Speci cally, we propose to construct a graph for ' '9uré 1.Pipeline lliustration. Graph matching is conducted af-

. . ter constructing a graph for samples in each camera to obtain the
samples in each camera, and then graph matching scheme

is introduced f labeli iati Whil intermediate labels. Instead of using the labels directly, label re-
IS INtroduced for cross-camera labeling association. e weighting is introduced to handle the noisy intermediate labels.

labels directly output from existing graph matching meth- e ratively, the graph is updated, labels are estimated, and distance
ods may be noisy and inaccurate due to signi cant Cross- metrics are learnt.

camera variations, this paper propose a dynamic graph
matching (DGM) method. DGM iteratively updates the
image graph and the label estimation process by learning intuitive idea for unsupervised learning is to estimate re-ID

a better feature space with intermediate estimated labels. jpais as accurately as possible. In previous works, part
DGM is advantageous in two aspects: 1) the accuracy of €S from directly using hand-crafted descriptors)]

timated labels is improved signi cantly with the iterations;
2) DGM is robust to noisy initial training data. Extensive ing shared invariant information (saliencyd] or dictionary

experiments conducted on three benchmarks including the[ 1) among cameras. Deviating from the idea of esti-
large-scale MARS dataset show that DGM yields competi- m:ating labels, these methodss[ ] might be less com-

tive performance to fully supervised baselines, and outper-e+itive compared with the supervised counterparts. Mean-
forms competing unsupervised learning methods. while, these methods also suffer from large cross-camera
variations. For example, salient features are not stable due
. to occlusions or viewpoint variations. Different from the
1. Introduction existing unsupervised person re-ID methods, this paper is
based on a more customized solutiom®,, cross-camera
label estimation. In other words, we aim to mine the la-
bels (matched or unmatched video pairs) across cameras.
ith the estimated labels, the remaining steps are exactly
he same with supervised learning.

], some other unsupervised re-ID methods focus on nd-

Person re-identi cation (re-1D), a retrieval problem in it-
s essence3dp, 33, 3¢, aims to search for the queried per-
son from a gallery of disjoint cameras. In recent years, im-
pressive progress has been reported in video based re-I
[34, 20, 37], because video sequences provide rich visual
and temporal information and can be trivially obtained by =~ To mine labels across cameras, we leverage the graph
tracking algorithms [1, 17] in practical video surveillance ~ matching techniques(g, [2€]) by constructing a graph for
applications. Nevertheless, the annotation dif culty limits samples in each camera for label estimation. Instead of es-
the scalability of supervised methods in large-scale camerdimating labels independently, the graph matching approach
networks, which motivates us to investigate an unsupervisedhas shown good property in nding correspondences by
solution for video re-ID. minimize the globally matching cost with intra-graph rela-

The difference between unsupervised learning and sy-tionship. Meanwhile, label estimation problem for re-ID
pervised learning consists in the availability of labels. Con- task is to link the same person across different cameras,

sidering the good performance of supervised methods, arivhich perfectly matches the graph matching problem by
treating each person as a graph node. However, labels di-

LCode is available atww.comp.hkbu.edu.hk/  ~mangye/ rectly estimated by existing graph matching are very likely




to be inaccurate and noisy due to the signi cant appearanceFirstly, this paper estimates labels with graph matching to
changes across cameras. So a xed graph constructed in thaddress the cross-camera variation problem instead of di-
original feature space usually does not produce satisfyingrectly learning an invariant representation. Secondly, output
results. Moreover, the assumption that the assignment cosestimated labels of dynamic graph matching can be easily
or af nity matrix is xed in most graph matching methods expanded with other advanced supervised learning method-
may be unsuitable for re-ID due to large cross-camera vari-s, which provides much exibility for practical applications
ations [L3, 4, 2, 24]. in large-scale camera network.

In light of the above discussions, this paper proposes a Two contemporary methods exisfis/| 3] which also em-
dynamic graph matching (DGM) method to improve the ploy the idea of label estimation for unsupervised re-ID. Liu
label estimation performance for unsupervised video re-ID et al. [17] use a retrieval method for labeling, while Fan
(the main idea is shown in Fid). Speci cally, our pipeline al. [3] employk-means for label clustering.
is an iterative process. In each iteration, a bipartite graphis  Graph Matching for Re-ID. Graph matching has been
established, labels are then estimated, and then a discrimwidely studied in many computer vision tasks, such as ob-
inative metric is learnt. Throughout this procedure, labels ject recognition and shape matching]. It has shown su-
gradually become more accurate, and the learnt metric moregperiority in nding consistent correspondences in two sets
discriminative. Additionally, our method includes a label of features in an unsupervised manner. The relationships
re-weighting strategy which provides soft labels instead of between nodes and edges are usually represented by assign-
hard labels, a bene cial step against the noisy intermediatement cost matrix]3, 4] or af nity matrix [ 2, 28]. Currently
label estimation output from graph matching. graph matching mainly focuses on optimizing the matching

The main contributions are summarized as follows: procedure with two xed graphs. That is to say, the af nity

We propose a dynamic graph matching (DGM) method mat.nx is .xed rst, and theﬂn graph mat'chlng is formulated
as linear integer programs][or quadratic integer program-

to estimate cross-camera labels for unsupervised re- . .
ID, which is robust to distractors and noisy initial train- s [1. Different from the literature, the graph constructed

ing data. The estimated labels can be used for furtherbased on the original feature space is sub-op_tlmal for rele
T . task, since we need to model the camera variations besides
discriminative re-ID models learning.

the intra-graph deformations. Therefore, we design a dy-
Our experiment con rms that DGM is only slightly in-  namic graph strategy to optimize matching. Speci cally,

ferior to its supervised baselines and yields competi- partial reliable matched results are utilized to learn discrim-
tive re-ID accuracy compared with existing unsuper- inative metrics for accurate graph matching in each itera-

vised re-ID methods on three video benchmarks. tion.
Graph matching has been introduced in previous re-ID
2. Related Work works which fall into two main categories. (1) Construct-

: . , ing a graph for each person by representing each node with
Unsupervised Re-ID. Since unsupervised methods body parts £7] or local regions 5, and then a graph

could alleviate the reliance on large-scale supervised da'matching procedure is conducted to do re-identi cation. (2)
ta, a number of unsupefvised methods have been deVelOpeEstablishing a graph for each camera view, Hamid etl. [

d. Some transfer leaming based methodg 15 21] are introduces a joint graph matching to re ne nal matching
proposed. Apd)_et al. [19] present a multi-task learning results. They assume that all the query and gallery persons
method by aligning the positive mean on the target datasetare available for testing, and then the matching results can
to leam the re-ID models for the target dataset. Peng be optimized by considering their joint distribution. How-
al. [27] uy to a_dopt the pre-trained models on the source ever, it is hard to list a practical application for this method,
dgtasets to estimate the labels on the target datasets. Bes]nce only the query person is available during testing stage
§|des that, Zha@_t al. [ . ] present a patch based match- 4, most scenarios. Motivated by][ we construct a graph

ing method with inconsistent salience for re-ID. An unsu- ¢ - 1 camera by Considering’ each person as a node dur-
pervised cross dataset transfer learning method with graphng the training procedure. Subsequently, we could mine the

L_ap_laman regu_lanzgtlon terms is mt_roduced m_][' "%”d a positive video pairs in two cameras with graph matching.
similar constraint with graph Laplacian regularization term

for dictionary learning is proposed if][to address the un- 3. Graph Matching for Video Re-ID
supervised re-ID problem. Khaet al. [8] select multiple '
frames in a video sequence as positive samples for unsuper- Suppose that unlabelled grafa containsm persons,

vised metric learning, which has limited extendability to the which is represented bjA] = fxLji = 1;2; ;mg for
cross-camera settings. camera A, and another grafda consists oin persons de-
Two main differences between the proposed methodnoted by[B], = fx'bjj =012 ;ng for camera B.

and previous unsupervised re-ID methods are summarizedNote thafB]y contains another 0 element besidesrthper-



sons. The main purpose is to model the situation that more :
than one person iy cannot nd its correspondences in o9f
G, i.e. allowing person-to-dummy assignments. To mine
the label information across cameras, we follgijtp for-
mulate it as a binary linear programming with linear con-
straints:

o o
o
T

Percentage

—o—Same Person (Video Based) | |
=—+—Same Person (Image Based)
Different Person 1

G(y) = argmin Cly

st 8| 2 [A],8] )% [B]O yf 2 f 0, 1g, 0 2 4 6 8 kN:\‘O(k) 12 14 16 18 20
8 2 [Blo: y{ 1; (1) Figure 2.lllustration of the neighborhood similarity. With various
i2[A] values ofk, we record the percentages of having intersection of
X ) same (different) person's kNN under two different cameras. The
8i 2 [A]: yl =1; Same Person (Video-basedjers to video re-ID task in which one
i2[Blo person have multiple person imag&ame Person (Image-based)

_ denotes the image based re-ID task in which each person only have
wherey = fylg 2 R™("*) 1 s an assignment indicator single image per camera.
of nodei andj, representing whethérandj are the same
personyl = 1)ornot ! = 0). C = fC(i;j )gis the
assignment cost matrix with each element illustrating the
distance of nodéeto nodej . The assignment cost is usually
de ned by node distance likE€(i;j ) = Dist (x! ;x}), as

under two different cameras should share similar neighbor-
hood [25]. Moreover, compared with image-based re-I1D,
the neighborhood similarity constraints for video-based re-
. - : . . |ID are much more effective. It veri es our idea to integrate
done in p]. Additionally, some geometry information . : e

in b] " y, S g y! on 1S the neighborhood constraints for graph matching in video

added in many feature point matching modéels|[ . .
For video re-ID, each node (person) is represented by a'e-ID, which could help to address the camera camera vari-

. ations. The neighborhood cadSt; penalizes the neighbor-
set of frames. Therefor&§equence CogCs) andNeigh- . L
borhood Cos{Cy ) are designed as théaggignmentgcost in hood difference between all matched sequences, which is

the graph matching model for video re-ID under a certain formulated by,
metric. The former cost penalizes matchings with mean 1 X X

. . . i) = i%i°
set-to-set distance, while the latter one constrains the graph Cn(ij) = NN Du (Xa;Xp)
matching with within-graph data structure. The assignment almb 0N xi %N |
cost between persdrandj is then formulated as a combi- st Niik) = nx‘O'D (x! _Xio) <k 0 ] 4)
nation of two costs with a weighting parametein a log- coTal R m n alPum Xa: Xa o

... . i i 0, i 0
logistic form: Ng(J;k)z X'bJDm(XJ;X'b) <k -
C = log(1 + e(Cs* € n)y: (2)

whereN! andN/ denote the neighborhood of persoim
Sequence Cost The sequence co€ls penalizes the  cameraA and persornj in cameraB, k is the neighborhood
matched sequences with the sequence difference. Under parameter. For simplicity, a general kNN method is adopt-
discriminative metrioM learnt from frame-level features, ed in our paper, anki is set as 5 for all experiments. Mean-
the average set distance between video sequénggsand while, a theoretical analysis of the neighborhood constraints

fx} g is de ned as the sequence caiss,, is presented. Let} be a neighbor of persanin camera A
B 1 X X _ _ andxg be its neighbor in camera B. From the geometry per-
Cs(i;j) = —— Dy (X4 ?X]b" ) (3) spective, we have
if X5 9iif x,9]

Dm (x§;Xg) D (XB:Xp) + D (Xpi Xg) + D (Xh: Xp):

Neighborhood Cost The neighborhood co€ty mod- (5)
els the within camera data structure with neighborhood sim- ] ,
ilarity constraints. Speci cally, the correctly matched per- Sincexg andx, are the neighbors of, andxj, respective-
son pair's neighborhood under two cameras should be sim-Y: Du (x§;x4) andDw (x},; x3) are small positive number-
ilar [31, 37]. A primarily experiment on PRID2011 dataset S- On the other han@wu (x3;Xp) is also a small positive
with features in [ ] is conducted to Jusufy this point_ Re- under a discriminative metriBM . Thus, the distance be-
sults shown in Fig. 2 illustrates that the percentages of tween two neighbors? andx, is small enoughie.,
the same person having common neighbors are much larger q .
than that of different persons. It means that the same person D (X5 Xp) . (6)
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Figure 3.Block diagram of the proposed approach. The estimated Person
labels and learnt metric are updated in an iterative manner. Figure 4.lllustration about the choice of. in Eq. 7and  in

Eq. 8 on the PRID-2011 dataset. It is shown that most positive

. . pair costs are smaller than the mean cost, while cost larger than
4. Dynamic Graph Matching mean cost is likely to be negative sample pairs.

A number of effective graph matching optimization
methods could be adopted to solve the matching problem. Positive Re-weighting All y = 1 estimated by graph
After that, an intuitive idea to solve unsupervised video re- matching are positive video pairs. Since the labels are un-
ID is learning a re-identi cation model based on the output certain, it means that considering y{'II =1 equally is un-
of graph matching. However, there still remains two obvi- reasonable. Therefore, we design a soft ldb¢l;j ) en-
ous shortcomings: coded with a Gaussian kernel fgr = 1

Since existing graphs are usually constructed in the o- () = e CGI: jfC@ij)<
riginal feature space with xed assignment cost, it is + (] 0; others

not good enough for re-ID problem due to the large

cross camera variations. Therefore, we need to learn
a discriminative feature space to optimize the graph
matching results.

()

where . is the pre-de ned thresholdC means the assign-
ment cost computed in EQR in current iteration. In this
manner, the positive labely € 1) are converted into soft
labels, with smaller distance assigned larger weights while

The estimated labels output by graph matching may larger distance with smaller weights. Meanwhile, the lter-
bring in many false positives and negatives to the ing strategy could reduce the impact of false positives.
training process. Moreover, the imbalanced positve ~ Negative Re-weighting Since abundant negative video
and negative video pairs would worsen this situation Pairs existin video re-ID task compared with positive video
further. Therefore, it is reasonable to re-encode the pa|rs some hard negative are selected for ef cient training,
weights of labels for overall learning, especially for | (i:]) forally; =0 is de ned as

the uncertain estimated positive video pairs. 1 ifC(ij)<

: : ()= o; others ®)
To address above two shortcomings, a dynamic graph ' '
matching method is proposed. It iteratively learns a dis- where  is the pre-de ned threshold. Considering both
criminative metric with intermediate estimated labels to up- gq. 7 and Eq. 8, we dene , = = ¢y based on
date the graph construction, and then the graph matchinghe observation shown in Figj ¢, denotes the mean 6f,

is improved. Speci cally, a re-weighting scheme is intro- \which would be quite ef cient. Thus, the label re-weighting
duced for the estimated positive and negative video pairs.scheme is re ned by

Then, a discriminative metric learning method is introduced

to update the graph matching. The block diagram of the < e ¢() v if0< Yf C(i;j) <Cm
proposed method is shown in Fig. I@Gj)=". 0 if C(i;j) >cm 9)
' 1; others:

4.1. Label Re-weightin
ghting The label re-weighting scheme has the following advan-

This part introduces the designed label re-weighting tages: (1) for positive video pairs, it could Iter some false
scheme. Note that the following re-weighting scheme is positives and then assign different positive sample pairs d-
based on the outputy ] of optimization problem Eqdl. ifferent weights; (2) for negative video pairs, a number of
yl 2 f0; 1gis a binary indicator representing whethend easy negatives would be ltered. The re-weighing scheme
j are the same persoyg’( 1) or not (yJ 0). is simple but effective as shown in the experiments.



Algorithm 1 Dynamic Graph Matching (DGM) the assignment cost of EQ and Eq. 4 could be dynami-

Input:  Unlabelled featureX 5; X, M© = 1. cally updated for better graph matching in a new iteration.
1: ComputeC® with Eq. 2; After that, better graph matching could provide more reli-
2: Solve Eq.1to gety® andG?; able matching results, so as to improve the previous learnt
3 for t = 1 to maxiter do metric. Iteratively, a stable graph matching result is nal-
4. Label Re-weighting! with Eq. 9; ly achieved by a discriminative metric. The matched re-
5. UpdateM ¢ with Eg. 11 as done in]]; sult could provide label data for further supervised learning
6: Update cost matric! with Eq. 2; methods. Meanwhile, a distance metric learnt in an unsu-
7. Solve Eq.1to gety!; pervised way could also be directly adopted for re-ID. The
g ifGt Gt lthen proposed approach is summarized in Algorithm
9: yt =yt 1. Convergence AnalysisNote that we have two objective

10  endif functionsF and G optimizingy andM in each iteration.

11:  if convergehen To ensure the overall convergence of the proposed dynamic

12: break: graph matching, we design a similar strategy as discussed in

13:  endif [23]. Speci cally, M can be easily optimized by choosing a

14: end for suitable working step size L, whereL is the Lipschitz

Output:  Estimated labelg, learnt metrioV . constant of the gradient functiédnF (M; y). Thus, it could

ensurec (ML yt 1)  F(M!' 1yt 1) adetailed proof is
shown in [l]. Fory! at iterationt, we constrain the updat-
4.2. Metric Learning with Re-weighted Labels ing procedure by keep on updating the assignment cost ma-
trix Ct until getting a bettey which satis esG(M!;y!)
G(Mt;yt 1), similar proof can be derived fron2§]. By
constrain the updating procedure, it could satisfy the crite-
naGi(y;M)+ FY(M;y) G!' Y(y;M)+ F' 1(M;y).
o This is validated in our experiments as discussed in Section
f (Xb;xh) = log(1 + €@ XPm (xaixi) o)y (10) 5.2. Particularly, the proposed method converges steadily.
Complexity Analysis. In the proposed method, most
computational costs focus on the iterative procedure, since
we need to conduct the graph matching with Hungarian al-
gorithm at each iteration. We need to compute the sequence
costO(n?) and neighborhood cogd(kn + n?) for each
camera, and then graph matching time complexi®(is®).
UpdatingM with accelerated proximal gradient is extreme-
ly fast as illustrated in’]. However, the proposed method
is conducted of ine to estimate labels, which is suitable
for practical applications. During the online testing pro-
cedure, we only need to compute the distance between the
X m X o )
F(M:y)= " Uy () (11) query persorp and the gal_lery persons Wlth_ the learnt re-
i=1 j=1 identi cation model. The distance computation complexity
where! j is a weighting parameter to deal with the im- is O(n) and ranking complexity i©(n logn), which is the
balanced positive and negative pairs. The weightsare ~ same as existing methods/| 15].
caculated by j = m if 1(i;j) > 0, and _
V= =g 1) = 1, wherej j denotes 5. Experimental Results
the number of candidates in the set. Note that some uncery
tain pairs are assigned with laliél; j ) = 0 without affect-
ing the overall metric learning. The discriminative metric Datasets. Three publicly available video re-ID dataset-
can be optimized by minimizing EdL1 using existing ac- s are used for evaluation: PRID-20,[iLIDS-VID [ 24]
celerated proximal gradient algorithnesd, [1, 15, 26]). and MARS [37] dataset. The PRID-2011 dataset is collect-
ed from two disjoint surveillance cameras with signi cant
color inconsistency. It contains 385 person video tracks in
With the label information estimated by graph match- camera A and 749 person tracks in camera B. Among al-
ing, we could learn an improved metric by selecting high- | persons, 200 persons are recorded in both camera views.
con dent labeled video pairs. By utilizing the learnt metric, Following [34, 40, 16, 37], 178 person video pairs with no

With the label re-weighting scheme, we could learn a
discriminative metric similar to many previous supervised
metric learning works. We de ne the loss function by log-
logistic metric learning as done inf, i.e.,

wherecy is a positive constant bias to ensudg, has a
lower bound. It is usually de ned by the average distance
between two cameras. The functidn, denotes the dis-
tance ofx!, andx}, under the distance metrM , which is
dened by Dw (x4;x}) = (Xi  x)TM(xh  xp). We
choose the rst-order statistiog, andx}, to represent each
person as done irl, 34].

By summing up all of sequence pairs, we obtain the
probabilistic metric learning problem under an estimated
formulated by,

.1. Experimental Settings

4.3. Iterative Updating



less than 27 frames are employed for evaluation. iLIDS- Rank-1 Accuracy 2
VID dataset is captured by two non-overlapping cameras
located in an airport arrival hall, 300 person videos track- s
s are sampled in each camera, each person track contain_
23 to 192 frames. MARS dataset is a large scale dataset, i 5 '/
contains 1,261 different persons whom are captured by at§ ok

least 2 cameras, totally 20,715 image sequences achieve ™

=4-PRID-2011
iLIDS-VID
1.5 -—-MARS

I R A e dutn stk antek oot ¢

‘__,,.—0-—"'"
e

S

Objective Value

—4—PRID-2011-Test
=¥ =-PRID-2011-Train|

by DPM detector and GMCCP tracker automatically. 20 LDSVID Jest
Feature Extraction. The hand-craft feature LOMO.]]] j TooMARS Test
is selected as the frame feature on all three datasets. LOMC  ° 7, 5 & 10
extracts the feature representation with the Local Maximal feration Heration
Occurrence rule. All the image frames are normalized to @) (b)

128 64. The original 26960-dim features for each frame Figure 5.(a) Rank-1 accuracy of training and testing at each itera-
are then reduced to a 600-dim feature vector by a PCAtion on three datasets. (b) Overall objective values at each iteration
method for ef ciency considerations on all three datasets. on three datasets. For better view, the objective values are normal-
Meanwhile, we conduct a max-pooling for every 10 frames ized.

to get more robust video feature representations. Datasets PRID-2011 ILIDS-VID MARS
Settings. All the experiments are conducted following ~wjo re-weighting 726 35.6 228
the evaluation protocol in existing workg(], 34]. PRID- w re-weighting 73.1 37.1 24.6

2011 and iLIDS-VID datasets are randomly split by half, Table 1.Rank-1 matching rates with (fwithout) label re-weighting
one for training and the other for testing. In testing pro- on three datasets.
cedure, the regularized minimum set distan¢d pf two

persons is adopted. Standard cumulated matching charac- Fig. 5(a) shows that the performance is improved with

g_erzlstlcs (C dMC) curve 1 adgp}tedlzs (_)ulr evaluapon metr.'c'._iterative updating procedure. We could achieve 81.57% ac-
€ procedure are repeated for 10 trials to achieve statisti-o, oo tor PRID-2011, 49.33% for iLIDS-VID and 59.64%

cally reliable rgsults, the tralnlng/testlng'spllts are orlglngt- for MARS dataset. Compare with iteration 1, the improve-

ed from B4. Since MARS dataset contains 6 cameras with ment at each iteration is signi cant. After about 5 iterations,

|tmb|e(1:a:1c_e d trackleti in (;irl]ﬁetr)ent camerr]atsr,] we initialize ghe qtﬂe testing performance uctuates mildly. This uctuation
rackiels In camera 1 as the base grapn, In€ same number ay be caused by the data difference of the training data

tracklets from other ve cameras are randomly selected to and testing data. It should be pointed out that there is a

construct a graph for matching. The evaluation protocol on huge gap on the MARS dataset, this is caused by the abun-
MARS dataset is th‘_a Same as I, CMC curve and mAP dant distractors during the testing procedure, while there is
(mean average.preC|S|on) value are both reported. no distractors for trainingy/]. Experimental results on the

_ Implementation.  Both the graph matching and met- 00 gatasets show that the proposed iterative updating al-
ric learning optimization problems can be solved separate—gorithm improves the performance remarkably. Although
ly using existing methods. We adopt Hungarian algorithm ot theoretical proof, itis shown in Fig(b) that DGM

to splve the graph .matchir]g problem for ef ciency consid- converges to steady and satisfactory performance.

erations, and metric learning method (MLAPG) IHb] as Evaluation of label re-weighting. We also compare the

the b_asellne_ methods. Some advanced graph match|_ng angerformance without label re-weighting strategy. The inter-
metric learning methods may be adop_ted as_alternatlves 19 ediate labels output by graph matching are simply trans-
produce even better rgsult; as shown In SediiGnWe re- formed tol for matched and 1 for unmatched pairs. The
port the r?su,'ts atOth |t¢rat|9n, with = 0:5for all three rank-1 matching rates on three datasets are shown Table
datasets if without speci cation. Consistent improvements on three datasets illustrate that the
proposed label-re-weighting scheme could improve the re-
ID model learning.

Evaluation of iterative updating. To demonstrate the ef- Evaluation of label estimation. To illustrate the label
fectiveness of the iterative updating strategy, the rank-1estimation performance, we adopt the general precision, re-
matching rates of training and testing at each iteration oncall and F-score as the evaluation criteria. The results on
three datasets are reported in Fig.Speci cally, the rank- three datasets are shown in Tablle Since graph match-

1 accuracy for testing is achieved with the learnt metric ing usually constrains full matching, the precision score is
at each iteration, which could directly re ect the improve- quite close to the recall on the PRID-2011 and iLIDS-VID
ments for re-1D task. Meanwhile, the overall objective val- datasets. Note that the precision score is slightly higher than
ues on three datasets are reported. recall is due to the proposed positive re-weighting strategy.

5.2. Self Evaluation



PRID-2011 Dataset iLIDS-VID Dataset MARS Dataset

100.0 100.0 100.0
779 82.4 857
731 77
80.0 80.0 80.0
58.0 56.2
60.0 364 60.0 53.6 538 493 60.0
CIDGM
37.1 313 36.2 200 29 0, 368
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Figure 6.Estimated labels for other supervised learning methods. “DGM” represents the re-identi cation performance with our estimated
labels. “GT” provides upper bounds with fully supervised learning. Rank-1 matching rates (%) are reported for three datasets.

Dataset Precision Recall F-score to its complex environment with many background clutter-
PRID2011 82.14 81.57 81.85 s, such as luggage, passengers and so on, which cannot be
iLIDS-VID 49.33 48.64 48.98 effectively solved by a global descriptor (LOMO)].

MARS 59.64 42.40 49.57 Another experiment with IDE deep model on the three

— 5
Table 2.Label estimation performance (%) on three datasets. datasets shows the expendability of the proposed method

to deep learning methods. Speci cally, about 441k out of
518k image frames are labelled for 625 identities on the
the settings described in Section 5.1 are evaluated. It islarge scale MARS dataset, while others are left with Eq.

implemented with Matlab and executed on a desktop PCg' The labelled images are then resize®8y 227 pix-

with i7-4790K @4.0 GHz CPU and 16GB RAM. The train- €' @S done in/], square region824  224are randomly
ing and testing time are reported by the average runningcropped from the resized images. Three fully convolutional

time in 10 trials. For training, since we adopt an ef cient layers with 1,024, 1,024 arl blobs are de ned by using

graph matching algorithm and accelerated metric Iearningfr‘]leXNgtt[ ]'t ther:e Ecdsrlmtes fthet Iabelli%;eg_ntles on
[15], the training time is acceptable. The training time for - cc datasets. 1he FL-7 layer tea ures (1,024-dim) are ex-

the PRID2011 dataset is about 13s, about 15s for iLIDS- acted from testing frames, maxpooling strategy is adopt-
VID dataset, about 2.5 hours for the MARS dataset due e‘?' for each sequence . Our IDE model is mplemented

to the large amount of tracklets. For testing, the running W!th MxNet. Fig. 6 shows that the performa_nce IS |mprove_d
time is fast for our method, since standard 1-vs-N matching with a huge gap to hand-craft features with deep Iearnlng
scheme is employed. The testing times are less than 0.001 echnique on the large scale MARS dataset. Comparably, it
on PRID2011 and iLIDS-VID datasets for each query pro- 9085 not perform well on two small scale datasets (PRID-

cess, and around 0.01s on MARS with 636 gallery persons.2011 and “‘IDS'\./I[? datasgt) compared to hanq-craﬁ fea-
tures due to the limited training data. Meanwhile, the gap

between the estimated labels to fully supervised deep learn-
ing methods is consistent to that of metric learning method-
This subsection evaluates the effectiveness of the out-s. Note that since one person may appear in more than one
put estimated labels for other supervised learning method-cameras on the MARS dataset, the rank-1 matching rates
s. Compared with the re-identi cation performances with may be even higher than label estimation accuracy.
groundtruth labels (GT), they provide upper bounds as ref-
erences to illustrate the effectiveness of DGM. Speci cal-

Running time. The running times on three datasets with

5.3. Estimated Labels for Supervised Learning

5.4. Comparison with Unsupervised re-I1D

ly, two metric learning methods MLAPGL}] and XQDA This section compares the performances to existing un-
[14], and an ID-discriminative Embedding (IDE) deep mod- supervised re-ID methods. Speci cally, two image-based
el [37] are selected for evaluation as shown in Fig. re-ID methods, Salience ] results originated fromZ{/],

Con gured with MLAPG and XQDA, the performances and GRDL P] is implemented by averaging multiple frame
outperform the baseling-norm on all three datasets, usu- features in a video sequence to a single feature vector. Four
ally by a large margin. The results show that the estimat- state-of-the-art unsupervised video re-ID methods are in-
ed labels also match well with other supervised methods.cluded, including DVDL [], FV3D [16], STFV3D [16] and
Compared with the upper bounds provided by supervisedUnKISS [8]. Meanwhile, our unsupervised estimated label-
metric learning methods with groundtruth labels, the result- s are con gured with three supervised baselines MLAPG
s on PRID-2011 and MARS datasets are quite close to the[15], XQDA [14] and IDE [37] to learn the re-identi cation
upper bounds. Although the results on iLIDS-VID dataset models as shown in Tabk
are not that competitive, the main reason can be attributed It is shown in Table3 that the proposed method out-



Datasets PRID-2011 iLIDS-VID MARS

Rank atr 1 5 10 20 1 5 10 20 1 5 10 20 | mAP
L2 40.6 66.7 79.4 92.3| 9.2 200 279 469 149 274 33.7 40.8 55
FV3D [16] 387 710 806 90.3| 25.3 54.0 683 873 - - - - -
STFV3D [16] 270 540 66.3 80.9| 19.1 388 517 70.7 - - - - -
Salience 6] 258 436 526 62.0| 10.2 248 355 529 - - - - -
DVDL [7] 40.6 69.7 77.8 85.6| 259 482 573 689 - - - - -
GRDL [9] 416 764 846 89.9| 25,7 499 63.2 77.6 193 332 416 46.5 9.56
UnKISS [g] 58.1 819 896 96.0| 359 633 749 834 | 223 374 472 53.6/ 10.6
DGM + MLAPG [15] | 73.1 925 96.7 99.0 | 371 613 722 820| 246 426 504 572 | 118
DGM + XQDA [14] 824 954 983 99.8 | 31.3 553 70.7 834 | 236 382 479 547 11.2
DGM + IDE [37] 56.4 81.3 88.0 96.4| 36.2 628 736 827 | 36.8 540 616 685 | 21.3

Table 3.Comparison with state-of-the-art unsupervised methods including image and video based methods on thre&daiadatates
the best performance whilue for second best.

performs other unsupervised re-ID methods on PRID-2011__ Rank ar 1 S 10 20
and MARS dataset often by a large margin. Meanwhile, a __Baseline 73.1 925 967 99.0
comparable performance with other state-of-the-art perfor-___4(%) Exp 1. Distractors.

20 72.1 91.9 95.8 98.4

mances is obtained on iLIDS-VID dataset even with a poor

baseline input. In most cases, our re-ID performance could 22)/) 70.3Exp 5 g'lg;ectorygssézgmentsg&z
achieve the best performances on all three datasets with the > : -
P 20 723 921 959 986

learnt metric directly. We assume that the proposed method 0 711 916 95.4 983

may yield better results by adopting better baseline descrip'Table 4.Matching rates (%) on the PRID-2011 dataset achieved
tors, other advanced supervised learning methods would alyy the learnt metric without one-to-one matching assumption.

so boost the performance further. The advantages can be

attributed to two folds: (1) unsupervised estimating cross

cameras labels provides a good solution for unsupervisedyer, aboup% persons would be false matched sincepitie
re-ID, since it is quite hard to learn invariant feature repre- gre poth randomly selected for two cameras.

sentations without cross-camera label information; (2) dy-
namic graph matching is a good solution to select matched
video pairs with the intra-graph relationship to address the
Cross camera variations.

Table4 shows that the performance without one-to-one
matching assumption is still stable, with only a little degra-
dation in both situations, this is because: (1) Without one-
to-one assumption, it will increase the number of negative
. . matching pairs, but due to the abundant negatives pairs in
5.5. Robustness in the Wild re-ID task, the inuence is not that much. (2) The la-

This subsection mainly discusses whether the proposed®€! re-weighting strategy would reduce the effects of low-
method still works under practical conditions. con dence matched positive pairs.

Distractors. In real applications, some persons may not
appear in both cameras. To simulate this situation for train- 6, Conclusion
ing, we use the additional 158 person sequences in camer-
a A and 549 persons in camera B of PRID-2011 dataset to  This paper proposes a dynamic graph matching method
conduct the experimentd% N distractor persons are ran- to estimate labels for unsupervised video re-ID. The graph
domly selected from these additional person sequences fois dynamically updated by learning a discriminative metric.
each camera. They are added to the training set as distracBene t from the two layer cost designed for graph match-
tors. N is the size of training set. We use these distractors ing, a discriminative metric and an accurate label graph are
to model the practical application, in which many persons updated iteratively. The estimated labels match well with
cannot nd their correspondences in another camera. other advanced supervised learning methods, and superior

Trajectory segments. One person may have multiple Performances are obtained in extensive experiments. The
sequences in each camera due to tracking errors or reapdynamic graph matching framework provides a good solu-
pear in the camera views. Therefore, multiple sequencedion for unsupervised re-ID.
of the same person may be unavoidable to be false treated Acknowledgement This work is partially supported
as different persons. To test the performam®é, N per- by Hong Kong RGC General Research Fund HKBU
son sequences are randomly selected to be divided into twd12202514), NSFC (61562048). Thanks Guangcan Mai for
halves in each camera on PRID-2011 dataset. In this manthe IDE implementation.
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