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Abstract

Label estimation is an important component in an unsu-
pervised person re-identi�cation (re-ID) system. This pa-
per focuses on cross-camera label estimation, which can be
subsequently used in feature learning to learn robust re-ID
models. Speci�cally, we propose to construct a graph for
samples in each camera, and then graph matching scheme
is introduced for cross-camera labeling association. While
labels directly output from existing graph matching meth-
ods may be noisy and inaccurate due to signi�cant cross-
camera variations, this paper propose a dynamic graph
matching (DGM) method. DGM iteratively updates the
image graph and the label estimation process by learning
a better feature space with intermediate estimated labels.
DGM is advantageous in two aspects: 1) the accuracy of es-
timated labels is improved signi�cantly with the iterations;
2) DGM is robust to noisy initial training data. Extensive
experiments conducted on three benchmarks including the
large-scale MARS dataset show that DGM yields competi-
tive performance to fully supervised baselines, and outper-
forms competing unsupervised learning methods.1

1. Introduction

Person re-identi�cation (re-ID), a retrieval problem in it-
s essence [39, 33, 38], aims to search for the queried per-
son from a gallery of disjoint cameras. In recent years, im-
pressive progress has been reported in video based re-ID
[34, 20, 37], because video sequences provide rich visual
and temporal information and can be trivially obtained by
tracking algorithms [11, 12] in practical video surveillance
applications. Nevertheless, the annotation dif�culty limits
the scalability of supervised methods in large-scale camera
networks, which motivates us to investigate an unsupervised
solution for video re-ID.

The difference between unsupervised learning and su-
pervised learning consists in the availability of labels. Con-
sidering the good performance of supervised methods, an

1Code is available atwww.comp.hkbu.edu.hk/ ˜ mangye/
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Figure 1.Pipeline Illustration. Graph matching is conducted af-
ter constructing a graph for samples in each camera to obtain the
intermediate labels. Instead of using the labels directly, label re-
weighting is introduced to handle the noisy intermediate labels.
Iteratively, the graph is updated, labels are estimated, and distance
metrics are learnt.

intuitive idea for unsupervised learning is to estimate re-ID
labels as accurately as possible. In previous works, part
from directly using hand-crafted descriptors [30, 14, 19,
16], some other unsupervised re-ID methods focus on �nd-
ing shared invariant information (saliency [36] or dictionary
[9, 22]) among cameras. Deviating from the idea of esti-
mating labels, these methods [36, 9, 22] might be less com-
petitive compared with the supervised counterparts. Mean-
while, these methods also suffer from large cross-camera
variations. For example, salient features are not stable due
to occlusions or viewpoint variations. Different from the
existing unsupervised person re-ID methods, this paper is
based on a more customized solution,i.e., cross-camera
label estimation. In other words, we aim to mine the la-
bels (matched or unmatched video pairs) across cameras.
With the estimated labels, the remaining steps are exactly
the same with supervised learning.

To mine labels across cameras, we leverage the graph
matching technique (e.g., [28]) by constructing a graph for
samples in each camera for label estimation. Instead of es-
timating labels independently, the graph matching approach
has shown good property in �nding correspondences by
minimize the globally matching cost with intra-graph rela-
tionship. Meanwhile, label estimation problem for re-ID
task is to link the same person across different cameras,
which perfectly matches the graph matching problem by
treating each person as a graph node. However, labels di-
rectly estimated by existing graph matching are very likely



to be inaccurate and noisy due to the signi�cant appearance
changes across cameras. So a �xed graph constructed in the
original feature space usually does not produce satisfying
results. Moreover, the assumption that the assignment cost
or af�nity matrix is �xed in most graph matching methods
may be unsuitable for re-ID due to large cross-camera vari-
ations [13, 4, 2, 28].

In light of the above discussions, this paper proposes a
dynamic graph matching (DGM) method to improve the
label estimation performance for unsupervised video re-ID
(the main idea is shown in Fig.1). Speci�cally, our pipeline
is an iterative process. In each iteration, a bipartite graph is
established, labels are then estimated, and then a discrim-
inative metric is learnt. Throughout this procedure, labels
gradually become more accurate, and the learnt metric more
discriminative. Additionally, our method includes a label
re-weighting strategy which provides soft labels instead of
hard labels, a bene�cial step against the noisy intermediate
label estimation output from graph matching.

The main contributions are summarized as follows:

� We propose a dynamic graph matching (DGM) method
to estimate cross-camera labels for unsupervised re-
ID, which is robust to distractors and noisy initial train-
ing data. The estimated labels can be used for further
discriminative re-ID models learning.

� Our experiment con�rms that DGM is only slightly in-
ferior to its supervised baselines and yields competi-
tive re-ID accuracy compared with existing unsuper-
vised re-ID methods on three video benchmarks.

2. Related Work

Unsupervised Re-ID. Since unsupervised methods
could alleviate the reliance on large-scale supervised da-
ta, a number of unsupervised methods have been develope-
d. Some transfer learning based methods [22, 18, 21] are
proposed. Andyet al. [18] present a multi-task learning
method by aligning the positive mean on the target dataset
to learn the re-ID models for the target dataset. Penget
al. [22] try to adopt the pre-trained models on the source
datasets to estimate the labels on the target datasets. Be-
sides that, Zhaoet al. [36] present a patch based match-
ing method with inconsistent salience for re-ID. An unsu-
pervised cross dataset transfer learning method with graph
Laplacian regularization terms is introduced in [22], and a
similar constraint with graph Laplacian regularization term
for dictionary learning is proposed in [9] to address the un-
supervised re-ID problem. Khanet al. [8] select multiple
frames in a video sequence as positive samples for unsuper-
vised metric learning, which has limited extendability to the
cross-camera settings.

Two main differences between the proposed method
and previous unsupervised re-ID methods are summarized.

Firstly, this paper estimates labels with graph matching to
address the cross-camera variation problem instead of di-
rectly learning an invariant representation. Secondly, output
estimated labels of dynamic graph matching can be easily
expanded with other advanced supervised learning method-
s, which provides much �exibility for practical applications
in large-scale camera network.

Two contemporary methods exists [17, 3] which also em-
ploy the idea of label estimation for unsupervised re-ID. Liu
et al. [17] use a retrieval method for labeling, while Fanet
al. [3] employk-means for label clustering.

Graph Matching for Re-ID. Graph matching has been
widely studied in many computer vision tasks, such as ob-
ject recognition and shape matching [28]. It has shown su-
periority in �nding consistent correspondences in two sets
of features in an unsupervised manner. The relationships
between nodes and edges are usually represented by assign-
ment cost matrix [13, 4] or af�nity matrix [ 2, 28]. Currently
graph matching mainly focuses on optimizing the matching
procedure with two �xed graphs. That is to say, the af�nity
matrix is �xed �rst, and then graph matching is formulated
as linear integer programs [4] or quadratic integer program-
s [13]. Different from the literature, the graph constructed
based on the original feature space is sub-optimal for re-ID
task, since we need to model the camera variations besides
the intra-graph deformations. Therefore, we design a dy-
namic graph strategy to optimize matching. Speci�cally,
partial reliable matched results are utilized to learn discrim-
inative metrics for accurate graph matching in each itera-
tion.

Graph matching has been introduced in previous re-ID
works which fall into two main categories. (1) Construct-
ing a graph for each person by representing each node with
body parts [27] or local regions [35], and then a graph
matching procedure is conducted to do re-identi�cation. (2)
Establishing a graph for each camera view, Hamid et al. [5]
introduces a joint graph matching to re�ne �nal matching
results. They assume that all the query and gallery persons
are available for testing, and then the matching results can
be optimized by considering their joint distribution. How-
ever, it is hard to list a practical application for this method,
since only the query person is available during testing stage
in most scenarios. Motivated by [5], we construct a graph
for each camera by considering each person as a node dur-
ing the training procedure. Subsequently, we could mine the
positive video pairs in two cameras with graph matching.

3. Graph Matching for Video Re-ID

Suppose that unlabelled graphGA containsm persons,
which is represented by[A ] = f x i

a ji = 1 ; 2; � � � ; mg for
camera A, and another graphGB consists ofn persons de-
noted by[B]0 = f x j

bjj = 0 ; 1; 2; � � � ; ng for camera B.
Note that[B]0 contains another 0 element besides then per-



sons. The main purpose is to model the situation that more
than one person inGA cannot �nd its correspondences in
GB , i.e. allowing person-to-dummy assignments. To mine
the label information across cameras, we follow [4] to for-
mulate it as a binary linear programming with linear con-
straints:

G(y ) = arg min
Y

CT y

s:t: 8i 2 [A ]; 8j 2 [B]0 : yj
i 2 f 0; 1g;

8j 2 [B]0 :
X

i 2 [A ]

yj
i � 1;

8i 2 [A ] :
X

j 2 [B]0

yj
i = 1 ;

(1)

wherey = f yj
i g 2 Rm (n +1) � 1 is an assignment indicator

of nodei andj , representing whetheri andj are the same
person (yj

i = 1 ) or not (yj
i = 0 ). C = f C(i; j )g is the

assignment cost matrix with each element illustrating the
distance of nodei to nodej . The assignment cost is usually
de�ned by node distance likeC(i; j ) = Dist (x i

a ; x j
b), as

done in [5]. Additionally, some geometry information is
added in many feature point matching models [13].

For video re-ID, each node (person) is represented by a
set of frames. Therefore,Sequence Cost(CS ) andNeigh-
borhood Cost(CN ) are designed as the assignment cost in
the graph matching model for video re-ID under a certain
metric. The former cost penalizes matchings with mean
set-to-set distance, while the latter one constrains the graph
matching with within-graph data structure. The assignment
cost between personi andj is then formulated as a combi-
nation of two costs with a weighting parameter� in a log-
logistic form:

C = log(1 + e(CS + �C N ) ): (2)

Sequence Cost. The sequence costCS penalizes the
matched sequences with the sequence difference. Under a
discriminative metricM learnt from frame-level features,
the average set distance between video sequencesf x i

ag and
f x j

bg is de�ned as the sequence cost,i.e.,

CS (i; j ) =
1

jf x i
agjjf x j

bgj

X X
DM (x i m

a ; x j n
b ): (3)

Neighborhood Cost. The neighborhood costCN mod-
els the within camera data structure with neighborhood sim-
ilarity constraints. Speci�cally, the correctly matched per-
son pair's neighborhood under two cameras should be sim-
ilar [31, 32]. A primarily experiment on PRID2011 dataset
with features in [16] is conducted to justify this point. Re-
sults shown in Fig. 2 illustrates that the percentages of
the same person having common neighbors are much larger
than that of different persons. It means that the same person
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Figure 2.Illustration of the neighborhood similarity. With various
values ofk, we record the percentages of having intersection of
same (different) person's kNN under two different cameras. The
Same Person (Video-based)refers to video re-ID task in which one
person have multiple person images.Same Person (Image-based)
denotes the image based re-ID task in which each person only have
single image per camera.

under two different cameras should share similar neighbor-
hood [25]. Moreover, compared with image-based re-ID,
the neighborhood similarity constraints for video-based re-
ID are much more effective. It veri�es our idea to integrate
the neighborhood constraints for graph matching in video
re-ID, which could help to address the camera camera vari-
ations. The neighborhood costCN penalizes the neighbor-
hood difference between all matched sequences, which is
formulated by,

CN (i; j ) =
1

jN i
a jjN j

b j

X

�x i 0
a 2N i

a

X

�x j 0

b 2N j
b

DM (�x i 0

a ; �x j 0

b )

s:t: N i
a(i; k ) =

n
�x i 0

a jDM (�x i
a ; �x i 0

a ) < k
o

;

N j
b (j; k ) =

n
�x j 0

b jDM (�x j
b; �x j 0

b ) < k
o

;

(4)

whereN i
a andN j

b denote the neighborhood of personi in
cameraA and personj in cameraB , k is the neighborhood
parameter. For simplicity, a general kNN method is adopt-
ed in our paper, andk is set as 5 for all experiments. Mean-
while, a theoretical analysis of the neighborhood constraints
is presented. Let�xp

a be a neighbor of personi in camera A
and�xq

b be its neighbor in camera B. From the geometry per-
spective, we have

DM (�xp
a ; �xq

b) � DM (�xp
a ; �x i

a) + DM (�x i
b; �xq

b) + DM (�x i
a ; �x i

b):
(5)

Since�xp
a and�xq

b are the neighbors of�x i
a and�x i

b, respective-
ly, DM (�xp

a ; �x i
a) andDM (�x i

b; �xq
b) are small positive number-

s. On the other hand,DM (�x i
a ; �x i

b) is also a small positive
under a discriminative metricDM . Thus, the distance be-
tween two neighbors�xp

a and�xq
b is small enough,i.e.,

DM (�xp
a ; �xq

b) � ": (6)
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Figure 3.Block diagram of the proposed approach. The estimated
labels and learnt metric are updated in an iterative manner.

4. Dynamic Graph Matching

A number of effective graph matching optimization
methods could be adopted to solve the matching problem.
After that, an intuitive idea to solve unsupervised video re-
ID is learning a re-identi�cation model based on the output
of graph matching. However, there still remains two obvi-
ous shortcomings:

� Since existing graphs are usually constructed in the o-
riginal feature space with �xed assignment cost, it is
not good enough for re-ID problem due to the large
cross camera variations. Therefore, we need to learn
a discriminative feature space to optimize the graph
matching results.

� The estimated labels output by graph matching may
bring in many false positives and negatives to the
training process. Moreover, the imbalanced positive
and negative video pairs would worsen this situation
further. Therefore, it is reasonable to re-encode the
weights of labels for overall learning, especially for
the uncertain estimated positive video pairs.

To address above two shortcomings, a dynamic graph
matching method is proposed. It iteratively learns a dis-
criminative metric with intermediate estimated labels to up-
date the graph construction, and then the graph matching
is improved. Speci�cally, a re-weighting scheme is intro-
duced for the estimated positive and negative video pairs.
Then, a discriminative metric learning method is introduced
to update the graph matching. The block diagram of the
proposed method is shown in Fig.3.

4.1. Label Re­weighting

This part introduces the designed label re-weighting
scheme. Note that the following re-weighting scheme is
based on the output (y ) of optimization problem Eq.1.
yj

i 2 f 0; 1g is a binary indicator representing whetheri and
j are the same person (yj

i = 1 ) or not (yj
i = 0 ).
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Figure 4.Illustration about the choice of� + in Eq. 7 and� � in
Eq. 8 on the PRID-2011 dataset. It is shown that most positive
pair costs are smaller than the mean cost, while cost larger than
mean cost is likely to be negative sample pairs.

Positive Re-weighting. All yj
i = 1 estimated by graph

matching are positive video pairs. Since the labels are un-
certain, it means that considering allyj

i = 1 equally is un-
reasonable. Therefore, we design a soft labell+ (i; j ) en-
coded with a Gaussian kernel foryj

i = 1 ,

l+ (i; j ) =
�

e� C ( i;j ) ; if C(i; j ) < � +

0; others
(7)

where� + is the pre-de�ned threshold.C means the assign-
ment cost computed in Eq.2 in current iteration. In this
manner, the positive labels (y = 1 ) are converted into soft
labels, with smaller distance assigned larger weights while
larger distance with smaller weights. Meanwhile, the �lter-
ing strategy could reduce the impact of false positives.

Negative Re-weighting. Since abundant negative video
pairs exist in video re-ID task compared with positive video
pairs, some hard negative are selected for ef�cient training,
l � (i; j ) for all yj

i = 0 is de�ned as

l � (i; j ) =
�

� 1; if C(i; j ) < � �

0; others,
(8)

where� � is the pre-de�ned threshold. Considering both
Eq. 7 and Eq. 8, we de�ne � + = � � = cm based on
the observation shown in Fig4. cm denotes the mean ofC,
which would be quite ef�cient. Thus, the label re-weighting
scheme is re�ned by

l(i; j ) =

8
<

:

e� C ( i;j ) � yj
i ; if 0 < y j

i C(i; j ) < c m

0; if C(i; j ) > c m

� 1; others:
(9)

The label re-weighting scheme has the following advan-
tages: (1) for positive video pairs, it could �lter some false
positives and then assign different positive sample pairs d-
ifferent weights; (2) for negative video pairs, a number of
easy negatives would be �ltered. The re-weighing scheme
is simple but effective as shown in the experiments.



Algorithm 1 Dynamic Graph Matching (DGM)

Input: Unlabelled featuresX a ; X b, M 0 = I .
1: ComputeC0 with Eq. 2;
2: Solve Eq.1 to gety 0 andG0;
3: for t = 1 to maxIter do
4: Label Re-weightingl t with Eq. 9;
5: UpdateM t with Eq. 11as done in [15];
6: Update cost matrixC t with Eq. 2;
7: Solve Eq.1 to gety t ;
8: if Gt � Gt � 1 then
9: y t = y t � 1;

10: end if
11: if convergethen
12: break;
13: end if
14: end for
Output: Estimated labelsy , learnt metricM .

4.2. Metric Learning with Re­weighted Labels

With the label re-weighting scheme, we could learn a
discriminative metric similar to many previous supervised
metric learning works. We de�ne the loss function by log-
logistic metric learning as done in [15], i.e.,

f �
M (�x i

a ; �x j
b) = log(1 + el ( i;j )( D M (�x i

a ; �x j
b ) � c0 ) ); (10)

wherec0 is a positive constant bias to ensureDM has a
lower bound. It is usually de�ned by the average distance
between two cameras. The functionDM denotes the dis-
tance of�x i

a and �x j
b under the distance metricM , which is

de�ned by DM (�x i
a ; �x j

b) = (�x i
a � �x j

b)T M (�x i
a � �x j

b). We
choose the �rst-order statistics�x i

a and�x j
b to represent each

person as done in [40, 34].
By summing up all of sequence pairs, we obtain the

probabilistic metric learning problem under an estimatedy
formulated by,

F (M ; y ) =
X m

i =1

X n

j =1
! ij f �

M (�x i
a ; �x j

b); (11)

where ! ij is a weighting parameter to deal with the im-
balanced positive and negative pairs. The weights! ij are
caculated by! ij = 1

jf l ( i;j ) j l ( i;j )> 0gj if l (i; j ) > 0, and

! ij = 1
jf l ( i;j ) j l ( i;j )= � 1gj if l (i; j ) = � 1, wherej � j denotes

the number of candidates in the set. Note that some uncer-
tain pairs are assigned with labell (i; j ) = 0 without affect-
ing the overall metric learning. The discriminative metric
can be optimized by minimizing Eq.11 using existing ac-
celerated proximal gradient algorithms (e.g., [1, 15, 26]).

4.3. Iterative Updating

With the label information estimated by graph match-
ing, we could learn an improved metric by selecting high-
con�dent labeled video pairs. By utilizing the learnt metric,

the assignment cost of Eq.3 and Eq. 4 could be dynami-
cally updated for better graph matching in a new iteration.
After that, better graph matching could provide more reli-
able matching results, so as to improve the previous learnt
metric. Iteratively, a stable graph matching result is �nal-
ly achieved by a discriminative metric. The matched re-
sult could provide label data for further supervised learning
methods. Meanwhile, a distance metric learnt in an unsu-
pervised way could also be directly adopted for re-ID. The
proposed approach is summarized in Algorithm1.

Convergence Analysis.Note that we have two objective
functionsF andG optimizing y andM in each iteration.
To ensure the overall convergence of the proposed dynamic
graph matching, we design a similar strategy as discussed in
[23]. Speci�cally, M can be easily optimized by choosing a
suitable working step size� � L , whereL is the Lipschitz
constant of the gradient function5 F (M; y ). Thus, it could
ensureF (M t ; y t � 1) � F (M t � 1; y t � 1), a detailed proof is
shown in [1]. For y t at iterationt, we constrain the updat-
ing procedure by keep on updating the assignment cost ma-
trix C t until getting a bettery which satis�esG(M t ; y t ) �
G(M t ; y t � 1), similar proof can be derived from [23]. By
constrain the updating procedure, it could satisfy the crite-
ria Gt (y ; M ) + F t (M ; y ) � Gt � 1(y ; M ) + F t � 1(M ; y ).
This is validated in our experiments as discussed in Section
5.2. Particularly, the proposed method converges steadily.

Complexity Analysis. In the proposed method, most
computational costs focus on the iterative procedure, since
we need to conduct the graph matching with Hungarian al-
gorithm at each iteration. We need to compute the sequence
cost O(n2) and neighborhood costO(kn + n2) for each
camera, and then graph matching time complexity isO(n3).
UpdatingM with accelerated proximal gradient is extreme-
ly fast as illustrated in [1]. However, the proposed method
is conducted of�ine to estimate labels, which is suitable
for practical applications. During the online testing pro-
cedure, we only need to compute the distance between the
query personp and the gallery persons with the learnt re-
identi�cation model. The distance computation complexity
is O(n) and ranking complexity isO(n logn), which is the
same as existing methods [34, 15].

5. Experimental Results

5.1. Experimental Settings

Datasets.Three publicly available video re-ID dataset-
s are used for evaluation: PRID-2011 [6], iLIDS-VID [ 24]
and MARS [37] dataset. The PRID-2011 dataset is collect-
ed from two disjoint surveillance cameras with signi�cant
color inconsistency. It contains 385 person video tracks in
camera A and 749 person tracks in camera B. Among al-
l persons, 200 persons are recorded in both camera views.
Following [34, 40, 16, 37], 178 person video pairs with no



less than 27 frames are employed for evaluation. iLIDS-
VID dataset is captured by two non-overlapping cameras
located in an airport arrival hall, 300 person videos track-
s are sampled in each camera, each person track contains
23 to 192 frames. MARS dataset is a large scale dataset, it
contains 1,261 different persons whom are captured by at
least 2 cameras, totally 20,715 image sequences achieved
by DPM detector and GMCCP tracker automatically.

Feature Extraction. The hand-craft feature LOMO [14]
is selected as the frame feature on all three datasets. LOMO
extracts the feature representation with the Local Maximal
Occurrence rule. All the image frames are normalized to
128� 64. The original 26960-dim features for each frame
are then reduced to a 600-dim feature vector by a PCA
method for ef�ciency considerations on all three datasets.
Meanwhile, we conduct a max-pooling for every 10 frames
to get more robust video feature representations.

Settings. All the experiments are conducted following
the evaluation protocol in existing works [40, 34]. PRID-
2011 and iLIDS-VID datasets are randomly split by half,
one for training and the other for testing. In testing pro-
cedure, the regularized minimum set distance [29] of two
persons is adopted. Standard cumulated matching charac-
teristics (CMC) curve is adopted as our evaluation metric.
The procedure are repeated for 10 trials to achieve statisti-
cally reliable results, the training/testing splits are originat-
ed from [34]. Since MARS dataset contains 6 cameras with
imbalanced tracklets in different cameras, we initialize the
tracklets in camera 1 as the base graph, the same number of
tracklets from other �ve cameras are randomly selected to
construct a graph for matching. The evaluation protocol on
MARS dataset is the same as [37], CMC curve and mAP
(mean average precision) value are both reported.

Implementation. Both the graph matching and met-
ric learning optimization problems can be solved separate-
ly using existing methods. We adopt Hungarian algorithm
to solve the graph matching problem for ef�ciency consid-
erations, and metric learning method (MLAPG) in [15] as
the baseline methods. Some advanced graph matching and
metric learning methods may be adopted as alternatives to
produce even better results as shown in Section5.3. We re-
port the results at10th iteration, with� = 0 :5 for all three
datasets if without speci�cation.

5.2. Self Evaluation

Evaluation of iterative updating. To demonstrate the ef-
fectiveness of the iterative updating strategy, the rank-1
matching rates of training and testing at each iteration on
three datasets are reported in Fig.5. Speci�cally, the rank-
1 accuracy for testing is achieved with the learnt metric
at each iteration, which could directly re�ect the improve-
ments for re-ID task. Meanwhile, the overall objective val-
ues on three datasets are reported.
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Figure 5.(a) Rank-1 accuracy of training and testing at each itera-
tion on three datasets. (b) Overall objective values at each iteration
on three datasets. For better view, the objective values are normal-
ized.

Datasets PRID-2011 iLIDS-VID MARS
w/o re-weighting 72.6 35.6 22.8
w re-weighting 73.1 37.1 24.6

Table 1.Rank-1 matching rates with (/without) label re-weighting
on three datasets.

Fig. 5(a) shows that the performance is improved with
iterative updating procedure. We could achieve 81.57% ac-
curacy for PRID-2011, 49.33% for iLIDS-VID and 59.64%
for MARS dataset. Compare with iteration 1, the improve-
ment at each iteration is signi�cant. After about 5 iterations,
the testing performance �uctuates mildly. This �uctuation
may be caused by the data difference of the training data
and testing data. It should be pointed out that there is a
huge gap on the MARS dataset, this is caused by the abun-
dant distractors during the testing procedure, while there is
no distractors for training [37]. Experimental results on the
three datasets show that the proposed iterative updating al-
gorithm improves the performance remarkably. Although
without theoretical proof, it is shown in Fig.5(b) that DGM
converges to steady and satisfactory performance.

Evaluation of label re-weighting. We also compare the
performance without label re-weighting strategy. The inter-
mediate labels output by graph matching are simply trans-
formed to1 for matched and� 1 for unmatched pairs. The
rank-1 matching rates on three datasets are shown Table1.
Consistent improvements on three datasets illustrate that the
proposed label-re-weighting scheme could improve the re-
ID model learning.

Evaluation of label estimation. To illustrate the label
estimation performance, we adopt the general precision, re-
call and F-score as the evaluation criteria. The results on
three datasets are shown in Table2. Since graph match-
ing usually constrains full matching, the precision score is
quite close to the recall on the PRID-2011 and iLIDS-VID
datasets. Note that the precision score is slightly higher than
recall is due to the proposed positive re-weighting strategy.
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Figure 6.Estimated labels for other supervised learning methods. “DGM” represents the re-identi�cation performance with our estimated
labels. “GT” provides upper bounds with fully supervised learning. Rank-1 matching rates (%) are reported for three datasets.

Dataset Precision Recall F-score
PRID2011 82.14 81.57 81.85
iLIDS-VID 49.33 48.64 48.98
MARS 59.64 42.40 49.57

Table 2.Label estimation performance (%) on three datasets.

Running time. The running times on three datasets with
the settings described in Section 5.1 are evaluated. It is
implemented with Matlab and executed on a desktop PC
with i7-4790K @4.0 GHz CPU and 16GB RAM. The train-
ing and testing time are reported by the average running
time in 10 trials. For training, since we adopt an ef�cient
graph matching algorithm and accelerated metric learning
[15], the training time is acceptable. The training time for
the PRID2011 dataset is about 13s, about 15s for iLIDS-
VID dataset, about 2.5 hours for the MARS dataset due
to the large amount of tracklets. For testing, the running
time is fast for our method, since standard 1-vs-N matching
scheme is employed. The testing times are less than 0.001s
on PRID2011 and iLIDS-VID datasets for each query pro-
cess, and around 0.01s on MARS with 636 gallery persons.

5.3. Estimated Labels for Supervised Learning

This subsection evaluates the effectiveness of the out-
put estimated labels for other supervised learning method-
s. Compared with the re-identi�cation performances with
groundtruth labels (GT), they provide upper bounds as ref-
erences to illustrate the effectiveness of DGM. Speci�cal-
ly, two metric learning methods MLAPG [15] and XQDA
[14], and an ID-discriminative Embedding (IDE) deep mod-
el [37] are selected for evaluation as shown in Fig.6.

Con�gured with MLAPG and XQDA, the performances
outperform the baselinel2-norm on all three datasets, usu-
ally by a large margin. The results show that the estimat-
ed labels also match well with other supervised methods.
Compared with the upper bounds provided by supervised
metric learning methods with groundtruth labels, the result-
s on PRID-2011 and MARS datasets are quite close to the
upper bounds. Although the results on iLIDS-VID dataset
are not that competitive, the main reason can be attributed

to its complex environment with many background clutter-
s, such as luggage, passengers and so on, which cannot be
effectively solved by a global descriptor (LOMO) [14].

Another experiment with IDE deep model on the three
datasets shows the expendability of the proposed method
to deep learning methods. Speci�cally, about 441k out of
518k image frames are labelled for 625 identities on the
large scale MARS dataset, while others are left with Eq.
9. The labelled images are then resized to227� 227pix-
els as done in [37], square regions224� 224are randomly
cropped from the resized images. Three fully convolutional
layers with 1,024, 1,024 andN blobs are de�ned by using
AlexNet [10], whereN denotes the labelled identities on
three datasets. The FC-7 layer features (1,024-dim) are ex-
tracted from testing frames, maxpooling strategy is adopt-
ed for each sequence [37]. Our IDE model is implemented
with MxNet. Fig.6 shows that the performance is improved
with a huge gap to hand-craft features with deep learning
technique on the large scale MARS dataset. Comparably, it
does not perform well on two small scale datasets (PRID-
2011 and iLIDS-VID dataset) compared to hand-craft fea-
tures due to the limited training data. Meanwhile, the gap
between the estimated labels to fully supervised deep learn-
ing methods is consistent to that of metric learning method-
s. Note that since one person may appear in more than one
cameras on the MARS dataset, the rank-1 matching rates
may be even higher than label estimation accuracy.

5.4. Comparison with Unsupervised re­ID

This section compares the performances to existing un-
supervised re-ID methods. Speci�cally, two image-based
re-ID methods, Salience [36] results originated from [24],
and GRDL [9] is implemented by averaging multiple frame
features in a video sequence to a single feature vector. Four
state-of-the-art unsupervised video re-ID methods are in-
cluded, including DVDL [7], FV3D [16], STFV3D [16] and
UnKISS [8]. Meanwhile, our unsupervised estimated label-
s are con�gured with three supervised baselines MLAPG
[15], XQDA [14] and IDE [37] to learn the re-identi�cation
models as shown in Table3.

It is shown in Table3 that the proposed method out-



Datasets PRID-2011 iLIDS-VID MARS
Rank atr 1 5 10 20 1 5 10 20 1 5 10 20 mAP
L2 40.6 66.7 79.4 92.3 9.2 20.0 27.9 46.9 14.9 27.4 33.7 40.8 5.5
FV3D [16] 38.7 71.0 80.6 90.3 25.3 54.0 68.3 87.3 - - - - -
STFV3D� [16] 27.0 54.0 66.3 80.9 19.1 38.8 51.7 70.7 - - - - -
Salience [36] 25.8 43.6 52.6 62.0 10.2 24.8 35.5 52.9 - - - - -
DVDL [ 7] 40.6 69.7 77.8 85.6 25.9 48.2 57.3 68.9 - - - - -
GRDL [9] 41.6 76.4 84.6 89.9 25.7 49.9 63.2 77.6 19.3 33.2 41.6 46.5 9.56
UnKISS [8] 58.1 81.9 89.6 96.0 35.9 63.3 74.9 83.4 22.3 37.4 47.2 53.6 10.6

DGM + MLAPG [15] 73.1 92.5 96.7 99.0 37.1 61.3 72.2 82.0 24.6 42.6 50.4 57.2 11.8
DGM + XQDA [14] 82.4 95.4 98.3 99.8 31.3 55.3 70.7 83.4 23.6 38.2 47.9 54.7 11.2
DGM + IDE [37] 56.4 81.3 88.0 96.4 36.2 62.8 73.6 82.7 36.8 54.0 61.6 68.5 21.3

Table 3.Comparison with state-of-the-art unsupervised methods including image and video based methods on three datasets.Redindicates
the best performance whileBlue for second best.

performs other unsupervised re-ID methods on PRID-2011
and MARS dataset often by a large margin. Meanwhile, a
comparable performance with other state-of-the-art perfor-
mances is obtained on iLIDS-VID dataset even with a poor
baseline input. In most cases, our re-ID performance could
achieve the best performances on all three datasets with the
learnt metric directly. We assume that the proposed method
may yield better results by adopting better baseline descrip-
tors, other advanced supervised learning methods would al-
so boost the performance further. The advantages can be
attributed to two folds: (1) unsupervised estimating cross
cameras labels provides a good solution for unsupervised
re-ID, since it is quite hard to learn invariant feature repre-
sentations without cross-camera label information; (2) dy-
namic graph matching is a good solution to select matched
video pairs with the intra-graph relationship to address the
cross camera variations.

5.5. Robustness in the Wild

This subsection mainly discusses whether the proposed
method still works under practical conditions.

Distractors. In real applications, some persons may not
appear in both cameras. To simulate this situation for train-
ing, we use the additional 158 person sequences in camer-
a A and 549 persons in camera B of PRID-2011 dataset to
conduct the experiments.d%� N distractor persons are ran-
domly selected from these additional person sequences for
each camera. They are added to the training set as distrac-
tors. N is the size of training set. We use these distractors
to model the practical application, in which many persons
cannot �nd their correspondences in another camera.

Trajectory segments. One person may have multiple
sequences in each camera due to tracking errors or reap-
pear in the camera views. Therefore, multiple sequences
of the same person may be unavoidable to be false treated
as different persons. To test the performance,p% � N per-
son sequences are randomly selected to be divided into two
halves in each camera on PRID-2011 dataset. In this man-

Rank atr 1 5 10 20
Baseline 73.1 92.5 96.7 99.0
d(%) Exp 1. Distractors.
20 72.1 91.9 95.8 98.4
50 70.3 90.9 95.2 98.2
p(%) Exp 2. Trajectory Segments.
20 72.3 92.1 95.9 98.6
50 71.1 91.6 95.4 98.3

Table 4.Matching rates (%) on the PRID-2011 dataset achieved
by the learnt metric without one-to-one matching assumption.

ner, aboutp% persons would be false matched since thep%
are both randomly selected for two cameras.

Table4 shows that the performance without one-to-one
matching assumption is still stable, with only a little degra-
dation in both situations, this is because: (1) Without one-
to-one assumption, it will increase the number of negative
matching pairs, but due to the abundant negatives pairs in
re-ID task, the in�uence is not that much. (2) The la-
bel re-weighting strategy would reduce the effects of low-
con�dence matched positive pairs.

6. Conclusion

This paper proposes a dynamic graph matching method
to estimate labels for unsupervised video re-ID. The graph
is dynamically updated by learning a discriminative metric.
Bene�t from the two layer cost designed for graph match-
ing, a discriminative metric and an accurate label graph are
updated iteratively. The estimated labels match well with
other advanced supervised learning methods, and superior
performances are obtained in extensive experiments. The
dynamic graph matching framework provides a good solu-
tion for unsupervised re-ID.
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