
COMP 7650 Data Mining and Knowledge Discovery 
 
 
Instructions: 
 
This assignment is to be submitted online as a single PDF document. Your submission 
will be confirmed within 5 minutes via Email and online. Submission is to be done via 
the link associated with Assignment 1 at the Web site  
 
http://www.comp.hkbu.edu.hk/~markus/teaching/comp7650/  
 
Multiple submissions can be made but only the last submitted version will be assessed. 
Submissions made after the due date and time will not be assessed (no late 
submissions allowed). The PDF document should have a header containing your full 
name and your student ID. There is a file size limit of 512KB for submitted material. 
This means that your PDF file should not exceed 512KB in size. This is an individual 
assignment! Plagiarism will result in having 0 marks for all students involved. 
 
1. Given two feature vectors, (0.1,0.4,0.2,0.5)T

sx = and (0.3,0.5,0.1,0.9)T
rx = , 

calculate the following similarity and distance values and explain formula on how to 
calculate these values: 
 
(a) Euclidean distance 
 
 
 
 
0.4690 
 
(b) Cosine distance 
 
cos( d1, d2 ) =  (d1 • d2) / ||d1|| ||d2|| ,  
 
0.9583 
 
(c) Pearson’s correlation  
 
 
 
 
 
 
 
0.8552 
 
(d) City block distance (Manhattan distance) 
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0.8000 
 
(e) Minkowski distance (r = 1 and 2) 
 

 
 
0.8000 and 0.4690  
 
Note that when r = 1, the Minkowski distance becomes the city block distance. When 
r = 2, the Minkowski distance becomes the Euclidean distance. 
 
(f) Kullback-Leibler divergence (not a metric) 
 

 
 
KL(x_s,x_r) = -0.3544 and KL(x_s,x_r) = 0.9008 
 
 
 
2. Describe the strengths and weaknesses of the following four classifiers: Nearest 
neighborhood classifiers, naïve Bayes classifiers, Gaussian mixture models and 
hidden Markov models. What assumptions we made when we use these classifiers? 
 
Answer: 
(1) Nearest neighborhood classifiers 
Strengths: non-parametric (no parameter estimation); simple and easy to implement 
Weaknesses: require large data storage; high computational cost (calculate similarity 
with all stored samples) 
Assumption: the majority of neighbors can determine the sample’s class label 
 
(2) Naïve Bayes classifiers 
Strengths: simple parameter estimation procedure; simple and easy to implement 
Weaknesses: the conditional independence assumption of attributes may deteriorate 
the classification performance 
Assumption: the attributes are conditionally independent in terms of the class label 
 
(3) Gaussian mixture models 
Strengths: a relatively simple parameter estimation procedure based on the 
expectation maximization algorithm; arbitrary density modeling ability with enough 
mixture components 
Weaknesses: the number of mixture components is difficult to determine; random 
initialization may affect the classification performance 
Assumption: according to a certain metric, the data have different densities in 
different classes 
 
(4) Hidden Markov models 
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Strengths: a systematic parameter estimation procedure; arbitrary sequential data 
modeling with enough hidden states 
Weaknesses: the number of hidden states and the meaning of hidden states are not 
easy to determine; the computational cost may be high if the topology of HMMs is 
complex 
Assumption: the left-right HMMs assume that signals are piecewise stationary.  
 
 
3. Suppose we have three categories with 1 2( ) 3 / 4, ( ) 1/ 4P Pω ω= =  and the following 
distributions 

• 1( | ) ~ (0,1)p x Nω  
• 2( | ) ~ (0.5,1)p x Nω  

and that we sample the following four points: 0.6,0.1x =  
 
(a) Calculate explicitly the probability that the sequence actually came from 1 1,ω ω . Be 
careful to consider normalization. 
 
Answer: there are 4 combinations of categories for this sequence, so we need to 
calculate the total probability first as a normalization factor (You can program to 
achieve this goal). 
 
P_total = [N(0.6; 0,1)*3/4]*[N(0.1; 0,1)*3/4] + [N(0.6; 0,1)*3/4]*[N(0.1; 0.5,1)*1/4] 
+ [N(0.1; 0,1)*3/4]*[N(0.6; 0.5,1)*1/4] + [N(0.6; 0.5,1)*1/4]*[N(0.1; 0.5,1)*1/4] 
= 0.1354 
 
P(w1, w1) = [N(0.6; 0,1)*3/4]*[N(0.1; 0,1)*3/4] / P_total  
= 0.5494 
 
 
(b) Repeat for the sequence 1 2,ω ω  
 
P(w1,w2) = 0.1699 
 
 
(c) Find the sequence having the maximum probability 
 
Because P_total is fixed for all combinations, we only need to compare the numerator. 
As a result, the best sequence is 1 1,ω ω  
 
 
4. Suppose we have the left-right HMM with four hidden states, 1 2 3 4{ , , , }ω ω ω ωΩ = , 
where 1ω  and 4ω are non-emitting starting and ending states. The emitting probability 
of hidden states, 2 3,ω ω , are 

• 2( | ) ~ (0,1)p x Nω  
• 3( | ) ~ (0.5,1)p x Nω  

and the transition probabilities are 



12 22 23 33 34 441, 0.4, 0.6, 0.7, 0.3, 1a a a a a a= = = = = =  
with other transition probabilities zeros. 
 
 
We also have a sequence of observations {0.1,0.6,0.3}O = . 
 
 
(a) The evaluation problem: calculate the conditional probability ( | )P O Ω  using the 
forward-backward algorithm. 
 
Hints: build up the forward variable “alpha” and the backward variable “beta” 
matrices according to the forward-backward algorithm. 
 
(1) Forward variable: alpha matrix 
 
0.3970     0.0529    0 
0              0.0946    0.0383       0.0115      
 
(2) Backward variable: beta matrix  
 
0.0115    0.0235     0 
0             0.0326     0.1173 
 

( | )P O Ω  = 0.0115 
 
(b) The decoding problem: find the single “best” state sequence using the Viterbi 
algorithm. 
 
Hints: build up the “phi” matrix according to the Viterbi algorithm. 
 
The best hidden state sequence is 1 2 3 3 4, , , ,ω ω ω ω ω . 


